
Swartout, Gil, Valente 8-1

Representing Capabilities of
Problem Solving Methods

Bill Swartout
USC

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
swartout@isi.edu

Yolanda Gil
USC

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
gil@isi.edu

Andre Valente
USC

Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
valente@isi.edu

Abstract

In order to develop and use shared libraries of
problem-solving methods, it is of paramount
importance to provide adequate descriptions of
their capabilities and competence. Methods
must be indexed and organized based on their
capabilities so that they can be retrieved when
their capability is adequate for the task at
hand. This paper describes the approach taken
in EXPECT for representing method
capabilities and argues that it has important
features that should be used for describing
methods in shared libraries. EXPECT’s
capability representation is tightly coupled
with the domain ontologies in the knowledge
base, can express task-related parameters
explicitly, and is based on case grammars.
This representation allows the system to
reason about the capability descriptions
through class subsumption and reformulation.
The benefits of this approach include self-
organizing method libraries, reuse, and
support for explanation. The representation has
already been used extensively within
EXPECT to express a wide range of method
capabilities, ranging from abstract to specific,
small to large, and domain-dependent to
general-purpose methods. The paper also
discusses some of the additional features that
we anticipate will be useful to structure shared
method libraries.

1 Introduction

Libraries of problem solving methods could facilitate
the construction and adaptation of knowledge based
systems [Chandrasekaran 1986; Eriksson et al. 1995;

 The copyright of this paper belongs to the papers authors.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage.
Proceedings of the IJCAI-99 workshop on Ontologies
and Problem-Solving Methods (KRR5) Stockholm,
Sweden, August 2, 1999
(V.R. Benjamins, B. Chandrasekaran, A. Gomez-Perez, N.
Guarino, M. Uschold, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-18/

MacDermott 1988; Breuker and Van de Velde 1994].
Rather than building a system from scratch, as is
current practice, system builders would assemble a
knowledge based system from reusable components
drawn from shared ontologies and libraries of problem
solving methods. By reusing components, this
approach should allow knowledge-based systems to be
constructed more rapidly. Further, the resulting
systems should be more error free since they will be
constructed from existing (and presumably debugged)
resources. Finally, because the emphasis in system
construction will be on assembling existing
components, rather than building things from scratch,
it should be possible for less experienced individuals to
build knowledge based systems successfully.

But how should these libraries of problem solving
methods be organized? How can the capabilities of
problem solving methods be represented? This
approach to system construction will only work if
people (and machines) can easily find the methods that
are capable of addressing the problem at hand. Other
approaches, such as CommonKADS, use a functional
specification of method capabilities. However, the
matching of these capabilities with problem goals in
e.g. the CommonKADS Library [Valente et.al., 1998]
are meant to be done by a human that analyzes a semi-
formal method description. The library is organized
“by design”, for example using typologies of methods
and explicit collections of related decompositions.

In contrast, our approach aims to build a library of
problem-solving methods that is self-organizing, in the
sense that we can automatically find the right place for
a new method in the library and have tools that can use
the library to build a problem solver for a specific
problem. We believe such a library will enhance
reusability. Also, we want to have capabilities that are
amenable to produce explanations – both of the
methods and the systems constructed using these
methods. To achieve these goals, we need a rich and
expressive specification of method capabilities that
allows the system to reason about the capability
descriptions through class subsumption and
reformulation.

In this paper we describe the approach we have been
using to represent problem solving method capabilities
in EXPECT, our knowledge based system framework

Swartout, Gil, Valente 8-2

Expectation-based Tools for Knowledge Acquisition
expectation

builder
agenda

manager
KB

modifiers

User
 Interaction
Manager/
Explainer

Knowledge Bases

Ontology
and

Factual K

Problem
Solving

Knowledge
(strategies)

Automatic
Method

Instantiator

Domain-
specific

KBS KBS
Compiler

Execution
Trace

LISP
code Interpreter

Interdependency
Model

(Design History)

Figure 1: EXPECT Architecture

that supports knowledge acquisition [Swartout and Gil
1995; Gil 1994; Gil and Melz 1996]. We begin with a
brief overview of the EXPECT framework, followed by
a discussion of a set of desiderata that motivated the
design of our representation for method capabilities.
We then discuss the representation we use in detail.

