
MARC: A Mobile Application Review Classifier

Nishant Jha and Anas Mahmoud

The Division of Computer Science and Engineering
Louisiana State University, Baton Rouge, LA, 70803

njha1@lsu.edu, mahmoud@csc.lsu.edu

Abstract. Mobile application stores enable end-users of software to di-
rectly express their needs and share their experience with mobile apps
in the form of textual reviews. These reviews often contain important
user feedback that can be leveraged by app developers to help them un-
derstand their end-user needs. However, such information are not read-
ily available, and vetting individual reviews manually can be a tedious
task. To alleviate this effort, we introduce MARC, a Mobile Application
Review Classifier. MARC is a stand-alone automated solution that en-
ables developers to extract and classify user reviews into fine-grained
software maintenance requests, including bug reports and user require-
ments. MARC is equipped with a set of configuration features to en-
able practitioners and researchers to classify user reviews under different
settings. A dataset of app reviews sampled from three apps are used
to evaluate the performance of MARC. The results show that MARC
achieves accuracy levels that can be adequate for practical and research
applications

1 Introduction

As of March 2015, the Apple App Store alone has reported around 2.25 million
active apps, growing by over 1,000 apps per day. This scale of app production has
resulted in an unprecedented level of competition in the app market, forcing soft-
ware creators to look beyond traditional time-consuming software engineering
practices into a new paradigm of methods that enable a more responsive soft-
ware production process. Recent analysis of large datasets of app user reviews
has revealed that almost one third of these reviews contain useful information
to app developers [1]. Users not only report technical bugs that they find in
the apps they use, but also express features that they would like to, or not like
to, see in newer versions of the application [2]. To help app developers effec-
tively extract such information, in this paper we introduce MARC—a Mobile
Application Review Classifier. MARC is a stand-alone tool that enables app
developers to extract and classify most recent user reviews from the iOS App
Store into fine-grained software maintenance requests, including bug reports and
user requirements.

Copyright 2017 for this paper by its authors. Copying permitted for private and
academic purposes



MARC1 supports two classification approaches, including the Bag-of-Words
(BOW) and the Bag-of-Frames (BOF) [3]. The former approach uses the indi-
vidual words of review sentences as classification features. The latter approach
relies on the notion of semantic role labeling (SRL) [4]. SRL is used to gener-
alize from raw text (individual words) to more abstract scenarios (contexts) by
characterizing the lexical meaning of the words in the form of semantic units, or
frames [5]. The main objective is to reduce the dimensionality of the classification
data, and consequently, enhance the predictive capabilities of the classifier.

MARC is also equipped with several text pre-processing features to allow
both researchers and practitioners to classify app reviews under different config-
uration settings. The performance of MARC is evaluated using user reviews col-
lected from three iOS apps from different application domains. In what follows,
we describe MARC, its basic features, classification engine, and our evaluation
process in greater detail.

2 MARC’s Features

MARC provides a set of features that enable users to automatically extract
reviews from the iOS App Store and experiment with different classification
settings. In what follows, we describe these features in greater detail.

2.1 App Review Extraction

MARC provides a feature for extracting recent user reviews from the iOS App
Store. The user can select any app through its unique App Store ID. MARC
then makes a web request to the App Store’s RSS feed generator. The generated
JSON pages are parsed to extract the selected app’s reviews. The user can extract
between 50 and 500 reviews at a time. For example, to get the list of most recent
Gmail app reviews, MARC makes the following Web request:

https://itunes.apple.com/rss/customerreviews/page=1/id=
585027354/sortby=mostrecent/json

2.2 Text pre-processing

It is not uncommon in text classification tasks to use text reduction strategies to
minimize the number of classification features (words). The objective is to only
keep important words that have an actual impact on the predictive capabilities
of the classifier [6,7]. The current release of MARC supports the following text
pre-processing techniques:

– Stemming: Stemming reduces words to their morphological roots by re-
moving derivational and inflectional suffixes. This leads to a reduction in
the number of features (words) in text as only one base form of the word is
considered. MARC supports stemming through Porter stemmer [8].

1 https://github.com/seelprojects/MARC

https://github.com/seelprojects/MARC


– Stop-word removal: MARC provides a feature for removing English words
that are considered too generic (e.g., the, in, will). These words appear in
most reviews and are highly unlikely to be distinctive to the classifier.

– Sentence extraction: A single user review might include a user require-
ment, a bug report, and some other irrelevant or unuseful feedback. There-
fore, to help developers better extract information, MARC processes reviews
a sentence at a time relying on the punctuation available in the review’s
text [9,10,11].

