
Perspectives on User Story Based Visual
Transformations

Yves Wautelet1, Samedi Heng2, and Manuel Kolp2

1 KU Leuven, Belgium
yves.wautelet@kuleuven.be,

2 LouRIM, Université catholique de Louvain, Belgium
{samedi.heng, manuel.kolp}@uclouvain.be,

Abstract. This paper summarizes previous works done by the authors on User
Story (US) template unification and visual requirements models generation out of
a US set. Indeed, transformation of a US set tagged using templates from a unified
model to a Goal-Oriented model called the Rationale Tree and to a UML Use-
Case Diagram are previous contributions summarized here. It also introduces the
genuine contribution of generating a UML class diagram from a US set. Future
research – notably on the use of the transformations in real life-case studies – is
also discussed. Finally, the CASE tool supporting the approaches is overviewed.

Keywords: User Story; Rationale Tree; Use-Case Diagram; Agile Development

1 Introduction

User stories are short, simple descriptions of a feature told from the perspective of
the person who desires the new capability, usually a user or customer of the system
[2]. However, no unification is provided in User Story (US) templates [9]. Indeed, the
general pattern relates a WHO, a WHAT and possibly a WHY dimension, but in practice
different keywords are used to describe these dimensions (e.g. Mike Cohn’s As a <type
of user>, I want <some goal> so that <some reason> [2] which could be instantiated
to As a <DRIVER>, I want to <register to the service> so that <I can propose a ride to
go from A to B>; a series of examples can be found in [10]). Moreover, in the literature,
no semantics has ever been associated to these keywords. This is why, [9] conducted
research to find the majority of templates used in practice, sort them and associate
semantics to each keyword. These semantics were derived from several sources and
frameworks; some of these are derived from Goal-Oriented Requirements Engineering
(GORE, see [4]). The research lead to build a unified model of US templates with
only a minimal but sufficient amount of keywords; most of the semantics adopted for
these keywords were selected from the i* framework (i-star [11, 3]) The entire research
process can be found in [9] while Section 2 summarizes the US templates unified model.

One may question the utility of such a model; why should US be “tagged” to a
certain template. The main advantage is that, if the tagging respects the semantics asso-
ciated to the concepts, it provides information about both the nature and the granularity

Copyright 2017 for this paper by its authors. Copying permitted for private and academic
purposes.

Yves Wautelet et al.

of the US element. Even in an agile context, this is useful for performing requirements
analysis [5]. This paper summarizes the transformations from a tagged US set to a
GORE model called the Rationale Tree (from [10]) as well as to a UML class dia-
gram (from [8]). It also overviews future work around the Rationale Tree. Last but not
least, preliminary work around the transformation from a tagged US set to a UML class
diagram is depicted; this constitutes a genuine contribution of this paper.

2 Unified-Model of User Stories’ Descriptive Concepts

Figure 1 represents the meta-model of US templates built in [9] in the form of a class di-
agram. The instance of one of these classes is a US element in itself from a concrete US.
A US template can be designed taking an element from the WHO, WHAT and possibly
WHY dimensions. The link between the classes conceptually represents the link from
one dimension to the other. Specifically, the unidirectional association from the Role to
one of the Capability, Task or Goal classes implies that the target class instantiates an
element of the WHAT dimension (always tagged as wants/wants to/needs/can/would
like in the model). Then, the unidirectional association from one of these classes instan-
tiating the WHAT dimension to one of the classes instantiating the WHY dimension
(always tagged as so that into the model) implies that the target class can instantiate
an element of the WHY dimension. The following is a US template supported by our
model: As a <Role>, I would like <Task> so that <Hard-goal>.

