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Abstract. Traditional distributional semantic models (DSMs) like Latent Se-
mantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) derive represen-
tations for words assuming words occurring in similar contexts will have simi-
lar representations. Deep Learning has made feasible the derivation of word 
embeddings (i.e. distributed word representations) from corpora of billions of 
words applying neural language models like CBOW and Skip-gram. The appli-
cation of Deep Learning to aid ontology development remains largely unex-
plored. This study investigates the performance of LSA, LDA, CBOW and 
Skip-gram for ontology learning tasks. We conducted six experiments; firstly 
using 300K and later with 14M PubMed titles and abstracts to obtain top-
ranked candidate terms related to the patient safety domain. Based on the evalu-
ation performed, we conclude that Deep Learning can contribute to ontology 
engineering from the biomedical literature. 
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1 Introduction 

The World Health Organization (WHO) acknowledges: “unsafe medication prac-
tices and medication errors are a leading cause of injury and health care associated 
harm around the world” [1]. In the UK, a report commissioned by the Department of 
Health states: “the NHS wastes at least £1bn – and possibly as much as £2.5bn – on 
preventable errors, many of which are related to improper use of medication” [2]. 

In 2009, the WHO proposed an International Classification for Patient Safety 
(ICPS) with 48 concepts to set forth a common understanding of patient safety litera-
ture [3]. A better understanding of the biomedical literature should bring forward 
more concepts and relations about patient safety. A better understanding of patient 
safety could affect decisions regarding patients’ well-being as well as the expenditure 
of public funds.  

The annotation of concepts and relations from the biomedical literature is key to 
unlocking the biomedical knowledge contained therein, although the size and rate of 



 

 

growth of PubMed is a challenge. Recent advances in artificial neural networks 
(ANNs) make feasible the derivation of words from corpora of billions of words. 
Hence, the growing interest in Deep Learning, which is an emerging area of artificial 
neural networks, and the neural language models CBOW (Continuous Bag-of-Words) 
and Skip-gram of Mikolov et al. [4]. Both CBOW and Skip-gram can efficiently gen-
erate word embeddings (i.e. distributed word representations); however, like other 
methods of distributional semantics, they do not provide the precise formal descrip-
tions that can be found in an ontology. 

The manual building of ontologies is often a tedious and cumbersome task [5]. The 
(semi-)automatic support of ontology development is known as ontology learning [6]. 
Ontology learning has been depicted as a layer cake [6], where different tasks can be 
distinguished: a) the acquisition of terms that refer to specific concepts (Named-entity 
recognition, a.k.a. NER); b) the recognition of synonyms among these terms; c) the 
identification of taxonomic (is-a) relations; d) the establishment of non-hierarchical 
relations; and e) the derivation of new knowledge, i.e. knowledge that is not explicitly 
encoded by the ontology.  

This study investigates how CBOW and Skip-gram can be used to aid ontology 
development for patient safety using PubMed citations (titles and abstracts) as a cor-
pus. The application of Deep Learning to ontology learning tasks, such as concept 
extraction and relation extraction by Deep Learning, remains largely unexplored. 

1.1 Background and Related Work 

Distributional semantic models  (DSMs) derive representations for words in such a 
way that words occurring in similar contexts will have similar representations. There-
fore, the context needs to be defined. Latent Semantic Analysis (LSA) [7] is a spatial-
ly motivated method that generally uses an entire document as a context (i.e. word-
document models). Latent Dirichlet Allocation (LDA) [8] is a probabilistic method. 
Both spatial and probabilistic methods of distributional semantics allow the estima-
tion of the similarity between terms: spatial DSMs compare terms using distance met-
rics in high-dimensional space [9]; and probabilistic DSMs measure similarity be-
tween terms according to the degree to which they share the same topic distributions 
[9]. LSA and LDA have high computational and storage cost associated with building 
the model or modifying it due to the huge number of dimensions when a large corpus 
is modelled [10]. Although neural models are not new in DSMs, in relatively short 
time, the neural language models CBOW and Skip-gram have gained much popularity 
to the point of being used for benchmarking word embeddings [11] or as baseline 
models for performance comparisons [12]. For CBOW and Skip-gram the most popu-
lar similarity measure is the cosine of the angle between two vectors of n dimensions. 

