
Establishing a Requirements Baseline by
Functional Size Measurement Patterns

Ina Wentzlaff

paluno - The Ruhr Institute for Software Technology
University of Duisburg-Essen, Germany

ina.wentzlaff@uni-due.de

Abstract. [Context] The requirements baseline is an agreed-upon set
of desired product features committed to a specific release. It determines
intra- and interproject planning and involved performance assessment.
[Problem] To establish a credible baseline, one which fits into the limits
e.g. time box of the project and which satisfies user expectations, a rea-
sonable choice of requirements must be made. This demands commen-
surable units of measure for requirements that are meaningful to most
decision makers in a project team. [Principle Idea] This work proposes
the use of functional size measurement patterns as a reusable point of
reference to classify requirements consistently and to estimate their func-
tional size in a reproducible way. It develops measurable requirements
patterns out of problem frames and a counting procedure, that facili-
tates determining function points for requirements in accordance with
ISO/IEC 20926:2009. [Contribution] These patterns provide the project
team with a bias-free anchor regarding the functional size of require-
ments with which they can correlate their requirements estimates and
anticipated work plan. Establishing the requirements baseline with re-
spect to these patterns eases the comparability of project outcomes and
thus contributes to the predictability of project planning.

Keywords: Integrated Requirements Engineering · Agile Project Prac-
tice · Planning Poker · Problem Frames · Functional Size Measurement

1 Introduction

Implementing software projects the agile way is all the rage. It is deemed to
be the fast track to deliver software features at low cost due to self-organizing
project controls. An agile development iteration follows a Plan-Do-Check-Adjust
(PDCA) cycle [10, page 88]. Each completed cycle brings an improvement of
the software increment i.e. of the product towards desired functionality. Sprint
events of the Scrum project process framework [23] can be categorized accord-
ingly, which is illustrated in Figure 1. In case multiple iterations are planned to
cumulate in a product, it is generally referred to as release planning [27, page

Copyright c© 2017 for this paper by its authors.
Copying permitted for private and academic purposes.

216]. To this end, ’Requirements First’ is still the name of the game. Before any
development starts, the team needs to reach consensus on the work plan to be
done during the upcoming iteration, which depends on the agreed-upon require-
ments baseline. In order to decide on it, a gamified decision-making process
known as Planning Poker [5, page 56] is played by the team to estimate require-
ments. It is a modern adaption of the Wideband-Delphi estimation technique [4,
Page 335ff] originated in the 1980s.

desired feature feature feature

Project iterationPLAN DO CHECK ADJUST

Planning (Daily) Work Reviewq Retrospective
I. II. III. IV.

Scrum events

Stories

Points
desired
©©©

desired

committed
©©©

deliverable

scored
X©X©×©

done

credible
Baseline

feature
Bb

K

♥
42

♣
Dr.

♦

Fig. 1. Illustrating an agile project iteration by the four steps of a PDCA cycle

Estimating by Planning Poker starts with User Stories [5], which are brief
requirement statements. In the following, each is to be assigned with a point
value by the members of the project team. These Story Points serve to express
the size of a user story [5, page 36]. They justify the amount of functional scope
to be delivered for a story. The number of points is taken to organize the team’s
workload for an iteration. As the outcome of Planning Poker, the team commits
to a work plan i.e. the requirements baseline by the agreed-upon number of
points. Its commensurability manifests after the iteration is completed. Done
functionality that delivers desired product features and thus satisfies the work
plan scores the respective points for the baseline.

The key benefits of requirements estimating in points are (i.) that they make
“the unit of estimation abstract, which makes it easier to commit to, and easier
to adjust your commitments to” [27, page 161], and (ii.) their self-correcting
nature [27, page 160]. “Even if a team is bad at estimating, as long as they’re
consistently bad, this makes a team’s commitments self-correcting” [27, page
159], which helps “to meet expectations more consistently” [27, page 161].