Soft_Goal

dimension : Enum{WHAT,WHY}

name : String

Hard_Goal

dimension : Enum{WHAT,WHY}

name : String
0..n0..n 0..n0..n

so that

Capability

name : String

dimension : String = WHAT

Role

name : String

dimension : String = WHO

0..n

1..n

0..n

1..n

wants/wants to/needs/can/would like

Task

name : String

dimension : Enum{WHAT,WHY}
0..n1..n 0..n1..n

wants/wants to/needs/can/would like

0..n

0..n

0..n

0..n

so that

0..n
0..n

0..n so that
0..n

Goal

0..n

0..n

0..n

0..n

so that

0..n

1..n

0..n

1..n

wants/wants to/needs/can/would like

0..n0..n 0..n0..n

so that

Fig. 1. Unified Model for User Story Descriptive Concepts (from [9]).

Each concept is associated with a particular syntax (identical to the name of the
class in Figure 1) and a semantic. Due to a lack of space we do not depict the semantic
associated to each of the concepts here; it can be found in [9, 10].

[9] pointed out the need of 3 possible levels of granularity within the functional
elements expressed in US. We thus distinguish the Hard-goal, Task and Capability.

The Hard-goal is the most abstract element; there is no defined way to attain it and
several ways could be followed in practice. It is indeed part of the problem domain. The
Task represents an operational way to attain a Hard-goal. It is thus part of the solution
domain. An example of a Hard-goal could be to Be transported from Brussels to Paris;

Perspectives on User Story Based Visual Transformations

it can be the Hard-goal of a traveler but there are several ways to attain this Hard-goal
(by train, by car, etc.).

The Task and the Capability represent more concrete and operational elements but
these two need to be distinguished. The Capability does in fact represent a Task but the
Capability has more properties than the former since it is expressed as a direct intention
from a role. In order to avoid ambiguities in interpretation, we point to the use of the
Capability element only for an atomic Task (i.e., a task that is not refined into other
elements but is located at the lowest level of hierarchy). A Task could then be Move
from Brussels to Paris by car and a Capability would be Sit in the car.

In practice, US elements need to be compared to each other to properly determine
their type. Since this is also subject to interpretation these elements are re-tagged several
times when they analyzed and structured.

3 From User Story Set to Rationale Tree: Goal-Based Approach

Building the Rationale Tree from a User Story Set. Visual GORE models were en-
visaged for graphical representation in [10]. From this [10] develops a decomposition
structure for US elements called the Rationale Tree, largely inspired by i*. The icons
used for its representation are illustrated in Figure 2.

b)

²

Role_1

Task_1

Hard_Goal_1

Capability_1

Task_2

Soft_Goal_1

Capability_2

Task_3

Hard_Goal_2

Capability_3

US2: As Role_1, I want Capability_1,

so that Task_2

US3: As Role_1, I want Soft_Goal_1,

US1: As Role_1, I want Task_1, so

that Hard_Goal_1

US4: As Role_2, I want Capability_2,

so that Task_3

US5: As Role_2, I want Capability_3,

so that Hard_Goal_2

User Stories (US) Strategic Rational Diagram (SRD)
(SRD)

Role_2

are part of

Elements

Links

Task Hard-goal Capability

Role Boundary

Role

WHO WHAT WHY

User Story

Soft-goal

Decomposition link

Means-end link

Contribution link(+,-)

Fig. 2. Elements of the Rationale Tree: Graphical Representation (from [10]).

Figure 3 shows a Rationale Tree both in canonical form and instantiated to the
carpooling example (see [10] for the US set). The US including the Task “Pay by SMS
in domestic country” and the US including the Task “Pay by credit card” are Epic US
(i.e. a US too abstract (coarse-grained) to be estimated, implemented and tested at once)
because these are top-level Tasks related to means-end decompositions of the Hard-goal
“Pay for the car pooling service in function of the country he is traveling in”.
Rationale Tree: Benefits and Future Perspectives. The interest of the Rationale Tree
approach essentially lies in the possibility to use a tool that supports reasoning within
the requirements set initially expressed through US. The decomposition of elements
helps to evaluate tactics for Hard-goal and Task fulfillment as well as requirements
consistency. Missing (or missing parts of) requirements can thus be identified. Reason-
ing can also help provide justifications for architectural choices made for the support of
Soft-goals.