3 MARC’s Classification Engine

The core feature of MARC is to classify technically informative user reviews
into user requirements and bug reports. To facilitate this process, MARC sup-
ports two different classification techniques, including Bag-of-Words and Bag-
of-Frames. The following is a description of MARC’s classification engine and
its classification techniques.

3.1 Frame Semantics

In addition the classical BOW classification approach, MARC supports a more
semantically-aware form of classification, known as the Bag-of-Frames (BOF).
This approach relies on the notion of Semantic Role Labeling (SRL) [4]. SRL
allows generalizing from raw text to more abstract scenarios called frames [5]. A
semantic frame (or simply a frame) can be described as a schematic representa-
tion of a situation (events, actions) involving various elements. A frame element
(FE) can be defined as a participant entity or a semantic role in the action
described by the frame. Lexical units (LU) are basically the words that evoke
different frame elements. For instance, the frame TRAVEL describes an event in
which a traveler moves form a source location to a goal along a path, or within an
area. This frame has the core frame elements traveler and goal. In the sen-
tence “Lisa traveled to Germany.”, the subject ‘Lisa’ evokes the frame element
Traveler and the phrase ‘to Germany’ evokes the frame element Goal. This
unique form of semantic annotation allows for a deeper understanding of the
semantic information in individual user reviews. Using abstract general mean-
ings of text rather than exact words helps to reduce the number of classification
features, which in turn enables a more efficient classification process and reduces
the risk of over-fitting [12].

To support frame semantics, MARC uses SEMAFOR2—a probabilistic frame
semantic parser to parse each review [13]. SEMAFOR automatically processes
English sentences according to the form of semantic analysis in FrameNet [5].
MARC makes a web request to the SEMAFOR parser to obtain the annotations
for each sentence. The generated annotations are represented using JSON. A
special parser is used to extract the frames of each annotated sentence from the
JSON output. For example, the following review sentences are parsed as follows:

2 demo.ark.cs.cmu.edu/parse

demo.ark.cs.cmu.edu/parse


1) It crashed when I zoomed into the page.
2) Please add gif comments.
3) I love the app so much.

1) Cause_impact Temporal_collocation Contacting
2) Stimulus_focus Statement Statement
3) Experiencer_focus Relational_quantity

3.2 Classification Algorithms

MARC uses Support Vector Machines (SVM) and Naive Bayes (NB) to classify
app reviews. These two classifiers have been shown to be very effective in app
review classification tasks, detecting different types of user reviews at decent
levels of accuracy over multiple datasets [2,3].

MARC uses the Weka’s API3 as the core classifier. This API is used to convert
the input review’s text into a Weka compatible file format (.arff). The filter
StringToWordVector is applied to generate the word x document matrix for
the input review to be classified. The classifier then uses term frequency (TF)
to assign weights to words. MARC uses a default training dataset of manually
classified reviews to train and test the underlying classification engine. This
dataset was compiled from different sources, including two datasets collected
from previous related research [2,14] and a dataset that was collected locally.
The BOW and BOF representations of the data are available in external files
that the end-user of MARC can edit to add more examples to the training data.
The generated classification model is then used to classify each sentence in the
input review individually.

4 Evaluation and Limitations

The performance of MARC is evaluated using reviews collected from 3 apps se-
lected from the iOS App Store. These apps include: Adobe Acrobat (469337564),
Chrome (535886823), and CNN (331786748). A total of 100 of most recent re-
views of these apps were extracted. Each sentence was then manually classified
as a bug report, a user requirement, or other. In total, 39 bug reports, 18 user
requirements, and 43 other miscellaneous reviews were classified.

MARC is then used to automatically classify these reviews. The default
dataset is used to train the classifier. For evaluation purposes, the reviews were
classified using the BOW and BOF approaches. We further experimented with
the text pre-processing features under the BOW approach. The results of the
classification process is shown in Table 1. The performance of MARC is measured
using precision and recall.

The results show that under the BOF approach, MARC managed to achieve
an average of 75% precision and 93% recall using SVM and an average of 57%

3 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/


precision and 72% recall using NB. In comparison, under the BOW approach,
MARC managed to achieve an average of 32% precision and 55% recall using
SVM and an average of 55% precision and 72% recall using NB. On average,
the best results over our evaluation dataset was achieved using SVM under the
BOF approach. A thorough evaluation of the BOW and the BOF approaches is
available in [3].

