ISIM 2006 April 25 - 26, 2006, Czech Republic

Design Patterns for Role-Based Access Control

Martin Lason*
Martin.Lason@vsb.cz

Roman Szturc*
Roman.Szturc@vsb.cz

Abstract: The correct specification of user’s permissions and their association to roles are sig-
nificant assumptions of effective security management. This paper is aimed at early stage of roles
definition process when first users’ roles and privileges are defined. The paper introduces sev-
eral schemes that could help security administrators to identify roles and their privileges. These
schemes should be treated as design patterns in software development.

Keywords: RBAC, design patterns, security.

1 Introduction

Users have to log in to information system that contain data with restricted access in order
to ensure security and privacy. In 1980s most systems had their own password database. As
number of systems grows, user has to remember more and more passwords for different systems.
In order to avoid this problem many systems have started to use LDAP (Lightweight Directory
Access Protocol) for purpose of authentication in 1990s. Thanks to that users can share one user
name and password among several systems. Still, there is a lot of systems unable to share an
LDAP database of users accounts and permissions, for many reasons. Furthermore users have
to enter passwords repeatedly due to authorization. Solution of this problem is called Single
sign-on. Single sign-on (SSO) is mechanism whereby a single action of user authentication
and authorization can permit a user to access all computers and systems where he has access
permission, without the need to enter multiple passwords [8].

However next issue is authorization management. In a separated system users have sets of
privileges for each system but application of an SSO enables centralization of their privileges.
Using of RBAC greatly simplifies management of these privileges. Many companies and orga-
nizations use identity management to manage user accounts and their privileges. This includes,
in addition to other functions, granting of access privileges to users according to their role in
organization. The great advantage of such a solution is its ability to define global roles which
determine users’ privileges in the whole organization.

Although the most of users have the same or very similar privileges, definitions of their roles
arise in most cases individually. Each situation is usually solved ad hoc with minimal connection
to existing models of roles. Mapping of user’s privileges to its roles and specification of relations
among the roles are thus performed without any help of templates. The templates could help to
solve common situations significantly.

In this paper we will try to define several basic schemes of roles that describe common
problems and that could help to solve them in a uniform way. This work is aimed to context-
aware role switching because it describes reality more precisely. Since assigning users to roles

* Department of Computer Science FEI VSB-TU Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba

49

and permissions to roles is time consuming task, usage of general patterns will reduce costs of
development.

2 RBAC

Role-based access control (RBAC) is a powerful security model for the authorization manage-
ment. The central notion of RBAC is that users do not have discretionary access to enterprise
objects. Instead permissions are administratively associated with roles, and users are adminis-
tratively made members of appropriate roles, thereby acquiring the roles’ permissions. Roles
are created for the various job functions in an organization and users are assigned roles based
on their responsibilities and qualifications.

Core RBAC recognizes five administrative elements: users, roles and permissions, where
permissions are composed of operations applied to objects [3]. Figure 1 shows a pair of binary
relations: one between Operation and Objects, referred to as a Permission, and the other
between Role and permission.

Permissions

Fig. 1: RBAC elements relationships

2.1 Parametrized Roles

RBAC provides a mean of expressing access control in associating privileges with roles that is
scalable to large numbers of principals. However, pure RBAC associates privileges only with
roles, whereas applications often require more fine-grained access control. Parameterized roles
extend the functionality to meet this need.

We have used parameterized roles in our models, because we need to satisfy access control
requirements that are context-sensitive in large-scale systems. Hence we used OASIS model [2]
to extend basic role model with parameters. There are also others models that are able to handle
with parameters (e.g. [6]). But we chose OASIS model because in OASIS it is possible to test
context predicates during role activation as well as at the time of access. Another reason why
we chose OASIS is that there exists an implementation of OASIS based on XML Schema and
Simple Object Access Protocol (SOAP), which provides access control enforcement for SOAP
services [2]. Access control decision can be based on the actual parameter values of a SOAP
request.

There is a formal approach using logic because adding parameters to privileges and roles
adds a layer of complexity to the model. It is crucial, that all parameters are typed. Parame-
ters may be of four types: the set of all roles, the set of all appointment certificates, the set of
all privileges and the set of all environmental constraints. Environmental predicates are imple-
mented by computational procedures such as database lookup that can be invoked when a rule
is interpreted.

50

3 RBAC model in UML

There is a need of a reference model for our intended schemes of roles. We have chosen Se-
cureUML model [1] to define RBAC elements using UML. Figure 2 presents the metamodel
that defines the abstract syntax of SecureUML. The types User, Role, and Permission and the
relations UserAssignment, PermissionAssignment, and RoleHierarchy are directly adopted
from the proposed RBAC standard [4]. An AuthorizationConstraint is a logical predicate that
is attached to a permission by the association ConstraintAssignment and makes the permis-
sion’s validity a function of the system state. The AuthorizationConstraint is used by Context
and Protectable interfaces that are described later. The types Resource and Action roughly
correspond to the RBAC terms Operation and Object in [4] and integrate these elements into
system modeling languages.