2 The EXPECT Framework

A major goal of the EXPECT framework is to allow
domain experts to change and add knowledge to a
knowledge based system. EXPECT keeps track of the
interdependencies in a knowledge based system, such
as what factual knowledge must be present to support
the problem solving methods that the KBS uses, and
how factual knowledge is used in problem solving. For
instance, in a configuration system that uses propose-
and-revise as its problem solving method, each
constraint must have one or more associated “fixes”
that are used in problem solving to resolve a violation
of the constraint when it occurs. This is an example of
a dependency that arises between the domain
representation of constraints and the problem solving
method. EXPECT captures such dependencies in an
interdependency model which is specific to each
knowledge based system built in EXPECT. When
new knowledge is added to a knowledge based system,
EXPECT examines the interdependency model to
determine what additional knowledge must be provided
to make the new knowledge usable by the problem
solving methods currently employed in the system.
Similarly, if one of the problem solving methods is
modified, EXPECT rederives the interdependency
model to determine if any of the dependencies have
changed. If so, it will request the needed additional
information from the user. In this way, EXPECT
helps a user modify and adapt a knowledge based
system while freeing him from the need to understand

the details of the implementation. Figure 1 shows the
architecture of EXPECT.

EXPECT uses Loom [MacGregor 1991] to represent
domain facts and the domain ontology. Loom is a
description logic-based representation. Like other
description logics, Loom is based on a semantic
network approach to knowledge representation.
Concepts in Loom are descriptions of objects (which
may or may not actually exist) while Loom instances
represent objects that do exist. Concepts can have roles
which may be used to specify attributes of the concept.
A distinguishing feature of description logics like
Loom is that they provide a way of precisely defining
the meaning of a concept, that is, what it denotes.
Loom provides a classifier, which is a reasoner that
uses concept definitions to determine whether one
concept subsumes another concept. Specifically, a
concept A is said to subsume a concept B if all the
possible entities that could be described by B are also
necessarily described by A. For example, ``a man who
only drinks beer'' subsumes ``a man who only drinks
imported beer.'' The classifier can determine whether
all the instances that could possibly be described by
one concept are also necessarily described by another
based on the definitions of the two concepts. As a
result, it is possible to automatically organize concepts
into an AKO (a kind of) lattice based only on their
definitions.

In EXPECT, a goal represents a task to be done or a
problem to be solved. Problem solving methods are
used to accomplish these goals. Each problem solving
method has a capability description which describes
the kinds of problems the method can solve and a
method body which consists of step(s) for achieving the
method’s capability. These steps may include
subgoals. Figure 2 shows an example of a problem-

Swartout, Gil, Valente 8-3

CAPABILITY
 (compute (obj ?d is (spec-of LinesOfComm-distance))
 (for ?coa is (inst-of coa)))
RESULT-TYPE (inst-of distance-value)
BODY
 (if (equal (obj (count (obj (r-locations ?coa)))) (to 1))
 then
 (take (obj (spec-of maximum))
 (of (find (obj (spec-of distance))
 (between (set-of (spec-of geoloc)))
 (in ?coa))))
 else
 (take (obj (spec-of maximum))
 (of (find (obj (spec-of distance))
 (from (r-locations ?coa))
 (to (r-locations ?coa))))))

subgoal posting

control constructs

retrieval of facts

Figure 2: An EXPECT Method

solving method in EXPECT. The method computes
the distance of lines of communication in a course of
action (COA).

As we described above, EXPECT’s interdependency
model captures part of the design of the knowledge
based system. EXPECT creates an interdependency
model for a knowledge based system by synthesizing
the system from a set of abstract problem solving
methods and knowledge about a domain. As it
synthesizes the system, EXPECT records how different
parts of the system depend on each other in the
interdependency model.

EXPECT uses a form of partial evaluation and
hierarchical decomposition to create a knowledge based
system. Starting with an initial high level goal that
specifies what the knowledge based system is supposed
to do, EXPECT looks for a method whose capability
description matches the goal. When a method is
found, its method body is instantiated by replacing
variables in the method with corresponding instances
in the goal. The instantiation of the method body may
result in the posting of subgoals, in which case the
process recurs. If no method can be found for a goal,
EXPECT attempts to reformulate the goal into a new
goal or set of goals that are semantically equivalent to
the original. It then attempts to achieve these new
goals, as we describe below. During this entire
process, EXPECT records in the interdependency
model how specific factual information is used in
expanding the problem solving methods, thus
capturing how different parts of the system depend on
each other.