The current release of MARC is intended for both practical and research ap-
plications. App creators can use MARC to quickly access and classify the most
recent reviews of their apps. Researchers, on the other hand, can use MARC to
prepare and classify large datasets under different classification settings. How-
ever, MARC still suffers from performance limitations that need to be addressed
in our future releases. For instance, MARC currently takes around 200 seconds
to train the classification model on a 3.30GHz CPU with 8.0GB of RAM. The
current running time could be improved by implementing faster classification al-
gorithms. Furthermore, classification results tend to be less accurate when clas-
sifying reviews from application domains that have never been classified before.
Our expectation is that the classification accuracy could be significantly im-
proved by implementing a feedback mechanism that keeps updating the training
dataset with new instances.

Table 1. The performance of MARC over a sample set of reviews.

SVM NB

Bug Rep. User Req. Bug Rep. User Req.

Classifier P R P R P R P R

BOF 0.60 0.92 0.89 0.94 0.63 0.71 0.5 0.72

BOW 0.39 1 0.25 0.10 0.69 0.78 0.42 0.66

5 Conclusions and Future Work

In this paper, we introduced MARC—a Mobile Application Review Classifier.
MARC provides a set of features that enable users to extract reviews from the
iOS App Store and classify them into actionable software maintenance requests,
including bug reports and user requirements. MARC provides a set of text pre-
processing features to allow users to classify input reviews under different config-
uration settings. The current release of MARC supports a Bag-of-Words (BOW)
and a Bag-of-Frames (BOF) representations of the input text. Semantic frames
are used to classify the input review sentences based on their context, or mean-
ing, rather than relying on their individual words. MARC was evaluated using
reviews collected from three sample applications. The results showed levels of
accuracy that can be adequate for practical applications, with the BOF ap-
proach slightly outperforming the BOW approach. To enhance its practicality,



our future releases of MARC will support more application stores (e.g. Google
Play and Windows App Store), more classification algorithms, and other classi-
fication features (e.g., n-grams and POS tagging) to improve the accuracy and
performance of the classification engine.

Acknowledgment

This work was supported by the Louisiana Board of Regents Research Compet-
itiveness Subprogram, contract number: LEQSF(2015-18)-RD-A-07.

References

1. Pagano, D., Maalej, W.: User feedback in the AppStore: An empirical study. In:
Requirements Engineering Conference. (2013) 125–134

2. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On automat-
ically classifying app reviews. In: Requirements Engineering Conference. (2015)
116–125

3. Jha, N., Mahmoud, A.: Mining user requirements from application store reviews
using frame semantics. In: Requirements Engineering: Foundation for Software
Quality REFSQ. (2017) 1–15

4. Fillmore, C.: Frame semantics and the nature of language. In: Annals of the New
York Academy of Sciences: Conference on the Origin and Development of Language
and Speech. (1976) 20–32

5. Baker, C., Fillmore, C., Lowe, J.: The Berkeley Framenet project. In: International
Conference on Computational Linguistics. (1998) 86–90

6. Yang, Y., Pedersen, J.: A comparative study on feature selection in text catego-
rization. In: International Conference on Machine Learning. (1997) 412–420

7. Rogati, M., Yang, Y.: High-performing feature selection for text classification.
In: International Conference on Information and Knowledge Management. (2002)
659–661

8. Porter, M.F.: An algorithm for suffix stripping. Program 14 (1980) 130–137
9. Carreńo, G., Winbladh, K.: Analysis of user comments: An approach for software

requirements evolution. In: International Conference on Software Engineering.
(2013) 582–591

10. Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C., Canfora, G., Gall, H.:
How can I improve my app? Classifying user reviews for software maintenance and
evolution. In: International Conference on Software Maintenance and Evolution.
(2015) 281–290

11. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment
analysis of app reviews. In: Requirements Engineering Conference. (2014) 153–162

12. Mitchell, T. In: Machine Learning. McGraw-Hill (1997)
13. Das, D., Schneider, N., Chen, D., Smith, N.: Probabilistic frame-semantic parsing.

In: Human Language Technologies. (2010) 948–956
14. Chen, N., Lin, J., Hoi, S., Xiao, X., Zhang, B.: AR-Miner: Mining informative

reviews for developers from mobile app marketplace. In: International Conference
on Software Engineering. (2014) 767–778


	MARC: A Mobile Application Review Classifier
	 Nishant Jha and Anas Mahmoud
	Introduction
	MARC's Features
	App Review Extraction
	Text pre-processing

	MARC's Classification Engine
	Frame Semantics
	Classification Algorithms

	Evaluation and Limitations
	Conclusions and Future Work