Yves Wautelet et al.

����

����	
���

���
�

���
�

����������� �����������

���
�

�����������
���
�

����������� �����������

�����������

�����

����������������������

������������ ��������������
�� �����!"#���������
���

�������$%$����
��#�������� ����

������������������

����������#����
����������

&�
�����������
�������#

'�������#� ���
����'�����!'

�� ����
�����������

$����������#������
$%$

Elements of EPIC US

Fig. 3. Top-Level Hard-goal, Several Means-End Decompositions (from [10].

Real life case studies are currently being performed using the Rationale Tree ap-
proach in SCRUM projects. It has so far notably been applied for the reinterpretation
of the requirements in a travel and expense management application. As first result we
highlight that visual identification of the requirements dependencies allows a more ef-
ficient re-usability of elements developed in the project. This case goes further than
a simple application of the rationale tree and also integrates the latter directly in the
SCRUM board. Then, coupled to an algorithm for determining elements with highest
business value, iteration planning can be performed. This approach allowed to increase
traceability and visibility on requirement elements across iterations and monitor the
progress on multiple levels (i.e. the levels of the elements in the tree).

Future work also includes comparing the Rationale Tree Approach with Natural
Language Processing (see [7, 6]) for discovering missing requirements in a US set.

4 From a User Story Set to UML Diagrams

Building a Use Case Diagram from a User Story Set. Starting from a tagged set of
US, [8] suggests a method to systematically build a UML Use-Case Diagram (UCD);
Table 1 summarizes the mapping of elements. The UCD proposes a view focusing on
US containing coarse-grained process elements (Epic US). This furnishes an abstract
view of the system-to-be and helps with the scoping of US realizations.
Building a Class Diagram from the US Set and the Use Case Diagram. In future
work, we will formally define forward engineering mechanisms from a US set to a
UML Class Diagram. We can already highlight that Roles can be forward engineered
into classes. Realization analysis of Goals and Tasks allows to identify more classes.
In turn, Capabilities lead to class operations. This is shown in a canonical form in the
left side of Figure 4 and instantiated on the Carpooling example in the right side of the
figure. For example, the Task Register to the service from US3 requires to architecture
the Ride class because it needs to create and manipulate Ride objects. The Capability
Confirm the proposal from US5 leads to the operation confirm() of the class Ride.

Perspectives on User Story Based Visual Transformations

Table 1. Mapping a US set with the UCD

US Set Element UCD Element
Role Actor
Hard-goal Use Case; several Use Cases transformed from Hard-goals can

be linked through <<include>> dependencies
Task (Possible) Use Case; the Use Case transformed form a Task

should be linked through <<include>> or <<extend>> de-
pendencies with Use Cases transformed from Hard-goals

Capability No possible transformation
Soft-goal RUP/UML Business Goal

����

����	
���

���
�

���
�

����������� �����������

���
�

�����������
���
�

����������� �����������

�����������

�����

����������������������

������������ ��������������
�� �����!"#���������
���

�������$%$����
��#�������� ����

������������������

����������#����
����������

&�
�����������
�������#

'�������#� ���
����'�����!'

�� ����
�����������

$����������#������
$%$

TaskHard-goal

Capability Soft-goal

Role

Role Boundary

Role
Contribution link(+,-)

Decomposition link

Legend:

Means-end link

�����
����	
���

���
�����

�����
����	
�����

�������������

����

���������	

��
���������
����

����
�

���
�

�	������

���

��
���������
����

����
�

���
�

����
����������������
���
��

���	������������
���
����
�����
 �
��

�����
����
�
��
��!�

��"
���������
���#�
���$�����
�
�%

�
��
��
��
����
��������������
��
�&

���	����������
��
����
��
��
�'
��
��
������
���

(
��

��
���)�
�!��
�*�
+�

��
�������
����
���
�	�������
���
���
���

������
���
�,�'����
����
���
����"����
���

��
��
��
��
	
���

���
���

���

��
���)�

�!��
�*�
+�

�-������
��

.//
�

-��
��

0//
�

.
� ��
� .//�

(a) Class Diagram Forwarded on the Basis of
Stereotyped User Stories

(b) Partial Class Diagram for the Carpooling Example

1

Fig. 4. Class Diagram: Canonical Form and Carpooling Example.