! RoleHierarchy

@ Role \ PermissionAssignment (3 permission ActionAssignment (3 Action * 1 (® Resource
1% * * 1.% | R?sourceAction
* £l
UserAssignment ConstraintAssignment ActionHierarchy

* * 1

@ user «interfaces .
€ AuthorizatioConstraint & AtomicAction & compositeActon

Fig. 2: SecureUML Metamodel

4 Patterns for RBAC

In this section we try to find abstraction imitating repeated parts of security models. As a result
we will show some templates that should describe general solutions of common problems. The
template (that could be compared to design pattern in software development) should help secu-
rity administrator to define roles and create relationships between them and possible associa-
tions to users and permissions.

The main idea is based on the fact that there have to be plenty of similar activities that could
be modeled in a uniform way. Such abstract solution will solve common problems that occur
during definition of system’s roles. Many of such roles in real life are context aware. Context
plays important role in our template because it helps to characterize situations in real systems.
Central idea is that user’s functions differ in different contexts. Specifically user has different
privileges in different contexts. These contexts are formally defined as parameters of user’s role.

For example user may have permission to store data to a database. But it could be very
dangerous to assign such permission to all users that need to make changes in database without
any restriction. More secure solution is usage of permission that are restricted by context in
which user is active. In particular user will gain permission to write to database, but only to her
own entries or to entries of her department. The context may be also an application that is used

S1

to access the resource. Protected resource may be accessible only from selected application that
are trusted.

4.1 Composit pattern

Let’s start with very simple pattern. It is used in cases when user’s roles are context aware and
the context is some type of hierarchical structure. It should be noticed that it does not refer to
groups of users. These groups are not related to roles because they are related to model of users.

Problem

Roles in the system are context aware and there exist many contexts. These contexts are repre-
sented by appropriate role parameters. There is a need to organize big amount of parameters in
some way. Additionally the system should be able to handle with similar parameters uniformly.

Example 1. Suppose we are modeling project management system. Members of development
team have access to some parts of a project according to their role. Each project consists of sev-
eral independent parts assigned to different developers. Some developers have roles that include
permission to read some kind of project information. It means that users will gain permission
to read project’s data. But in the pure RBAC model, user will gain permission to read data of
all projects! Therefore permission to read project data are parameterized by particular project
that is accessed. Additionally suppose that users have access to the project by means of Web
services.

Example 2. Another example where hierarchical parameters could be met is parts of organiza-
tion. Each organization can be usually divided in some organization units. For example uni-
versity consists of faculties which consist of departments. We want to use RBAC model for
granting privileges to persons that works in some part of the university. For example secretary
role should have permission to change timetable. But if we use parameter, secretary will be able
to change timetable only for department to which she is assigned to.

Solution

Solution of previous example is depicted in figure 3. The Context interface represents hier-
archical parameter of the role. Users are assigned to roles based on their competencies and
permissions are assigned to their roles. Each role can have parameters that are specifies con-
text of permissions. The goal is to compose parameters that could serve as a context, into tree
structure to represent part-whole hierarchies. Context’s structure uses the Composit design pat-
tern [5]. Context represents primitive objects—role parameters. Each parameter can be either
instance of Leaf or instance of Composit. Leaf represents leaf of a tree in the context’s hierar-
chy (e.g. particular indivisible organization unit) and Composit represents node that contains
a collection of parameters.

The main idea of the Composite pattern is to provide an uniform interface to role parameters
represented by different types in the same hierarchy, where instances are all components of the
same composite complex object. For example, faculty (represented by Composit) consists of
departments (represented by Leaf). It could have common interface OrganizationUnit (repre-
sented by Context) that enables to handle this role uniformly regardless of particular instances
of the hierarchy. Employees that have permission to use network printer could be restricted by
the context of their department because they can use only those printers that are associated to

52

the same department as employee’s one. All types of the context are represented by the same
interface mentioned as a OrganizationUnit.

«nterface» *
© context -
*
© Leaf G composit
1
1

"G User @.Rolé " ® permission

" * 1.4 *

Fig. 3: Composit as a context

4.2 Proxy pattern

The name of this pattern originates from the Proxy design pattern. The aim is to provide
a surrogate or representative for another object to control access to it.

Problem

Example 3. Typical example may be a web application (e.g. developed in PHP) that uses a data-
base. Application users cannot access the database directly, but implementation provides a spe-
cial user that has a permission to access the database. Requests of all users are controlled by
application and go through the special user only. The special user acts as a proxy and fully
controls access to the database.

The previous example is applied very frequently nowadays, but with growing popularity
of Web services there is analogical approach defined. The problem is described as a Trusted
Subsystem pattern [7]. Let’s suppose a following situation. A client needs to access one or more
Web services that are distributed across a network. The Web services are designed so that access
to additional resources (such as databases or other Web services) is encapsulated in the business
logic of the Web service. These resources must be protected against unauthorized access. The
goal is to ensure that the client that is used to access the Web service cannot access the additional
resources directly. The situation is depicted in figure 4.

Example 4. The bank client wants to change his account properties. On personal level the client
has to contact bank clerk to change some data in his account. The clerk verifies his personal
identity and new data and then she makes a change of his account. The clerk represents in this
example proxy that restricts access to bank resources to ensure correctness of the data. Let us
note that the clerk uses an bank application that acts as a second proxy.

