
Copyright 2017 for this paper by its authors. Copying permitted for private and

academic purposes.

Empirical Evaluation of an Approach that Stimulates

Architectural Thinking during Requirements Gathering

Preethu Rose Anish
TATA Consultancy Services, India / University of Twente, Netherlands

preethu.rose@tcs.com

Abstract. [Context and Motivation] Requirements specifications often lack

the details needed by software architects to make informed architectural

decisions. Lacking such details, the architects either make assumptions or go

back to business analysts for clarifications or conduct additional stakeholder

interviews. This may result in incorrect requirements and project delays.

[Question/problem] In global software engineering projects, business analysts

and software architects are different roles with little communication. [Principal

ideas/results] The goal of this PhD project is to enhance communication

between the two roles by introducing a knowledge base with architectural

knowledge to be used by business analysts. Using an empirical approach, we

have developed an initial version of such a knowledge base.

1 Introduction

Requirements engineering (RE) activities involve capturing both functional and

non-functional requirements of the software system to be developed. The software

requirements specifications (SRS) resulting out of these activities often lack the

details needed by software architects (SAs) to make informed architectural decisions.

In turn, if wrong architectural decisions are made, the intended but unstated

requirements will not be satisfied. To compensate, the SAs either make assumptions

or go back to the business analysts (BAs) for clarifications or conduct additional

stakeholder interviews resulting in project delays. Asking BAs to provide

architecturally richer specification may seem like a good idea, but is going to be

ineffective, given that BAs lack the technical architectural knowledge needed to ask

the kind of questions that extract architectural details from the customer. This is

typical in global software engineering and outsourcing projects where communication

between BAs and SAs mostly takes place through an SRS and expertise is not shared.

This problem has been well acknowledged by other researchers as well [11 - 13]. As a

solution to this problem, we have developed an approach [2, 3] that leverages the

knowledge of experienced SAs and make it available to BAs to equip them to elicit

architecturally richer specification. In this paper, we present the design of a

systematic empirical evaluation of our approach. In particular, our goal is to

investigate three aspects namely the ease of use, effectiveness and relevance of our

approach.

 The rest of the paper is structured as follows: Section 2 provides definitions of key

concepts. Section 3 presents a summary of the approach. Section 4 provides

background on evaluation and its role. Sections 5, 6 and 7 present respectively our

research questions, research methodology, plan and initial results. Section 8 concludes

the paper.

2 Definitions

As terminology is not uniform across all authors in the field of RE and software

architecture, we define some key terms here. We consulted definitions from different

sources such as IREB [14] and for the purpose of this PhD research, we use the

following working definitions. A requirement is called architecturally significant if it

has a measurable impact on the architecture of the software system. A functional

requirement (FR) is a desired behavior triggered by some event or condition change,

and delivering some desired output of the system. Any other desired property of the

system is called a non-functional requirement (NFR). We thus distinguish

architecturally significant functional requirements (ASFRs) from architecturally

significant non-functional requirements (ASNFRs). While both FRs and NFRs can

have an impact on architectural design, for the purpose of scoping this PhD project,

we focus on ASFRs only. The questions asked to extract architectural information are

called Probing Questions (PQs) and PQs when logically sequenced in dialogs are

called PQ-flows (Probing Question flows). A Business Analyst (BA) is the central role

responsible for understanding (from the client) the business or functional aspects of

the requirements for IT projects. Based on this, the BA is responsible for creating a

detailed SRS to be used in the subsequent phases of project development. A Software

Architect (SA) is a role responsible for converting the business requirements captured

by the BA into architecture and design.

3 Brief Summary of the Approach

The earlier years of this PhD work [1-3] were focused on developing an approach

to stimulate architectural thinking during requirements gathering. The solution idea is

to provide BAs with a knowledge base of ASFR categories and PQ-flows per

category to elicit architectural details, plus a tool-supported method that allows SAs to

extend the knowledge base with relevant ASFRs. It is worth noting that exhaustive

list of requirements and architecture decisions exist in ERP systems but not for the

bespoke systems that we focus on. For our kind of systems, we need a dynamic

mechanism such as this knowledge base. We acknowledge that both ASFRs and

ASNFRs are equally important in this context. However, to scope this PhD research,

we focus on ASFRs. We currently have 15 ASFR categories in the knowledge base.