3 Desiderata for the Representation of
Capability Description and Goals

Linking up goals and problem-solving methods is a
critical part of EXPECT’s approach to knowledge
acquisition, and it places a number of demands on the
representation of goals and the capability descriptions
of problem solving methods. In this section we

outline the desiderata that led to EXPECT’s
representation for capability descriptions and goals.

• A representation tied to the domain ontology. We
wanted a representation that was tied to the
ontologies used in EXPECT so that goals could be
defined using terms from the domain. Further,
integrating the representation for capability
descriptions and goals with the domain ontology
assures us that the semantics of the two
representations will be consistent.

• A broad spectrum representation. Some problem
solving methods are very general, while others are
especially tuned to work in highly specialized
situations. We believe that problem-solving method
libraries need to include both kinds of methods.
General methods will provide broad coverage and
allow us to build robust systems, while highly
specific methods will substantially enhance
efficiency in specific situations. We wanted a
representation that would allow us to describe the
capabilities of both very general and highly domain-
specific methods.

• Support for “loose coupling” between goals and
method capabilities. Reuse of problem solving
methods will be increased if the capability
descriptions of the methods don’t have to match
goals exactly. We wanted a representation that
would allow the system to find methods that could
work for a particular goal, even if they did not match
it exactly.

• Support for reformulation. Loose coupling and
reuse can be further increased if goals can be
reformulated. Reformulation involves mapping a
goal into a new goal or set of goals that is
semantically equivalent to the original goal.
Reformulation allows the system to find a way of
achieving a goal even if a problem-solving method
could not be matched against the original goal. To
be able to automatically reformulate a goal, the
semantics of the individual terms that comprise the
goal must be well specified so that they can be

Swartout, Gil, Valente 8-4

mapped into new terms to create equivalent goals.

• Understandable by users. Since a goal of the
EXPECT effort is to support knowledge acquisition
from domain experts, we wanted a representation that
could be easily understood or paraphrased into
English.

• Self-organizing. In our view, problem solving
method libraries are likely to become quite large in
the future. Further, both AI experts and non-experts
will contribute to these libraries and use methods
from them. For these reasons we felt it was
important to have a representation for method
capabilities that would support self-organization,
that is, that would allow us to organize the methods
into a hierarchy automatically based on their
capability descriptions. This would allow either a
machine or person to find methods that were
applicable to a particular problem easily.

 In the next section, we describe our representation for
goals and method capabilities that helps us achieve the
desiderata outlined above.

4 Representing Goals and Capabilities

 EXPECT uses a structured representation for goals that
arise during problem solving and the capabilities of
methods that can be used to achieve those goals. Goals
and capabilities are represented as verb clauses using a
case-grammar style formalism [Fillmore 1968]. Each
goal consists of a verb, which specifies what is to be
done, and a number of roles, or slots, which specify the
parameters to be used in the action. The parameters use
terms that are defined in the domain ontology. For
example, the goal of estimating the closure date of
particular transportation movement would be specified
roughly as:

 estimate OBJ closure-date OF
transportation-movement-1

 Here, estimate is the verb, and the roles are indicated in
upper case. Roles are filled by Loom concepts and
instances taken from the ontology, which couples our
representation with the ontology.

 In EXPECT, roles can be filled in several different
ways, which allows considerable flexibility in
specifying a task to be done. A role can be filled by a
specific instance:

 add OBJ 3 TO 5
 which allows us to specify particular instances that are
to be used in an action. A role can be filled by a
concept:

 compute OBJ (spec-of factorial) of 7

 In this case, the concept factorial is used to
specify the kind of task that is to be done. The data
required to perform the computation are specified as
parameters (in this case the number 7), while these
additional task parameters allow us to express what
needs to be done with that data in an explicit way and

are not strictly necessary to perform the computation
itself. The fact that roles can be used both to specify
the parameters or objects that will be involved in a task
and to further describe or specify the task itself is one
of the key capabilities that our representation supports,
providing us with a rich language for specifying goals.

