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ABSTRACT
Highly optimised assembly lines are commonly used in vari-
ous manufacturing domains, such as electronics, microchips, 
vehicles, electric appliances, etc. In the last decades man-
ufacturers have installed software systems to control and 
optimise their shop floor processes. Machine Learning can 
enhance those systems by providing new insights derived 
from the previously captured data. This paper provides an 
overview of Machine Learning fields and an introduction to 
manufacturing management systems. These are followed by 
a discussion of research projects in the field of applying Ma-
chine Learning solutions for condition monitoring, process 
control, scheduling, and predictive maintenance.

CCS Concepts
•Social and professional topics → Automation; •Com-
puting methodologies → Machine learning approach-
es; •Applied computing → Enterprise applications; •In-
formation systems → Enterprise resource planning;
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1. INTRODUCTION
Highly optimised production lines coordinated by infor-

mation systems are a major aspect of modern manufactur-
ing environments. These systems provide a high degree of 
software support at various stages of a production lifecy-
cle [32]. In high-volume and high-throughput manufactur-
ing environments information systems are vital for planning, 
coordinating, controlling, and evaluating the fully- or partly-
automated manufacturing processes. Nowadays such envi-
ronments are commonly applied in the mass production of 
goods, such as cars, electronic parts, electric appliances, and 
toys etc. [11] Although initially these systems where only 
used for planning and did not collect telemetrics from the

production process, soon the telemetric data began to be fed
back to the information system. While at first the focus was
on the monitoring of the manufacturing process, Machine
Learning offered the potential to implement self-adapting
manufacturing management systems which constantly im-
prove based on the collected data. [31]

Machine Learning applications gained additional momen-
tum due to the US Advanced Manufacturing Initiative in
the United States [6] and the Industry 4.0 program of the
German government [3]. One aspect of both initiatives is
the use of Internet of Things (IoT) solutions in the man-
ufacturing domain to create so-called Cyber-Physical Sys-
tems (CPS) [16]. Another important idea in both programs
is gathering intelligence based on the collected data. This
implies that the measurements are not only recorded (i.e.
for reporting purposes) but also actively used to monitor,
forecast and optimise the manufacturing process [10]. Tra-
ditionally, this often implied the desire to achieve higher
degrees of automation. Nowadays, complete automation is
not the only goal and other aspects can become similarly or
even more important, including [29, 12, 26]:

High equipment utilisation is vital to economically op-
erate expensive equipment forming a shop floor. Hence,
a high utilisation is important to be competitive in
cost-sensitive markets. High utilisation requires low
idle times and low downtimes due to failures and main-
tenance [22, 14]

Predictive maintenance (PdM) is key to achieving low
equipment downtime by optimising repair cycles and
predicting failures in advance. [29] PdM can be used as
a tool to reduce unexpected downtime, maintenance,
and repair costs, as well as to maximise overall through-
put performance via scheduled and predictable down-
time windows for tools, equipment and shop floor line
setups [28]. Hence, PdM helps to achieve a high avail-
ability of equipment and higher equipment utilisation.

High production yield is an issue in the manufacturing
of complex products, such as microchips consisting of
billions of semiconductors. Reducing the scrap rate di-
rectly influences the earnings of a manufacturer. [14]
PdM makes it possible to detect deteriorating tool
quality and increase the production yield.

For small lot sizes and customisable products, adap-
tive production lines are required. The individualisa-
tion and optional features make a selling point that can
attract new customers. Adaptive production lines are
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used for manufacturing small batches of individualised
products that derivate from a common main product.
This often collides with the desired equipment utili-
sation since the manufacturing process becomes more
complex and might need specialised tools. [27, 12, 26]

Information systems supporting shop floor workers are
a bridge between the automated machinery and human
workers. Workers who are well informed about the
production goals and receive personalised information
for their tasks can excel in various working stations
and are empowered to make the right decisions. [26]

Machine Learning can be one way to master these manu-
facturing challenges. Although research in Machine Learn-
ing in the manufacturing domain has been performed for
many years [15], recent trends, such as deep learning [25],
offered new solutions. Machine Learning algorithms can be
trained on the basis of data collected on shop. Depending
on the available data and the problem to be solved, various
Machine Learning approaches can be applied.