Out of the 15 categories, we created PQ-flows for 10 categories. The 10 categories

are: Audit Trail, Batch Processing, Business Process State Alert, Print, Report,

Search, Localization/Multilingual, Online Help, Third Party Interaction and

Workflow. These 10 were selected because (a) they occur commonly across systems

in many different domains, and (b) they emerged as important topics of architectural

significance in our earlier study [2]. Details on the ASFR categories and PQ-flows is

published elsewhere [2, 3].

4 Background on Evaluation and its Role for this PhD Project

Drawing on methodological sources in empirical software engineering [5, 8 - 10],

the empirical evaluation of our approach is an important research phase in this PhD

project. Its role is to gauge (1) the ease of use, effectiveness and relevance of the

approach, and (2) the generalizability of the approach. In our research design, we first

evaluate the ease of use, effectiveness and relevance from the perspective of

practicing BAs. By referring to the ease of use concept originally published by FD

Davis [14], we measure ease of use by gauging how easy it is for the BAs to use the

approach as a part of requirements gathering, do they find it easy to adapt to this new

way or do they consider this as a paradigm shift that they are not able to relate to. By

effectiveness of PQs, we intend to investigate the degree to which the PQs are

successful in producing a desired result i.e. assist the BAs in unearthing architectural

information from the customer during requirements gathering. By relevance we mean

to investigate whether the BAs find the approach important to their requirement

gathering practices and would add value to it. Furthermore, regarding examination of

generalizability, we include the perspectives of both BAs and SAs. We need to test

generalizability of two things: (1) of the method to fill the knowledge base, and (2) of

the ASFRs and PQ-flows in the knowledge base. This includes testing not only the

generalizability of the current ASFRs, but also of the ASFRs that will be added by

practicing SAs in the future. The central question therefore would be whether our

method contains a mechanism by which SAs can test the generalizability of any

ASFR or PQ that they add. The target of generalization is the set of all cases in which

the communication between BAs and SAs mostly takes place through SRS, and

expertise is not shared between them. In other words, we hope that the answer to this

is applicable to all such cases, with due allowance made for uncertainty in the answer.

For examining generalizability, the strategies described by Wieringa and Daneva [26]

would be considered.

5 Research Questions

The overall design goal of this PhD project is to improve the information-content

of SRS by means of a knowledge base of ASFRs and PQ-flows that is easy to use by

BAs and easy to maintain by SAs. The specific goal of the piece of research presented

in this doctoral paper is to validate the proposed approach. Against this backdrop and

building upon the discussion in the previous sections, we set out to find answers to the

following research questions (RQs):

RQ 1: To what extent does a BA perceive it easy to use the approach?

 RQ 1.1: Can the BAs understand the PQs on their own?

 RQ 1.2: What kind of effort / training is needed so that the BA can start using the

approach on their own?

RQ 2: Can the PQ-flows of the 10 categories help improve architectural relevance

of requirements in a SRS?

 RQ 2.1: Are all questions in each category architecturally relevant (no

superfluous questions), and

 RQ 2.2: Are all architecturally relevant questions for each category asked?

 RQ 2.3: Are all 10 ASFRs architecturally relevant for the system being specified?

We plan to conduct two empirical studies: (1) to answer RQ1 (henceforth referred

to as Study 1) and (2) to answer RQ2 (henceforth referred to as Study 2). The two

studies, though different in terms of participants and execution style, build upon each

other. Each study’s research process is organized into three main phases: Design,

Execution and Analysis [5]. In the next section, we detail each of the study.

6 Research Methodology and Research Plan

6.1 Research methodology for study 1

Design. We compared the research methodologies that are most relevant to

studies in software engineering [5]. We choose a qualitative interview-based

evaluation research method by implementing R. Yin’s guidelines for case study

design [6]. We chose interviews to obtain a detail-rich, holistic and contextualized

description from the participants about the approach. The interview technique was

selected for two reasons: (1) it is suitable for inquiry like ours, and (2) the

resulting data offers a robust alternative [6] to more traditional survey methods.