 Roles can be a type of an instance, as in:

 divide OBJ (inst-of number) BY 2

 This results in a generic goal that can be instantiated
with any elements of that type.

 Roles can also be filled by extensional sets as in:

 find OBJ (spec-of maximum)
 OF (42 2 99)

 or they can be filled by intensional sets, where the set
is described by a concept:

 find OBJ (set-of
 (spec-of
 violated-constraint))
 IN (inst-of configuration)

Finally, it is possible to use descriptions (which are
similar to the definitions of Loom concepts) in roles:

 estimate OBJ support-personnel
 IN (and location
 (exactly 0 seaports))

 This is a goal to estimate the support personnel in a
location with no seaports.

 This approach provides us with a rich language for
specifying behaviors. The use of a case grammar
formalism makes it relatively straightforward to
paraphrase the goals into natural language helping to
make them more understandable [Swartout et al. 1991].

 Capability descriptions for methods are specified in a
similar way, except that variables may appear in the
capability descriptions. These are bound when the
capability descriptions are matched with goals. Figure
2 shows an example of a method and its capability.

 As we just showed, EXPECT’s language to describe
goals and capabilities is very expressive. An important
aspect of EXPECT is how it reasons about method
capabilities with this representation, exploiting
subsumption and reformulation as we describe next.
Further details can be found in [Swartout and Gil 1995;
Gil and Gonzalez 1996].

4.1 Creating LOOM Descriptions of Goals and
Capabilities
 We described earlier how EXPECT relies on LOOM’s
classifier to automatically organize concepts in an AKO
lattice. EXPECT also relies on the LOOM classifier to
reason about what goals and capabilities subsume
others. This is achieved by turning goals and
capabilities into LOOM descriptions. EXPECT has a

Swartout, Gil, Valente 8-5

move
cargo

aircraft

OBJ

WITH

 Goal:
(move
 (OBJ (inst-of cargo))
 (WITH C-140))

 Method capability:
(move
 (OBJ (inst-of cargo))
 (WITH (inst-of aircraft)))

move
cargo

C-140

OBJ

WITH

move
cargo

vehicle

OBJ

WITH

move
cargo

ship

OBJ

WITH

method-1

method-2

method-3

method
hierarchy

goal-1

Figure 3: Translating Goals and Capabilities to Loom to organize and retrieve methods

core set of Loom definitions that are used for this, and
include action name (its subclasses are essentially
verbs), action role (its subclasses are OBJ and any
parameter name), goal , and capability. Action roles
are relations whose domain is an action name, and
whose range can be any existing concept in the domain
(ex: ship, number) qualified by its parameter type (set
or element, concept or instance, extensional or
intensional). For example, the goal to compute the
factorial of a number is expressed in EXPECT as:

 (compute
 (obj (spec-of factorial)
 (of (inst-of number)))

The corresponding Loom definition that is created is:

 (defconcept CM20
 :is (:and compute
 (:the obj (:and concept-desc
 factorial))
 (:the of (:and instance-desc
 number))))

LOOM’s classifier is now able to reason with this
definition. Every term used in the parameters have
their own definitions, provided in the ontologies, and
LOOM will use them in reasoning about goal
subsumption. Notice that these terms and their
definitions can be domain independent (e.g., violated-
constraints, maximum) or domain dependent (e.g.,
location, closure-date).

4.2 Self-Organizing Method Libraries
Using the techniques just described, EXPECT creates
Loom definitions for the capabilities of all the methods
that are defined in the knowledge base. Loom’s
classifier reasons about these definitions and places

them in a lattice, where more general definitions
subsume more specific ones. Notice that this
subsumption reasoning uses the definitions of the
domain terms and ontologies that are part of
EXPECT’s knowledge bases. As a result, the
capability of a method to “move cargo with a vehicle”
will subsume one to “move cargo with an aircraft”,
because according to the domain ontologies vehicle
subsumes aircraft. This is illustrated in the method
hierarchy shown in Figure 3. As a result, EXPECT’s
methods are automatically organized according to their
capabilities, and their capabilities can be compared
based on their place in the lattice.