A common criticism is that this consistency of estimates depends on the team,
since (the meaning of) points assigned to requirements or a user story relates to
an estimator’s “experience and good feel rather than on formal criteria” [9, page
1343]. Team virtualization, membership turnover, silo mentality, etc. impacts the
team’s capability to establish a common respectively shared understanding on
their requirements estimates. In each iteration they suffer from a bootstrapping
problem [6]: what is the baseline they will compare to, which accounts for keeping
their estimates consistent.

Establishing consistency of estimates from one iteration to another is ob-
tainable by finding comparable requirements that require “a similar amount of
work” [7]. These ’representative requirements’ serve the team as a point of refer-
ence to which they can correlate their project planning activities. In order to be
applicable as a ’reference baseline’, they need to comply with mutually accepted
best practices or standards.

With the bootstrapping problem in mind, it cannot be assumed that his-
torical data about requirements estimates exist nor that these compare to the
team estimates i.e. that the same principles and methods have been followed
to establish them. Commensurable units of measure for requirements reusable
in any project are needed to keep the baseline consistent. These units must be
meaningful to most decision makers in a project team to “bridge any gaps in
understanding [. . .] between clients and developers” [9, page 1343].

This work proposes to unify consideration of requirements and their respec-
tive amount of work expressed as a point value by means of patterns. Therefore,
it joins the use of problem frames as best practices to classify requirements
consistently, which are introduced in Section 1.1, and ISO/IEC 20926 as a stan-
dard for functional size measurement to determine the requirements’ size in a
reproducible way, which is introduced in Section 1.2.

1.1 Requirements Classification by Problem Frames

Problem Frames are patterns, which characterize classes of recurring problem
situations [19]. They are used to classify a set of requirements into simple i.e.
self-contained subproblems, which allow to derive specifications in a reproducible
way. This approach has been developed by Michael A. Jackson since 1995 [18]
to deal with problem complexity in Requirements Engineering.

Using Problem Frames to classify requirements helps to identify the kind of
functionality that is of relevance to the problem. They allow to find a proper
machine behavior, i.e. specification, which can be created by the developer and
that will make what is required by the user [19, Page 106]. Therefore, the machine
to be built i.e. the software application has to control a specific part of the
problem in a way as the requirement demands [19, Page 107]. A problem frame
indicates this part by a requirement constraint on the respective problem domain.

In general, each problem frame is a unique combination of problem domains
and their respective shared phenomena, which differ in their type, quantity, and
correlation. The functionality of a software as describable by problem frames
establishes one of the following three kinds of machine control: a constrained

X L99 Le(X)ical domain “is a physical representation of data” [19]. The machine
controls reads or writes of these data.

D L99 (D)isplay domain is “an output device for the machine” [8]. On behalf
of the machine, it provides “information to other problem domains” [8].

C L99 (C)ausal domain is provided with information controlled by the machine
to invoke specific behavior of this problem domain.

developer view
e.g. functional specification

client or user view
e.g. user story

Collect DataCollect DataCollect Data
machine domain

Candidate Data
problem domain

X

Candidate
B domain type

FUR02
requirements

CD!Y2
CDM!E1

CA!E2interface

Y4
constraints on

E3

Legend for interfaces and their {shared phenomena}:
E1{store40FormData}, E2{fillIn40FormData,FormData1..40}, E3{fillInCandidateData},
Y2{FormData1..40}, Y4{collectCandidateData}

Fig. 2. Subproblem for the requirements set FUR02 of a student recruitment web
portal, which is based on the “simple workpieces” problem frame

For example, in Figure 2 a set of requirements named FUR02 builds a sub-
problem for a Student Recruitment Web Portal [15], that fits the “simple work-
pieces” [19, page 96] problem frame. These requirements are concerned with
collecting a candidate’s personal data necessary to prepare the candidate’s ap-
plication to a study program. They belong to a problem class which accounts
for functionality that enables the processing i.e. storage of personal data.

1.2 Requirements Size Measurement by ISO/IEC 20926

Function Point Analysis [11] according to the International Function Point Users
Group [21] is a functional size measurement (FSM) method, which is standard-
ized in ISO/IEC 20926 [17]. It has become of vital importance in the early phases
of software projects, since it is of use as input to effort estimation in project plan-
ning. Function Point Analysis was originally created by Allan Albrecht in 1979,
who suggested a measure for developers productivity [1].