Much of the work in ontology learning has strong connections with natural lan-
guage processing and machine learning, and over time, different methods have been 
applied to learn ontologies and ontology-like structures from text. Indeed, traditional 
DSMs have been applied already. For example: Colace et al. [13] have used LDA for 
ontology learning. However, as of today and to the best of our knowledge, CBOW 
and Skip-gram have not been used for ontology learning. In spite of this, closely re-



 

 

lated work can be found: a) Peng et al. [14] use CBOW to generate word embeddings 
and address automatic MeSH indexing, i.e. multi-class classification; and b) De Vine 
et al. [15] use Skip-gram to learn word embeddings over sequences of UMLS (Uni-
fied Medical Language System) medical concepts instead of over sequences of terms. 

2 Materials and Methods 

2.1 The Patient-Centric Care (PCC) ontology in OWL-DL 

We used the UMLS Metathesaurus 2016AA release from the U.S. National Library 
of Medicine (NLM) that contains more than three million biomedical related concepts 
along with synonymous names and their relationships from around 100 source vocab-
ularies, some in multiple languages. Each UMLS concept has a unique identifier 
(a.k.a. CUI) and is assigned to at least one UMLS Semantic Type [16]. A UMLS Se-
mantic Group contains a set of UMLS Semantic Types [16]. We programmatically 
created the USTG ontology in OWL-DL [17], which represents formally Semantic 
Types and Groups as well as the part-whole relations among them. The USTG ontol-
ogy also contains the UMLS Metathesaurus concept, an OWL class we created that 
can have as subclass any concept from UMLS. The USTG ontology contains a total of 
585 axioms (class count: 151; individual count: 0) and its Description Logic expres-
sivity is ALEI. 

To create the Patient-Centric Care (PCC) ontology, we followed the three stages 
proposed by CommonKADS to construct a knowledge model [18]:  

1. Knowledge Identification – Besides the USTG ontology, a few information 
sources were carefully chosen: a) the ontology network about Patient Safety Incident 
[19] in OWL-DL [17] that is publically available from BioPortal [20] and was sup-
ported by WHO under the International Classification for Patient Safety programme; 
b) the WHO’s ICPS [3]; and c) a paper from Mitchell et al. [21] that discusses the 
structure-process-outcome model of healthcare and acknowledges that outcomes of 
care should not be limited to what Lohr [22] termed as “The 5Ds” (i.e. death, disease, 
disability, discomfort, and dissatisfaction), and thus, more positive healthcare out-
comes (e.g. improved health status) should also be included. Whenever possible, key 
concepts from the WHO’s ICPS [3] and the ontology network about Patient Safety 
Incident [19] are mapped to UMLS concepts [16]. A conceptual diagram was drafted. 

2. Knowledge Specification – We used OWL-DL [17] to formally represent con-
cept names, and concept expressions, along with terminological axioms.  

3. Knowledge Refinement – we performed some knowledge adjustments and used 
the FaCT++ reasoner [23] to check logical consistency and concepts’ satisfiability. 
This version of the PCC ontology contains a total of 804 axioms (class count: 181; 
individual count: 0) and its Description Logic expressivity is ALEHI. 



 

 

2.2 Ontology Learning with Distributional Semantics 

In this study, we adopted lemon (Lexicon Model for Ontologies) [24] and the prin-
ciple of “semantics by reference” [25]. This principle implies that “the expressivity 
and the granularity at which the meaning of words can be expressed depend on the 
meaning distinctions made in the ontology” [25]. Lemon is represented in RDFS [26] 
and represents lexical information relative to an ontology to make the lexical infor-
mation shareable on the Semantic Web. 

The simplest way to attach a lexical form to an ontological concept is the label 
property of RDFS (i.e. rdfs:label). In SKOS [27] there are three properties (i.e. 
skos:prefLabel, skos:altLabel, and skos:hiddenLabel), which can be considered anno-
tation properties (i.e. owl:AnnotationProperty), and only allow limited linguistic in-
formation. To include linguistic information more easily, we adopt the following core 
concepts (OWL classes) and properties (OWL object properties) from the lemon on-
tology [24]: 1) the OWL classes Lemon Element, Lexicon, Lexical entry, Lexical 
Sense, and Lexical Topic; 2) the OWL object properties entry, sense and its inverse 
senseOf, reference and its inverse isReferenceOf, and topic. We created the LEUSTG 
ontology that reuses the UTSG ontology and the just mentioned OWL classes and 
OWL object properties from lemon.  

In the LEUSTG ontology, the concept Lexicon from lemon represents a vocabulary 
for a DSM; while the concept Lexical entry from lemon represents a single word (one 
or more terms) in the vocabulary/lexicon of the DSM. In the LEUSTG ontology, the 
concept Lexical sense from lemon is superclass of the UMLS Metathesaurus concept 
from the USTG ontology. Hence, any subclass of the OWL class UMLS Metathesau-
rus concept is a UMLS concept and also an OWL class with one or more UMLS Se-
mantic Types. As UMLS Semantic Types define the senses or meanings of a lexical 
entry in relation to the given ontology, we follow the “semantics by reference” princi-
ple from [25]. In this way these axioms provide a form of class description. 