 4.3 Matching Goals and Capability
Descriptions
EXPECT also exploits the representation of goals and
capabilities for matching method capabilities with the
goals that arise during problem solving. EXPECT’s
matcher first translates the posted goal into a Loom
concept, and then invokes the Loom classifier in order
to find methods whose capability descriptions subsume
the posted goal. Figure 3 illustrates this matching
process for the goal of moving some cargo with a C-
140 (which is a particular kind of aircraft).

Once the match has been made using the Loom
representation for the goal and capabilities, the original
representation is used to bind parameters in the goal to
corresponding variables in the capability description.
This is necessary since Loom does not support
variables in concepts.

 4.4 Reformulating Goals
 When a goal is posted while EXPECT is synthesizing
a knowledge based system and no method can be found
with a matching capability, EXPECT attempts to

Swartout, Gil, Valente 8-6

estimate support personnel

estimate unloading personnel

estimate seaport support personnel

estimate airport support personnel

unloading personnel

seaport
support personnel

airport
support personnel

support personnel

PARTITION COVERING
REFORMULATION

Figure 4: A covering reformulation

reformulate the goal by transforming it into a new goal
(or set of goals) that is equivalent to the original goal,
but expressed in different terms. EXPECT then tries to
find methods for achieving these new goals. This
automatic reformulation allows EXPECT to reuse
methods in a broader range of circumstances than would
be possible if EXPECT required an exact match for
goals and methods. EXPECT supports several types of
reformulations.

• A covering reformulation is a form of divide
and conquer. It transforms a goal into a set of goals
that partition the original goal. If all the goals in
the set are achieved, the intent of the original goal is
achieved. Figure 4 shows an example covering
reformulation. A goal of estimating support
personnel has been posted, but no applicable
methods have been found. Because EXPECT’s
ontology (as shown on the left in Figure 4) indicates
that the concept support personnel is partitioned into
unloading personnel, seaport support personnel and
airport support personnel, EXPECT can reformulate
the original goal into three new goals as indicated on
the right in Figure 4.

• A set reformulation is like a covering
reformulation except that it involves a goal over a
set of objects which is reformulated into a set of
goals over individual objects.

• An input reformulation is somewhat similar to
the support that some languages provide for
polymorphic operators. This kind of reformulation
occurs when a goal is specified with a general
parameter and no single method is available at a
sufficiently general level to handle the parameter. In
that case, EXPECT attempts to reformulate the goal
into cases based on the subtypes of the parameter
given in the ontology. EXPECT also creates
dispatching code so that once the knowledge based
system has been synthesized and is being run, the
code will dispatch to the appropriate subcase based
on the actual type of the parameter that is passed in
at runtime.

Goal reformulations allow us to state the description of
method capabilities more independently from the
statement the descriptions of the goals that are posted
by other methods or by the user. The benefit is a more
loosely coupling between methods and tasks, i.e.,
between what is to be accomplished and what are

possible ways to accomplish it. Goal reformulations
also illustrate how method libraries can leverage from
domain ontologies and their structure.

5 Related Work

Several groups have proposed approaches for
representing PSM capabilities. In CommonKADS
methodology and related work [Schreiber et al 1994,
Valente et al 1998], method capabilities are represented
in a functional way, i.e., by specifying inputs and
outputs, plus the knowledge used in the process (called
static knowledge). Part of the semantics was also
expressed by relating the method to an element of a
typology of methods, typically at the lowest grain size
level (the so-called canonical inferences, see [Aben,
1993]) or at the highest grain-size level (e.g. the suite
of problem types by [Breuker, 1997]). Despite the fact
that EXPECT also models inputs and outputs of
methods, there are many differences between the two
approaches. First, EXPECT uses the case frame
representation to establish a hierarchy of types of goals,
while there is no such notion in CommonKADS.
Second, because the EXPECT framework is based on
the idea of deriving or finding what knowledge is used
by a method in the construction of a problem solver, it
is able to derive (instead of requiring the user to
specify) the static knowledge used by a method. Third,
while the terms used in specifying the input and output
roles in CommonKADS are basically arbitrary,
EXPECT relies on an ontology to find interrelations
between them and reason about them in constructing a
problem solver. In this regard, the EXPECT approach
is closer to the approach used in the Role-Limiting
Methods or in PROTÉGÉ, where there is a method
ontology that characterizes input, output and static
knowledge of a method. An interesting difference,
however, is that EXPECT does not force the user to
separate the method ontology from the domain
ontology, because the system is able to find out
automatically what knowledge is referenced by the
method capability specifications. In summary,
EXPECT finds the roles that knowledge will play when
the knowledge-based system is derived by the method
instantiator, while these roles are pre-specified by most
other approaches.