This technology-agnostic approach makes use of logical so-called base func-
tional components to classify functional, user-recognizable requirements (FUR)
into an “elementary unit of FUR defined by and used by an FSM Method for
measurement purposes” [17, page 2, section 3.8]. Their size is determined within
the counting process and expressed by a number in function points.

Functional size measurement introduces a means for quantifying require-
ments specifications. However, it is no Requirements Engineering method, since
its prime purpose is not to result in a comprehensive requirements specification.
Actually, its quality depends on a good requirements specification [22].

In this connection, identification of the application boundary, which is a
“conceptual interface between the software under study and its users” [17, page 3,
section 3.9] is crucial. The base functional components are counted with respect
to the application boundary as illustrated in Figure 3. In order to determine the
functional size of some requirements consistently, they need to be decomposed
to fit the base functional components in a reproducible way.

ILF

application

boundary

EIF

application

other

EI

EIEIEI

EQ / EOEQ / EO
user

Fig. 3. Overview of base functional components (ILF, EIF, EI, EQ, EO) and their
relation to the application boundary as considered by ISO/IEC 20926:2009 [17]

The measurement process according to ISO/IEC 20926 [17, page 8] distin-
guishes data functions and transactional functions. Data functions such as Inter-
nal Logical File (ILF), and External Interface File (EIF) relate to requirements
that are concerned with data storage needs. An ILF is some ”information main-
tained within the boundary of the application being measured” [17, page 6,
section 3.39], in contrast to an EIF, which is some ”information, which is refer-
enced by the application being measured, but which is maintained within the
boundary of another application” [17, page 5, section 3.29]. Requirements that
are concerned with different kinds of data processing are considered by transac-
tional functions. These are synonyms for the following elementary processes:

EI ← External Input (EI) is an “elementary process that processes [. . .] infor-
mation sent from outside the boundary” [17, page 4, section 3.27], its
primary intent is to “maintain an ILF [. . .]” [21].

EQ ! External Inquiry (EQ) is an “elementary process that sends [. . .] in-
formation outside the boundary” [17, page 5, section 3.28], its primary
intent is to “present information to a user. It presents only data that is
retrieved [. . .]” [21].

EO → External Output (EO) is an “elementary process that sends [. . .] infor-
mation outside the boundary and includes additional processing logic
beyond that of an external inquiry” [17, page 5, section 3.30], its pri-
mary intent is to “present information to a user. It presents data that is
calculated or derived [. . .]” [21].

Given that an elementary process is the “smallest unit of activity that is
meaningful to the user” [17, page 4, section 3.21], it specifies what the software
shall do in terms of different kinds of processing and functionality, respectively.
This drives decomposition of FUR comparable to problem frames.

2 Requirements Work Packages

“At the start of each development iteration, [. . .] Groups of user stories are
associated with a generic ’feature’. The complexity of each feature is then es-
timated” [9, page 1343]. Thus, the challenge is to set up commensurable units

of requirements, i.e. requirements work packages [2] in the following, that main-
tain a consistent level of detail and address a comparable kind of functionality.
Problem Frames tackle this challenge.

On the one hand, they allow for classifying requirements into self-contained
subproblems, which maintain requirements description at a consistent level of
detail, as long as their underlying frames belong to the same hierarchy of pat-
terns. Each Problem Frame in Table 1 belongs to the set of Basic FSM Patterns
“that apply to a complete yet single functional process” as defined in [26].

On the other hand, each set of requirements grouped by a problem frame
is concerned with a particular kind of functionality, which is indicated by the
constrained problem domain as discussed in Section 1.1. It can be compared
and mapped to the primary intent of an elementary process as discussed in
Section 1.2, which indicates similarly the kind of functionality or respective pro-
cessing to be sized in a function point count. Table 1 provides for this relation
by a bullet point.