DSMs can facilitate concept extraction and relation extraction (RE) to extend dif-
ferent parts of the ontology. RE has been defined as “the task of detecting and classi-
fying semantic relations that hold between different entities” [28]. An overview of the 
two tasks performed in this study is the following: 

Lexical entry and concept extraction – a vocabulary/lexicon from DSMs contains 
lexical entries that are: concepts, phraseological expressions (typically a combination 
of concepts), or spurious terms (i.e. terms that do not have a true biomedical mean-
ing). UMLS MetaMap [29] – a well-known biomedical NER system by NLM – can 
indicate which terms from the lexicon are UMLS concepts by assigning them a CUI 
and also one or more UMLS Semantic Type(s). It should be noted that patient safety 
is a domain not well covered in UMLS where even key concepts such as “organiza-
tional outcome” do not have a CUI. Hence, some concepts need to be assigned to a 
UMLS Semantic Type manually.  

Extraction of relations – finding association relationships among a large set of 
terms can be the bases for knowledge discovery.  Using the similarity measures (e.g. 
cosine value for CBOW and Skip-gram) we can quantify empirically how closely 
related are two terms obtained from the DSM. Once the n top-ranked candidate terms 



 

 

have been obtained for a query term, it is possible to relate its respective concepts by 
adding axioms using the ontological constructor skos:related. However, exploiting the 
knowledge captured in the LEUSTG ontology, this broad relationship is refined. For 
example, using queries in the SPARQL [30] query language we can easily know: a) 
term variants of a UMLS concept by querying for candidate terms assigned to the 
same sense; b) all the candidate terms belonging to the same UMLS Semantic Type or 
Semantic Group by exploiting the formal relationships between UMLS concepts, 
UMLS Semantic Types and UMLS Semantic Groups. 

Two annotation properties were introduced in the LEUSTG ontology to capture: a) 
the agreed assessment made by the human raters per candidate term; and b) to what 
extent the candidate term was recognised by UMLS MetaMap. The LEUSTG ontolo-
gy contains a total of 691 axioms (class count: 160; individual count: 8) and its De-
scription Logic expressivity is ALEHI. 

2.3 Experimental Setup 

We downloaded the MEDLINE/PubMed baseline files for 2015 and also the up-
date files up to 8th June 2016.  Two biomedical unannotated corpora were obtained: 1) 
a subset of 301,202 PubMed publications (titles and abstracts) with date of publica-
tion from 2000 to 2016 (called here PubMed SB for short) obtained by the PubMed 
Systematic Reviews filter [31]; and 2) 14,056,762 PubMed publications (titles and 
abstracts) with date of publication from 2000 to 2016 (called here PubMed 14M for 
short). When pre-processing the textual input for CBOW and Skip-gram [4], it is 
common practice to transform the text into lower-case and to remove all numbers and 
punctuation marks systematically. This is, however, unsuitable when dealing with 
protein/gene names, symbols or abbreviations due to the fact that capitalisation and 
numerals are essential features of their nomenclature. Therefore, we decided to alter 
the commonly used pre-processing workflow. 

Recently Hu et al. [12] experimented with introducing Part-Of-Speech Tagging 
(POS) information into a neural network similar to CBOW in order to improve the 
quality of the word embeddings generated. Inspired by the experiments of Hu et al. 
[12], we pre-processed PubMed citations (titles and abstracts) using two types of ap-
proaches: 1) The first approach preserves capitalisation and numbers in the text; and 
2) The second approach applies POS tagging and chunking (a.k.a. shallow parsing) to 
the results of (1). Chunking aims to label segments of a sentence with syntactic con-
stituents, such as noun phrase (NP), and verb phrase (VP). 

LDA, LSA, CBOW, and Skip-gram are applied as methods of distributional se-
mantics, where each of them allows the estimation of similarity between terms. We 
used gensim [32] as the code implementation for LDA and LSA; and word2vec [33] 
as the code implementation for CBOW and Skip-gram. The terms “safety” and “pa-
tient safety” are the query terms (i.e. the topics). Using similarity metrics (see subsec-
tion 1.1) a list of n top-ranked candidate terms can be obtained for each query term.  
Two domain experts assessed the relevance of the terms in pairs (query term and can-
didate term) using a Likert-type (categorical) scale taken from [34], which was initial-
ly used for patients to capture their level of pain. According to this scale, a candidate 



 

 

term can be: not at all relevant (marked as 0); a little relevant (marked as 1); quite a 
bit relevant (marked as 2); and very much relevant (marked as 3). Simple guidelines 
were given to the domain experts that performed the rating. They consist of: a) the 
Likert-type (categorical) scale; b) a conceptual diagram that captures the domain of 
interest; and c) a few examples illustrating pairs of query term-candidate term anno-
tated with different scores. 