Another important line of research about representing

Swartout, Gil, Valente 8-7

method capabilities is the work on specifying
assumptions of PSMs [Fensel et al, 1996]. EXPECT
represents some assumptions in the way the Loom
knowledge base is put together. For instance, it can
represent a completeness assumption about descriptions
of ports by defining them to have at least one berth.
This is exploited by the Loom reasoning engine: if an
instance of port does not have a berth, Loom will
classify it as incoherent because it contradicts the
definition of the concept port. Other assumptions are
derived during the matching process. For instance,
assumptions about knowledge availability can be
derived by analyzing a method and concluding that, for
example, the capacity of the C-140 needs to be known
so that the method can calculate whether it can move a
certain cargo using a C-140.

6 Summary

We have described the approach that is used in
EXPECT to describe and reason about goals and
method capabilities. The main features of the approach
are:
• the method representation is tightly integrated with

ontologies as a model of the objects that the
methods reason about. Ontologies may be
domain-specific or high-level ontologies.

• a wide range of parameter types, including
intensional sets and generic instances

• method capabilities state explicitly information
about the type of computation that the method
does, not just which data it uses.

• a case-frame representation is used that is
understandable by users and supports explanation.

• a broad spectrum of methods can be represented,
ranging from small domain-specific methods to
very general domain-independent methods (such as
propose-and-revise)

• goals can be reformulated into more specific
subgoals by using domain knowledge stated in the
domain ontologies.

 There are several advantages of this approach that
method libraries can benefit from:
• a loose-coupling between goals and

method capabilities, which facilitates reuse.
• self-organizing method libraries, where key

features of the method (in our case their
capabilities) are used to automatically determine
how they relate to one another.

• understandable by users, since they are
structured as case frames that can be easily
paraphrased.

An important additional feature of EXPECT is that the
method body, i.e., the description of the procedure and
subtasks that accomplish the method’s capability, is
also expressed explicitly. This is important for reuse,
since it allows adaptation of the methods by using
EXPECT’s knowledge acquisition tools. It is also
important because it allows users to look at the method
body and get first-hand information about how the

method works (as opposed to informal or formal
descriptions created separately from the actual code).

We are planning several extensions to our current
approach in order to make it more suitable for
describing capabilities of methods in shared libraries.

One set of extensions is motivated by our work on
representing role-limiting methods in EXPECT [Gil
and Melz 1996]. We find that the knowledge roles used
in the method should be expressed explicitly, and that
EXPECT can derive them automatically by looking at
interdependencies that it derives. We found the need for
an extensive range of types of knowledge roles,
including classes to be defined in the domain ontologies
and method stubs to be mapped to domain-dependent
methods. We would like to be able to express
additional types of parameters in goals and method
capabilities, such as relations and method classes.
Finally, we would like to be able to express how
methods work together to form larger macro-methods.

Another set of extensions is motivated by our
participation in DARPA’s High Performance
Knowledge Bases Program [Cohen et al. 1998], where
one of our goals is to develop with others a shareable,
distributed library of implemented problem-solving
methods that can be used in conjunction with large-
scale ontologies to rapidly create knowledge based
systems. In order to organize these method libraries, in
addition to their capability we would like to represent
and reason more explicitly about the assumptions that
they make on ontologies, the subtasks that they pose,
the submethods that they use, and other information
about the method’s implementation.

Acknowledgements
We would like to thank all the past and present
members of the EXPECT project for their
contributions to this work. We gratefully acknowledge
the support of DARPA with contract DABT63-95-C-
0059 as part of the DARPA/Rome Laboratory
Planning Initiative and with grant F30602-97-1-0195
as part of the DARPA High Performance Knowledge
Bases Program.