Table 1. List of 17 problem frames applicable as basic functional size measurement
patterns to set up self-contained and measurable requirements work packages

�Requirements Work Package�
Feature

self-contained
Subproblem 25xxxxxxxxxxxxxxxxxxxxxxxSet of

Requirements

measurable
Base Functional
ComponentProblem Frame Elementary Process

Problem Frame Refer. Refer. Constr. Problem Frame Elementary Process
No. in [8] Domain I Domain II Domain L99 Name EI ← EQ ! EO →

01 PF 2.4 C X model building •
02 PF 2.7 B X simple workpieces •
03 PF 3.2 C X X triggered transformation •
04 PF 3.3 B X X commanded transformation •
05 PF 3.11 B C X commanded model building •

06 PF 2.3 X D model display •
07 PF 2.6 C D information display •
08 PF 2.9 B D commanded display •
09 PF 3.8 B X D query •
10 PF 3.15 B C D commanded information •
11 PF 3.24 C X D triggered information •

12 PF 2.2 X C data-based control •
13 PF 2.5 C C required behavior (var.) •
14 PF 2.8 B C commanded behavior •
15 PF 3.7 B X C commanded data-based control •
16 PF 3.12 X C C triggered data-based control •
17 PF 3.14 B C C commanded behavior (variant) •

Legend:
Problem domain type: (B)iddable, (C)ausal, (D)isplay, Le(X)ical
Elementary process: External Input (EI), External Inquiry (EQ), External Output (EO)
Problem Frame relates to Elementary Process: • both address a comparable kind of functionality

As a result, Table 1 lists 17 Basic FSM patterns, which allow to set up
requirements work packages. These patterns provide for a grouping of require-
ments, which relate to measurable base functional components. They can be sized

according to the rules of functional size measurement. A respective requirements
sizing method is presented in Section 3.

Table 1 makes use of a short cut representation for problem frames introduced
in prior work [8]. In each row, it simply enumerates relevant elements of a frame
without changing its semantics. For instance, the “simple workpieces” problem
frame as applied in Figure 2 is given by row #02 in this short cut, tabular form.

3 Requirements Sizing Method

This work proposes to use a customized requirements sizing method to provide
for consistent and reproducible requirements estimates. It is applicable within
planning of a project iteration as supplementary method to Planning Poker and
given in detail in the Frame Counting Agenda [28]. This counting procedure
adopts the steps of the ISO/IEC 20926 [17, section 5, pages 8–19, and 21] func-
tional size measurement process to become effective for determining function
points based on requirements work packages, such as developed in Section 2,
and by means of the complexity and size metrics for data and transactional
functions as defined by Tables A.1–A.5 in ISO/IEC 20926:2009 [17, page 23].
With regard to its process description, it follows the agenda concept [14].

Figure 4 depicts the requirements work package “Collect Candidate Data” in
a stereotype notation as applied in the UML4PF [13] eclipse plugin for modeling
problem frames. Domains that take the role of base functional components e.g.
Candidate Data as ILF, Candidate as EIF, and Collect Data as an EI, can be
easily identified and jointly considered in the counting process due to this uniform
problem representation. That way, the size of a requirements work package is
determined with special attention to the steps Determine Data Functions and
Determine Transactional Functions of the counting procedure, which are the
most critical and error-prone steps at once [12, page 205] as has been observed
in industrial practice [16].

«subProblem» FUR02 Collect Candidate Data

«machine» Collect Data

«lexicalDomain» Candidate Data

«biddableDomain» Candidate

«requirements» FUR02transactional function (EI)

CA!{fillIn40FormData, FormData1..40}

data function (EIF)

CDM!{store40FormData}, CD!{FormData1..40 }

data function (ILF)

«refersTo»
{fillInCandidateData}

«constrains»
{collectCandidateData}

Fig. 4. Requirements work package for FUR02 fits the “simple workpieces” problem
frame and is measured according to Table 1 by the rules of an external input (EI)

Establishing requirements work packages based on functional size measure-
ment patterns also prevents a malpositioned application boundary [25], which

is a major source of difficulties in identifying base functional components and
is therefore a root cause of wrong counts. In order to limit this risk of wrong
counts, the proposed requirements sizing method provides validation conditions,
which safeguard the application boundary and its involved base functional com-
ponents. These validation conditions care for the associated counting rules in
compliance with ISO/IEC 20926.