2. MACHINE LEARNING
Machine Learning was first formalised and defined in 1950s

as the concept of algorithms that can learn from data pro-
vided to them [9]. Learning in this context means that the
algorithms derive a model from the data they have already
received. This process is termed training and the data used
for it is termed a training set. After the training, the de-
rived model can be applied to make predictions for new data
unknown to the algorithm. Depending on how training is
organised and what kind of training set is required, Ma-
chine Learning algorithms can be categorised into the three
groups: supervised, unsupervised and reinforcement learn-
ing. [1, 24]

In supervised learning the training sets consist of input
and output data. Hence, the machine needs to find a map-
ping function between these two parts of the training set. A
common subdivision in supervised learning is classification,
whereby algorithms learn the assignment of observations to
desired classes. If the target values are not discrete classes
but rather continuous values, the process is termed regres-
sion. [33, 1] An example of classification is the assignment
of emails to the two classes of junk or not junk mail based
on examples of both classes provided by the user. An ex-
ample of regression is predicting future temperature values
based on current and past temperature readings. The ob-
vious drawback of supervised learning is the effort required
for generating good and comprehensive training examples
consisting of input and output data.

In unsupervised learning the training data does not con-
tain any desired output and the algorithm has to find hidden
structures by itself [24].Clustering is a common example of
data partitioned into groups by means of unsupervised learn-
ing. Elements assigned to the same group, or cluster, are
thought to be more similar to each other than to elements
assigned to other groups. Finding different representations
and transforming data is also a common feature of unsuper-
vised learning. Such transformations can be a pre-processing
step for other Machine Learning algorithms. Principal com-
ponent analysis or independent component analysis are ex-
amples of such transformations. While generating training
data for unsupervised learning requires significantly less ef-

fort than for supervised one, the results of unsupervised
learning are often difficult for humans to interpret. [33, 1]

In reinforcement learning algorithms have to interact with
another party or system. Based on the feedback obtained
from them, the algorithms can learn to make its own deci-
sions. In other words, the algorithm determines good and
bad actions based on the provided feedback. The feedback
process can be continued during the operation, meaning that
there is no clear boundary between the training and op-
erational phases. Hence, reinforcement learning lies some-
what between unsupervised and supervised learning. Exam-
ples for reinforcement learning can be found in robotics and
game-playing algorithms. [1, 24]

3. MANUFACTURING MANAGEMENT SYS-
TEMS

According to market researchers and consultants, applied
Machine Learning has big potential in the manufacturing do-
main [18, 7, 8]. The highlighted scenarios have to be viewed
in the context of Manufacturing Execution Systems (MES)
and all the data they have stored to date. MES are informa-
tion systems designed for planning, managing, controlling,
and monitoring a manufacturing environment [23]. Tradi-
tionally MES were organised hierarchical, resulting in cen-
tralised management of production lines [4]. Due to the in-
creasing complexity and additional requirements in terms of
fault tolerance and redundancy, the effort to maintain hier-
archical MES became a problem. This led to the creation of
a heterarchical paradigm outlining a product-driven organ-
isation of the shop floor and information systems. In a het-
erarchical environment products and machines are equipped
with intelligent devices in order to interact with the planning
and monitoring infrastructure. [30, 4] Such modularisation
comes at a price, since each station only has information
about its own context and can only plan ahead for a limited
period of time or not at all. Providing each station with
more autonomy and access to the state and scheduling in-
formation of other stations led to the development of holonic
MES. They are modular and highly dynamic, meaning that
hierarchies can be formed if needed. Due to a high degree of
flexibility and modularisation, holonic MES can be viewed
as an extension or generalisation of heterarchical MES. [2]

Although MES are important to modern manufacturing,
they are not the only relevant information system in the
production environment. Manufacturing execution systems
(MES) help to track the manufacturing progress, trace prod-
ucts throughout the line and assess the quality or efficiency.
To achieve this, MES receive product data from design and
engineering computer systems termed Computer Aided De-
sign (CAD) and Computer Aided Engineering (CAE) sys-
tems. Line monitoring systems (LMS) are used to evaluate
the equipment efficiency, output, and bandwidth based on
key performance indicators. Enterprise resource planning
(ERP) and warehouse management systems (WMS) help to
coordinate the management of production warehouses. Data
distributed over all these individual systems fully describe
the production process. Parts or all of these data can be
the starting point for Machine Learning applications in the
manufacturing domain. [5]

4. SELECTED APPLIED RESEARCH
PROJECTS



Various manufacturing management systems collect large
amounts of data from the planning and production phases
of each product. Hence, an adaptive system equipped with
machine leaning capabilities can use these data as a training
set. Such rich databases are the basis for many Machine
Learning applications in the manufacturing domain.