Bibliography

[Aben 1993] Aben, M. “Formally specifying re-usable
knowledge model components”. Knowledge
Acquisition, 5:119--141, 1993.

[Breuker 1997] Breuker, J. “Problems in indexing Problem
Solving Methods”. In R. Benjamins and D. Fensel,
editors: Proceedings of the IJCAI'97 Workshop on
Problem Solving Methods, 1997.

[Chandrasekaran 1986] Chandrasekaran, B. “Generic tasks
in knowledge-based reasoning”. IEEE Expert , 1(3):23-
30, 1986.

[Eriksson et al. 1995] Eriksson, H., Shahar, Y., Tu, S. W.,
Puerta, A. R., and Musen, M. A. “Task modeling with
reusable problem-solving methods”. Artificial
Intelligence 79(1995):293--326.

[Cohen et al. 1998] Cohen, P.; Schrag, R.; Jones, E.;

Swartout, Gil, Valente 8-8

Pease, A.; Lin, A.; Starr, B.; Gunning, D.; and Burke, M.
“ The Darpa High-Performance Knowledge Bases
Project”. AI Magazine, 19(4), 1998.

[Fensel et al, 1996] Fensel, D and Benjamins, R.
“Assumptions in Model Based Diagnosis”. In Gaines, B.
and Musen, M., editors: Proceedings of the 10th Banff
Knowledge Acquisition for Knowledge-Based Systems
Workshop. Banff, 1996.

[Gil and Gonzalez 1996] Gil, Y. and Gonzalez, P. “Using
Description Logics to Match Goals”, In Proceedings of
the 1996 International Workshop on Description
Logics (DL-96), November 2-4, 1996, Boston, MA.

 [Gil and Melz 1996] Gil, Y., and Melz, E. “Explicit
representations of problem-solving strategies to
support knowledge acquisition”. In Proceedings of the
Thirteenth National Conference on Artificial
Intelligence (AAAI-96), 1996.

[Gil 1994] Gil, Y. Knowledge Refinement in a Reflective
Architecture. In Proceedings of the National Conference
on Artificial Intelligence (AAAI-94), 1994.

[MacGregor 1991] MacGregor, R. “The evolving
technology of classification-based knowledge
representation systems”. In Sowa, J., ed., Principles of
Semantic Networks: Explorations in the Representation
of Knowledge. San Mateo, CA: Morgan Kaufmann.

[Marcus 1988] Marcus, S. “SALT: a knowledge-acquisition
tool for propose-and-revise systems,” in Automating
Knowledge-acquisition for expert systems S.Marcus
(ed), pp. 81-121. Kluwer Academic Publishing. 1988

[McDermott 1988] McDermott, J, “Preliminary steps
toward a taxonomy of problem solving methods,” in
Automating Knowledge-acquisition for expert systems
S.Marcus (ed), Kluwer Academic Publishing. 1988

[Musen 1992] Musen, M. A. “Overcoming the limitations
of role-limiting methods,” Knowledge Acquisition,
4(2):165--170. 1992.

[Musen and Tu 1993] Musen, M. A., and Tu, S. W.
Problem-solving models for generation of task-specific
knowledge acquisition tools. In J. Cuena (Ed.),
Knowledge-Oriented Software Design, Elsevier,
Amsterdam, 1993.

[Schreiber et al,1994] Schreiber, A., Wielinga, B.,
Akkermans. J., Van de Velde, W. and de Hoog, R.
“CommonKADS: A comprehensive methodology for
KBS development”. IEEE Expert, 1994.

[Swartout and Gil 1995] Swartout, B. and Gil, Y.
“EXPECT: Explicit Representations for Flexible
Acquisition”. In Proceedings of the Ninth
KnowledgeAcquisition for Knowledge-Based Systems
Workshop (KAW’95) Banff, Canada, February 26-March
3, 1995.

[Swartout et al 1991] Swartout, W. R., Paris, C. L., and
Moore, J. D. “Design for Explainable Expert Systems”.
IEEE Expert 6(3):58-64, 1991.

[Valente et al, 1998] Valente, A., Breuker, J. and Van de
Velde, W. “The CommonKADS Library in Perspective”.
International Journal of Human-Computer Studies, 49:
391—416, 1998.