5 CASE-Tool and Conclusion

Automating Approaches and Round-Tripping Between Views. We have built an add-
on to our Descartes CASE-Tool [1] to support transformations (see Figure 5). It allows
multiple views: the User Story View edits US through virtual US cards; the Rationale
View rationale trees; the Structural View structural agent diagrams; the Use-Case View
a UCD and finally the Class, Sequence and Activity Diagram Views. The CASE-Tool
synchronizes other views when changes are made. The editing process is continuous
over the requirements analysis stage and he entire project life cycle.
Conclusion. US are popular informal artifacts for quickly expressing requirements in
the agile methods. Through multiple contributions, we have shown that with little ef-
fort it is possible to bring more formality to the US sorting process and build a visual
representation. These can be driven by GORE frameworks or the UCD. These visual
representations are useful for building a high level picture of the system-to-be. The Ra-
tionale Tree also allows to study dependent requirements with an impact on re-usability
or identify missing ones. Put in an iterative perspective, it allows business value based
iteration planning and to monitor the project progress on multiple levels. Finally, we
overviewed how a class diagram can be forward engineered out of a tagged US set.

Yves Wautelet et al.

(a) User Story View: edit and tag US

(c) US model: Rationale Tree View

(b) US model: Use-Case View

Fig. 5. The supporting CASE-Tool.

References

1. Descartes architect (2017), http://www.isys.ucl.ac.be/descartes/
2. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Addison-Wesley

Professional, 1st edn. (2009)
3. Dalpiaz, F., Franch, X., Horkoff, J.: istar 2.0 language guide. CoRR abs/1605.07767 (2016)
4. van Lamsweerde, A.: Goal-oriented requirements enginering: A roundtrip from research to

practice. In: 12th IEEE International Conference on Requirements Engineering (RE 2004),
6-10 September 2004, Kyoto, Japan. pp. 4–7. IEEE Computer Society (2004)

5. Liskin, O., Pham, R., Kiesling, S., Schneider, K.: Why we need a granularity concept for user
stories. In: Proceedings of XP’14, Rome. LNBIP, vol. 179, pp. 110–125. Springer (2014)

6. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Visualizing user story
requirements at multiple granularity levels via semantic relatedness. In: Conceptual Model-
ing - 35th Intl. Conference, ER 2016, Proceedings. LNCS, vol. 9974, pp. 463–478 (2016)

7. Robeer, M., Lucassen, G., van der Werf, J.M.E.M., Dalpiaz, F., Brinkkemper, S.: Automated
extraction of conceptual models from user stories via NLP. In: 24th IEEE International Re-
quirements Engineering Conference, RE 2016. pp. 196–205. IEEE (2016)

8. Wautelet, Y., Heng, S., Hintea, D., Kolp, M., Poelmans, S.: Bridging user story sets with the
use case model. In: Link, S., Trujillo, J. (eds.) Advances in Conceptual Modeling - ER 2016
Workshops Proceedings. LNCS, vol. 9975, pp. 127–138 (2016)

9. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story models. In:
CAiSE 2014, Thessaloniki, Greece. Proc. LNCS, vol. 8484, pp. 211–225. Springer (2014)

10. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I., Poelmans, S.: Building a rationale diagram for
evaluating user story sets. In: Tenth IEEE International Conference on Research Challenges
in Information Science, RCIS 2016. pp. 1–12. IEEE (2016)

11. Yu, E.: Modeling Strategic Relationships for Process Reengineering, chap. 1–2, pp. 1–153.
MIT Press, Cambridge, USA (2011)