4.1 Condition Monitoring and Process Con-
trol

Metz et al. [13] present a potential system design and a
case study in a casting enterprise. Their approach was to col-
lect data from events occurring at the shop floor and process
events, e. g., from the supply chain management. Based on
a predefined set of manually-entered rules, a classification-
based rule-inferring system is described to deduct rules from
the collected data. All rules are used to inform operators
about the current process and to automatically control pro-
cess parameters within predefined thresholds. Moreover,
the authors pointed out that the system required a learn-
ing phase, which is problematic if products priory unknown
to the system are introduced.

A similar approach was formalised by Gröger et al. [5],
who designed an Advanced Manufacturing Analytics Plat-
form holding data from an MES, process monitoring sensors,
product design and development, and an ERP system. Pat-
tern detection and decision tree induction were applied to
all these data in order to derive rules for the optimisation
of a steel spring manufacturing process in the automotive
industry.

Peng [19] presented a fuzzy inductive-learning-based in-
telligent monitoring system for improving the reliability of
manufacturing processes. It has been demonstrated that
this method can successfully be applied to the conditions of
a tapping process to improve the product quality.

4.2 Scheduling
Scheduling has many applications and can generally be

NP (non-deterministic polynomial-time) hard [21, 17]. Pro-
duction equipment under a job-shop-floor scenario requires
planning strategies that consider routing alternatives, equip-
ment utilization, parts on the shop floor and their respective
routing, as well as a manufacturing operation plan. Priore
et al. [22] used the mean tardiness and the mean flow time
as criteria for Machine Learning algorithms trained to select
dispatching rules. They evaluated various combinations of
dispatching rules, such as shortest processing time (SPT),
earliest due date (EDD), modified job due date (MDD) and
shortest remaining processing time (SRPT). A generic al-
gorithm was presented, which was trained to find better
routing decisions in order to improve the overall manufac-
turing system’s performance under various scenarios. By
analysing earlier performance of the system, knowledge of
the scheduling characteristics can be obtained and the cor-
rect dispatching rule at each particular moment can be de-
termined. Three types of machine-learning algorithms were
used and compared to gain the insights into the scheduling
characteristics: inductive learning, back-propagation neural
networks, and case-based reasoning (CBR). The results show
significant improvements of the dispatching performance.

Noroozi et al. [17] presented an adaptive learning approach
for optimising the job sequence and lot formation. Their
work was inspired by neural networks using a weight factor

to escape the local minima in the various tested optimisation
settings.

Pickardt et al. [20] proposed a two-stage approach to gen-
erating scheduling rules. In the first stage a genetic program-
ming (GP) algorithm derives rules and in the second one an
evolutionary algorithm (EA) looks for possible assignments
of the rules.

4.3 Predictive Maintenance
Susto et al. [28] presented a multiple classifier Machine

Learning methodology for PdM. With that regard, the main
challenge was to generate health factors and link the system
status to a maintenance issue. The proposed methodology
allows to adopt dynamical decision rules in the maintenance
management and can be applied to multi-dimensional data
problems. Susto et al. [28] show that this can be achieved by
training multiple classification modules with different pre-
diction horizons to elaborate different performance trade-
offs in terms of unexpected breakdown frequency and unex-
ploited lifetime. The proposed PdM methodology was tested
for replacing tungsten filaments used in ion implantation,
which is one of the most important processes in the semi-
conductor manufacturing. Implantation was used to modify
the electrical properties of wafers by injecting doping atoms.
This process equipment is often considered a bottleneck in
production lines due to the operating and maintenance costs,
making it a critical process step for the overall throughput.
The methodology outlined by Susto et al. [28] outperforms
the approaches that do not incorporate Machine Learning
algorithms.

5. CONCLUSIONS
Machine Learning can help to handle the large amount of

data collected during the product life cycle in the manufac-
turing industry. Machine Learning can provide solutions in
the fields of optimisation, automation, and worker support
by handling complex problems that cannot be solved via
static, non-adaptive computer programs. Condition moni-
toring, forecasting, scheduling and predictive maintenance
are examples of promising Machine Learning applications
that are already in use today.
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