4 Discussion

To give an example of the outcome produced by the requirements sizing method
as introduced in Section 3, it is applied to a Student Recruitment Web Portal [15].

Table 2. Overview of requirements work packages for a student recruitment web portal
ranked by their functional size given in function points (FP)

Rank Requirements Work Package Functional Size Measurement Pattern
according to Table 1

FP

1 FUR04: Download Candidate Data #15 Commanded Data-Based Control EO → 17
2 FUR06: Compile Candidate Résumé #09 Query EQ ! 16

3 FUR01: Grant Access Authorization #14 Commanded Behaviour EO → 16
4 FUR03: Review Candidate Data #09 Query EQ ! 13

5 FUR02: Collect Candidate Data #02 Simple Workpieces EI ← 13
6 FUR05: Upload Candidate Files #05 Commanded Model Building EI ← 11

Table 2 lists several ’features’ of this web portal together with their respective
point values, which have been established by use of the patterns and method
proposed in this work. Details on how to obtain function points for a feature are
given in the Frame Counting Agenda [28].

The list in Table 2 can be used by the project team to set up the requirements
baseline for a project iteration. These requirement estimates allow to organize
the Sprint Backlog, i.e. to commit to a set of requirements work packages, which
are then to be done in the time box of a project iteration. A requirement work
package, for which the team successfully delivers desired product features after
completing the iteration, can be scored for the requirements baseline respectively.

Statistics on these baseline scores can be used to adjust iteration planning [27,
page 170]. A credible baseline is established depending on measurable project
outcome (scored points), which demonstrably fits into the time box of a project
iteration, e.g. credibilitybaseline = project outcome (points scored)

requirements baseline (points planned) . Thus, a
requirements baseline, which is established by means of functional size measure-
ment patterns, relates to fulfilled requirements, i.e. satisfied user expectations,
rather than to individual team estimates.

5 Related Work

In [20] an “initial investigation” on the general applicability of problem frames to
functional size measurement is outlined to be promising. That work is resumed
in [3], where problem frames are used to set up UML sequence diagrams for
user requirements as a means that is “fairly easy to measure”. In contrast to the
aforementioned, this work proposes to use problem frames i.e. functional size
measurement patterns as the first class means for requirements priorization and
enactment by a project team.

6 Conclusion

The contribution of this work is twofold: As discussed in Section 2, it takes the
problem frames approach to obtain recognizable classes of requirements, which
are capable of relating user requirements with more measurable, technical spec-
ifications. They allow to transfer requirements into self-contained subproblems
i.e. work packages, that are meaningful as units of work that the team can com-
mit to and score for the baseline of a project iteration, and as units of measure
for requirement’s functional size. As discussed in Section 3, this work proposes
to use a counting procedure for the functional size measurement patterns in Ta-
ble 1, that is based on a match of the problem frame concept with that of base
functional components. These contributions serve the estimator to obtain repro-
ducible results, i.e. function point estimates for requirements, that comply with
a standard for functional size measurement, i.e. ISO/IEC 20926 [17]. This pro-
vides for estimates consistency, which is fundamental to establish a comparative
requirements and involved performance baseline [2].

7 Future Work

This work implements an Integrated Requirements Engineering approach [24].
It establishes uniform requirement components by means of patterns, which are
meaningful to clients and developers as the project’s collaborators. To inves-
tigate the use of this means to establish a commensurable point of reference
for requirements and their involved performance baseline, the proposed require-
ments patterns and sizing method needs to be evaluated on the basis of more
sample applications than the Student Recruitment Web Portal.

With regard to the client, it is intended to investigate how tender preparation
and mockup creation relate to requirements work packages. With regard to the
developer, it is planed to investigate how an appropriate design or reusable soft-
ware components can be chosen with respect to a requirements work packages,
that fit the project time box.

References

1. A. J. Albrecht. Measuring Application Development Productivity. In Proc.
of SHARE, GUIDE, and IBM App. Dev. Symp., pages 83 – 92. IBM, 1979.