The inter-annotator agreement is calculated with weighted Cohen’s Kappa [35], a 
well-known measure for inter-annotator agreement on classification tasks. Biemann 
[36] acknowledges: “for complicated tasks like ontology learning, a comparably low 
inter-annotator agreement can be expected”. 

Brank et al. [37] distinguish three approaches for evaluation in ontology learning 
depending on the type of ontologies being evaluated and the purpose of the evalua-
tion: 1) task-based evaluation using conventional measures in information retrieval 
[38] like precision, recall, and F-measure; 2) corpus-based evaluation; and 3) criteria-
based evaluation. This study focused on the first two: 1) task-based evaluation – a 
quantitative evaluation was performed in a straight-forward manner applying the 
well-established lexical precision metric, which measures the number of relevant 
candidate terms retrieved divided by the total number of candidate terms. In this 
study, relevant candidate terms are terms scored 1 to 3 by both human raters (i.e. 
domain experts); 2) corpus-based evaluation – an evaluation performed at the concep-
tual level, where the automatically extracted ontology is compared with a Gold Stand-
ard ontology that is manually built. In this study, the Gold Standard ontology is the 
PCC ontology described in subsection 2.1. Three metrics are applied: Lexical Overlap 
(LO) [39,40] measures the shared concepts between the manual and extracted ontolo-
gy; Ontological Improvement (OI) [41] accounts for the newly discovered concepts 
that are absent in the Gold Standard; and Ontological Loss (OL) [41] determines the 
concepts that exist in the Gold Standard but were not discovered. LO can be interpret-
ed as a “recall” metric. SPARQL [30] queries aided to obtain LO, OI, and OL. 

3 Results 

Computational resources and execution times – The DSMs are generated using 
a Supermicro with 256GB RAM and two CPUs Intel Xeon E5-2630 v4 at 2.20GHz. 
For PubMed dataset SB the execution time goes from less than 1 hour for CBOW (the 
quickest) to more than 23 hours for LDA (the slowest). For PubMed dataset 14M the 
execution time goes from less than 1 hour for CBOW to more than 10 hours for Skip-
gram. With a MacBook Pro Retina (2.8 GHz Intel Core i7 and 16GB RAM) the mean 
time for executing each SPARQL query three times was less than 2 seconds. 

Distributional Semantics: LSA, LDA, CBOW, and Skip-gram – For LDA and 
LSA the number of topics was setup to 300, which produced optimal results for simi-
lar tasks. For LSA and LDA the top-ranked candidate terms were not always obtained 
for the query term (i.e. the topic) “patient safety”. For CBOW and Skip-gram we set 
up the parameters within the range studied by De Vine et al. [15]. For more technical 
details refer to the availability note at the end of the paper. 



 

 

Human Evaluation – A total of 675 pairs of terms (i.e. query term, candidate 
term) were evaluated. The inter-annotator agreement between the two raters (i.e. do-
main experts) was 0.62 applying the weighted Cohen’s Kappa measure [35].  

In figure 1, each column corresponds to a model, and the model’s name appears at 
the top of the column. Each column can have up to three different colours, where each 
colour depicts the number of candidate terms that were agreed by both raters: dark 
grey for very much relevant (relevant with score equals 3), grey for relevant (score 1 
or 2), and white for not relevant (score 0). Figure 1 on the left hand-side: experiments 
I, II, III, and IV were performed using the PubMed SB dataset and the maximum 
number of top candidate terms per model was 20. Figure 1 on the right hand-side: 
experiments V and VI were performed using the PubMed 14M dataset and the 100 
top-ranked candidate terms per model were obtained. In experiments II, IV, and VI 
noun phrase (NP) and verb phrase (VP) chunking was performed. For experiments I 
and II the query term (i.e. the topic) was “safety”; and for experiments III to VI the 
query term was “patient safety”.  