We triangulated the data collected from multiple sources (e.g. participants with

varied domain expertise, years of experience, educational background). As we

wanted to collect BAs’ feedback, we designed our interview study by (1)

composing an interview questionnaire to help the participant structure her

response (2) testing the questionnaire with an experienced researcher and

implement changes to improve it; (3) doing a pilot interview to check the

applicability of the questionnaire in a real-life context; (4) carrying out in-depth

interviews according to the finalized questionnaire.

 Execution. At the time of submitting the paper, this step is work in progress.

The 10 ASFR categories were shared with BAs who agreed to participate in the

study and they were asked to choose one category that they are most familiar with

and one that they are least familiar with. For the two chosen categories, we shared

the interview questionnaire and the corresponding PQ-flows. The interview

duration was between 30 and 60 minutes. All participants were informed in

advance about the research goals and interview process. The interviews were on a

one-to-one basis. The questionnaire included three sections designed to collect

information about BA’s (i) experience and application domain (ii) understanding

of ASFRs, and (iii) understanding of PQ-flows.

 Analysis. We are using qualitative coding of our data [7], which helps us

classify the various reasons as to why BAs perceive a particular category and/or

PQs as more difficult or easier than others.

6.2 Research methodology for study 2

 Design. We plan to ask volunteer BAs and SAs (5 each) to simulate a process in

which requirements are specified by BA and used by SA to design software. We

want to observe and analyze simulations in which BAs and SAs use our approach,

and use these observations to answer RQ 2. The design would include a volunteer

BA and a pseudo-customer who simulates a RE process using our approach, and a

volunteer SA who would design an architecture based on the resultant SRS. On

the basis of a post-simulation interview with the participants, we will collect their

reflections on their experience. Our post-simulation interview questionnaire is

developed using the same steps as in Study 1.

 Execution. It includes three steps. (1) We provide the participating BA the PQ-

flow of a category of her choice along with instructions on how to use it. Based on

the outcome of Study 1, it would be decided whether the BA needs to go through

some form of training before using the approach. (2) At the meeting between the

BA and pseudo-customer, the BA would use the chosen PQ-flow to elicit

requirements from the customer and create an SRS. (3) This SRS is given to the

participating SA who would use it for designing the architecture of the software

system.

 Analysis. As we will collect participants’ reflections in the form of qualitative

data, we will use coding method similar to Study 1. We expect it to yield codes

that explain why the approach worked according to the participant or why he

would (or would not) use the approach in his next project and what improvements

are needed in the approach to make it practically more relevant.

6.3. Threats to Validity

Regarding Study 1, we devised measures to counter the following validity threats

[5]: (1) Researcher’s bias: as the researcher is the one who created the PQ-flows,

there is an elevated risk of passing bias into data collection and analysis. To reduce

this risk, the researcher let the BA select the category to discuss and freely explain the

kind of difficulties felt. The researcher took conscious steps to avoid providing any

unnecessary information or explanation, except those that the BA asked explicitly. (2)

Interviewee background: BAs could vary in terms of collaboration relationships they

established with their respective SAs in a project. Some BAs might be more exposed

to SAs’ work than others. We think however that this threat is minimal because our

participants worked in organizations that have standard project delivery process;

where knowledge sharing standards and tools are instrumental in keeping SDLC

processes consistent across projects in the same domain.

Regarding Study 2, our biggest concern is that the simulation includes one BA and

one SA and the relationship between the two is not known in advance as we rely on

volunteers. However, we rely on professional code of conduct and even if the BA and

the SA have prior working history, we would ask them to avoid referring to it during

the simulation. Following [8], while a simulation in practical settings may be hard to

generalize to other context, its key value is in experiencing what in a method works

and why it works (or why not). We take this simulation as a pilot and expect the

learning from it to be instrumental in improving our approach and its application

scenario.

7 Progress

This PhD project has already proposed a solution approach designed to help BAs

deliver architecturally richer SRS. Entering the validation phase of this project, we

started Study 1. At the time of submitting this paper, we have completed six

interviews for study 1. Our very initial reflections on sub-RQs in RQ 1 are as follows:

RQ 1.1: Can the BAs understand the questions in the PQ-flows on their own?