2. G. B. Alleman. Performance-Based Project Management. AMACOM, 2014.
3. V. d. Bianco and L. Lavazza. Applying the COSMIC Functional Size Mea-

surement Method to Problem Frames. In Proc. 14th ICECCS. IEEE, 2009.
4. B. W. Boehm. Software Engineering Economics. Prentice Hall, 1981.
5. M. Cohn. Agile Estimating and Planning. PHPTR, 2005.
6. M. Cohn. Establishing a Common Baseline for Story Points. http://bit.ly/

2dk13Gl, 2008.
7. M. Cohn. The Best Way to Establish a Baseline When Playing Planning

Poker. http://bit.ly/2i5g1GF, 2016.
8. I. Côté, D. Hatebur, M. Heisel, H. Schmidt, and I. Wentzlaff. A Systematic

Account of Problem Frames. In Proc. of the EuroPLoP. UVK, 2008.
9. M. Daneva, E. van der Veen, C. Amrit, S. Ghaisas, K. Sikkel, R. Kumar,

N. Ajmen, U. Ramteerthkar, and R. Wieringa. Agile requirements prioritiza-
tion in large-scale outsourced system projects: An empirical study. Journal
of systems and software, 86(5):1333–1353, 2013.

10. W. E. Deming. Out of the Crisis. MIT-CAES, 2000.
11. D. Garmus and D. Herron. Function Point Analysis - Measurement Practices

for Successful Software Projects. Addison-Wesley, 2001.
12. C. Hazan. The 13 Mistakes of Function Point Counting, chapter 11, pages

197 – 214. In International Function Point Users Group [16], 2012.
13. M. Heisel. UML4PF eclipse plugin. http://www.uml4pf.org/.
14. M. Heisel. Agendas – A Concept to Guide Software Development Activites.

In Proc. Systems Implementation 2000, pages 19–32. C&H, London, 1998.
15. A. Hunger. Student Recruitment Web Portal. http://bit.ly/2kmU2Ja, 2017.
16. International Function Point Users Group. The IFPUG Guide to IT and

Software Measurement. Taylor & Francis Group, 2012.
17. ISO/IEC 20926:2009. Software and systems engineering - Software measure-

ment – IFPUG functional size measurement method 2009. ISO, 2009.
18. M. A. Jackson. Software Requirements & Specifications: a lexicon of practice,

principles and prejudices. Addison-Wesley, New York, NY, USA, 1995.
19. M. A. Jackson. Problem Frames – Analyzing and Structuring Software De-

velopment Problems. Addison-Wesley, 2001.
20. L. Lavazza and V. del Bianco. Functional size measurement based on prob-

lem frames: A case study. In Proc. of the 3rd IWAAPF. ACM, 2008.
21. IFPUG. IFPUG CPM 4.3.1 – Function Point Counting Practices Manual

(CPM) Version 4.3.1. International Function Point Users Group, 2010.
22. R. Meli. Software Measurement in Procurement Contracts, chapter 29, pages

561 – 583. In International Function Point Users Group [16], 2012.
23. K. Schwaber and J. Sutherland. Scrum GuideTM. http://bit.ly/1rulpv2, 2016.
24. I. Sommerville. Integrated Requirements Engineering: A Tutorial. IEEE

Software, 22(1):16 – 23, 2005.
25. Total Metrics. Function Point FAQs. http://bit.ly/2jtEe9X, 2016.
26. S. Trudel, J.-M. Desharnais, and J. Cloutier. Functional Size Measurement

Patterns: A Proposed Approach. In IWSM Mensura, Berlin, 2016.
27. K. Waters. All about Agile. Createspace, 2012.
28. I. Wentzlaff. Frame Counting Agenda (.pdf). http://bit.ly/2jaDTYY, 2017.

http://bit.ly/2dk13Gl
http://bit.ly/2dk13Gl
http://bit.ly/2i5g1GF
http://www.uml4pf.org/
http://bit.ly/2kmU2Ja
http://bit.ly/1rulpv2
http://bit.ly/2jtEe9X
http://bit.ly/2jaDTYY

	Establishing a Requirements Baseline by Functional Size Measurement Patterns