 
Fig. 1. Agreed assessment by both raters of candidate terms for the different experiments 

performed. Abbreviations: SG = Skip-gram; CB = CBOW; LD = LDA; Exp = experiment 
 
Table 1 shows the lexical precision calculated as tp/(tp+fp) for each model, where 

tp stands for the number of true positive agreed by both raters and fp stands for the 
number of false positive agreed by both raters. For experiments III and IV, there were 
no top-ranked candidate terms obtained for LSA. After observing the substantial drop 
in the lexical precision for LDA with the query term “patient safety” in experiments 
III and IV, only the neural language models CBOW and Skip-gram from Deep Learn-
ing were considered for experiments V and VI. 

Table 1. Lexical precision per model and experiment (abbreviated as Exp.) 

Model Exp. I Exp. II Exp. III Exp. IV Exp. V Exp. VI 
LSA 64% 45% - - - - 
LDA 90% 50% 56% 39% - - 
CBOW 65% 64% 84% 67% 98% 97% 
Skip-gram 76% 95% 83% 75% 100% 98% 



 

 

Ontology Learning with Distributional Semantics – the automatically extracted 
ontology (called here PubMed Ontology LEarning Ontology or POLEO for short) 
refers to the OWL-DL ontology built programmatically out of the top-ranked candi-
date terms obtained for each model (i.e. LSA, LDA, CBOW, and Skip-gram) in ex-
periments I to VI. The POLE ontology is the result of two tasks: NER and RE (see 
subsection 2.2) and, it reuses the LEUSTG ontology. The POLE ontology contains a 
total of 8392 axioms (class count: 689; individual count: 812) and its Description 
Logic expressivity is ALEHI(D). 

Evaluation of Ontology Learning with Deep Learning – Based on the Lexical 
Precision obtained for experiments I to IV (see Table 1), it is clear that: 1) the neural 
language models from Deep Learning (i.e. CBOW and Skip-gram) outperformed 
LDA for “patient safety” as query term (experiment III and IV); and 2) overall Skip-
gram seems to have the better Lexical Precision for the experiments conducted.  

Another two experiments (V and VI) were set-up using CBOW and Skip-gram on-
ly with the PubMed 14M dataset to obtain the 100-top ranked candidate terms. For 
these two models, we queried the POLE ontology using SPARQL to obtain per model 
and experiment: a) the total number terms with UMLS concepts as senses agreed as 
relevant for both raters; 2) the number of terms with UMLS concepts as senses agreed 
as relevant for both raters that also appear in the PCC ontology; and 3) the number of 
terms with UMLS concepts as senses agreed as relevant for both raters that are absent 
in the PCC ontology. With the numbers obtained from the SPARQL queries, we cal-
culated the three ontology learning metrics for corpus-based evaluation: LO, OL, and 
OI (see subsection 2.3) that appear in Table 2.  

Table 2. Lexical Overlap (LO), Ontological Loss (OL), and Ontological Improvement (OI) 

 Experiment V Experiment VI 
Model LO OL OI LO OL OI 
CBOW 40% 60% 57% 35% 65% 54% 

Skip-gram 40% 60% 40% 26% 74% 44% 

4 Discussion and Conclusion 

From Table 1 and 2, it is difficult to derive a real benefit from the noun phrase 
(NP) and verb phrase (VP) chunking. There is overall a drop in the performance of 
the models for experiment II, IV, and VI when they are compared respectively with 
the results obtained for experiment I, III, and V. Although Skip-gram achieved a sig-
nificantly better Lexical Precision in experiment II than in experiment I.  

In Table 1, Skip-gram obtained a better Lexical Precision than CBOW for most of 
the experiments. In Table 2, although the Lexical Overlap (LO) is the same for 
CBOW and Skip-gram in experiment V; CBOW gets a significantly better Ontologi-
cal Improvement (OI) for both experiments V and VI. Hence, we cannot determine 
which of the two neural language models from Deep Learning is more suited for on-
tology learning. 



 

 

The similarity in the Lexical Overlap (LO) and Ontological Improvement (OI) for 
experiment V suggest a disconnection between the PubMed corpus and the WHO’s 
ICPS [3]. 

Deep Learning opens up unsupervised learning with big data, as the training of 
neural language models like CBOW and Skip-gram can be done automatically from a 
large unannotated corpus and without high computational and storage cost. Hence, a 
natural long-term venture for Deep Learning is the biomedical literature, which can be 
seen as a large unannotated corpus with an increasing rate of growth. This paper illus-
trates how CBOW and Skip-gram can be used to aid ontology learning tasks for pa-
tient safety using PubMed citations (titles and abstracts) as a corpus. The novelty of 
this paper is two-fold: 1) ontology learning using Deep Learning remains largely un-
explored; and 2) the focus here is on quality of care, and patient safety, where quality 
care assessment concepts and models are also taken into account. 
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