The senior BAs (more than 10 years’ experience) could understand all the questions

on their own. The mid-level BAs (5 to 9 years) needed guidance to understand some

questions and junior BAs (less than 5 years’ experience) needed relatively more

guidance. We found that the domain expertise did not really have any influence on the

understanding of the PQs, which indicated that our PQs are generic across business

information system domains. Another factor that affected the result was BA’s

educational background. BAs with a technical background found it easier to

understand the PQs than BAs with non-technical background.

RQ 1.2: What kind of effort / training is needed so that the BA can start using

the approach on their own? We observed that providing guidance by further

elaborating the PQs would improve the understandability. As per our interviewees,

such a guidance could take multiple forms: (1) a one hour self-training module for

junior BAs, (2) an embedded self-training module in the tool. We await more details

to unearth as we progress with the analysis.

8 Conclusion

This PhD project attempted to close the gap between RE and software

architecture. It proposes a solution approach [2, 3] that leverages the knowledge of

experienced SAs and make it available for the BAs so that they are equipped to elicit

an architecturally richer specification. The solution approach detailed in [2, 3] is the

key contribution of this PhD project. This doctoral paper is focused on presenting

details of the empirical evaluation of our solution approach. The results gained

through these evaluation studies would increase our knowledge about our approach

and help in improving it further. Our immediate future work includes: (1) finalizing

the work on Study 1; (2) include the self-training module in the approach. Our next

step will be to execute Study 2.

References

1. P.R. Anish, B. Balasubramaniam, J. Cleland-Huang, R. Wieringa, M. Daneva, S.

Ghaisas. Identifying Architecturally Significant Functional Requirements,

TwinPeaks, ICSE 2015. IEEE Press, 3-8

2. P.R. Anish, M. Daneva, J. Cleland-Huang, R. Wieringa, S. Ghaisas. What You Ask Is

What You Get: Understanding Architecturally Significant Functional Requirements,

RE 2015, IEEE Press, 86-95

3. P.R. Anish, B. Balasubramaniam, A. Sainani, J. Cleland-Huang, R. Wieringa, M.

Daneva, S. Ghaisas, Probing for Requirements Knowledge to Stimulate

Architectural Thinking, ICSE 2016

4. R. Wieringa, Design Science Methodology for Information Systems and Software

Engineering, Springer, 2014.

5. R.K. Yin, Case study research, Sage, 2014.

6. Saldaña, J. (2013): The coding manual of qualitative researchers (2. ed.). Los

Angeles, London, New Delhi.

7. R. Wieringa, M. Daneva, Six strategies for generalizing software engineering

theories. Sci. Comput. Program. 101: 136-152 (2015)

8. V. R. Basili, M. V. Zelkowitz: Empirical studies to build a science of computer

science. Commun. ACM 50(11): 33-37 (2007)

9. S. Ghaisas, P. Rose, M. Daneva, K. Sikkel, R. Wieringa: Generalizing by similarity:

lessons learnt from industrial case studies. ICSE 2013: 37-42

10. A. Gross, J. Dörr., What do software architects expect from requirements

specifications? Results of initial explorative studies, TwinPeaks 2012, pp. 41-45\

11. Z. Li, P. Liang, P. Paris Avgeriou. Application of knowledge-based approaches in

software architecture: a systematic mapping study, Information & Software

Technology, 55, 2013, pp. 777-794

12. L. Chen, M. Ali Babar, B. Nuseibeh, Characterizing architecturally significant

requirements, in IEEE Software, 30(2)2013: 38–45

13. Davis, Fred D., Perceived Usefulness, Perceived Ease Of Use, And User Acceptance

of Information Technology, MIS Quarterly; Sep 1989; 13, 3; ABI/INFORM Global

pg. 319

14. International Requirement Engineering Board (IREB) Website:

https://www.ireb.org/en Last accessed on 09-02-2017

http://dblp.uni-trier.de/pers/hd/z/Zelkowitz:Marvin_V=
http://dblp.uni-trier.de/db/journals/cacm/cacm50.html#BasiliZ07
https://www.ireb.org/en