Example 5. We can find another example in some systems. Secure systems don’t allow to read
users’ passwords to anybody. There are only functions that compare passwords to database and

53

Client Credentials Trusted Subsystem

Credentials
D 2. Validate Credentials .
1. Request)Q 3. Resource Access
-l = -
= II’(e
Client 5. Response 4. Response
ien Trusted Subsystem Resource
(Service)

Fig. 4: Web services — Trusted Subsystem

that change password to a new one. User that wants to change her password has to enter her
current password to prove her identity, in other words she sends the credentials that identifies
herself. After that system verifies user’s privilege to change password and if everything is cor-
rect, it sends request to protected password database. In this case system acts as a proxy that
needs user’s credentials to perform operations over protected resource.

Solution

Basic principles of the solution of this problem is depicted in figure 5. The RBAC elements
such as users, roles and permissions have the same meaning as in previous occurrence. The
central notion of this solution is separation of two types of roles: UserRole and Proxy. Proxy
role has privileges to access protected resource. The resource is accessible via Protectable
interface. Protectable acts in this case as a role parameter. Finally users assigned to role Proxy
can access all object that implements interface Protectable in object oriented approach. The
model implementation should use appoinrments that are described in detail in [2] for credentials
representation.

«interfaces

O Context
*
1
O user © Role © permission
. S * * 1”‘ N
interface
&) userRole © Proxy < O}rotecta‘l.lle

1 4+

Fig. 5: Proxy

Interaction diagram depicted in figure 6 shows Trusted Subsystem example. The solution
was implemented by Web service technology. We add RBAC model to the solution by using
Proxy pattern. A person (represented by object alice) wants to use resource that cannot be

54

accessed directly. She uses client that is associated to UserRole. UserRole contains privileges
to send user’s credentials (in RBAC model described as Appointments) to service (Proxy).

alice:User guard:User | client:User Role service:Proxy | resource:Protectable

1: initialize service
1,1: start session
; z N 1,1.1: requset
{ Jpom o

1.1.1,1: validateCredentials

11.1.2: rasam:eAccessl
= -

«return»
1.1.1.3! resourceAccess

«return»
1.1.2: requset

«return»
1.2: start session

«returns
21 initialize service

Fig. 6: Proxy - interaction diagram

Web service controlled by object guard enables access to protected resource. This object
has role Proxy that has privileges to access protected resource directly. All other object have to
use such broker that has Proxy role to be able to access the protected resource.

As soon as service object (that has Proxy’s permissions) receives request from the client, it
has to validate user’s credentials. User’s credentials are sent via the request method depicted
in figure 6. If service decides that client is allowed to have access to resource, it creates Trusted
Subsystem Credentials and sends request to resource (represented by Protectable interface).
These credentials are sent via requestAccess message. Response from the resource is sent to
service that replies the client.

5 Conclusions

In this work we have introduced design patterns for RBAC that should make role management
more easier. Our work was motivated by attempt to reduce cost of a role definition task. We have
shown patterns describing common problems encountered during association of permissions to
roles. Design of the patterns should lead security administrators to solutions of their particular
problems. This will reduce time of development of a role scheme.

This work is aimed mainly to parameterized roles because they reflect reality more precisely
than pure RBAC model. We have demonstrated usage of these patterns in several real life exam-
ples. As shown above, many ordinary situations should be solved in a uniform way. Advantages
of particular patterns were also mentioned. In a future we want to continue in searching for
other patterns that will bring general solution of other common problems.

55

Bibliography

1.

2

Basin, D., Doser, J., Lodderstedt, T. Model driven security for process-oriented systems Proceedings
of the eighth ACM symposium on Access control models and technologies, ACM Press, New York,
USA, 2003. ISBN:1-58113-681-1. Pages: 100-109.

. Bacon, J., Moody, K., Yao, W. A Model of OASIS Role-Based Access Control and Its Support for

Active Security. ACM Transactions on Information and System Security (TISSEC), ACM Press, New
York, USA, 2002. ISSN:1094-9224. Pages: 492-540.

. Ferraiolo, D. F., Kuhn, D. R., Chandramouli, R. Role-Based Access Control. Artech House Publish-

ers, 2003, Boston. ISBN 1-58053-370-1.

. Ferraiolo, D.E, Sandhu R., Gavrila S., Kuhn, D.R., Chandramouli R. A Proposed Standard for

Role Based Access Control. [online] Aug 2001 [cited 23 Jan 2006]). http://csrc.nist.gov/
rbac/rbacSTD-ACM. pdf

. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Paiterns. Addison-Wesley Publishing Co.,

1995; ISBN: 0201633612

. Luigi Giuri, Pietro Iglio: Role templates for content-based access control. In Proceedings of the

second ACM workshop on Role-based access control. ACM Press, New York, USA, 1997. Pages:
153-159

Microsoft Corporation. Web Service Security - Scenarios, Patterns, and Implementation Guidance
for Web Services Enhancements (WSE) 3.0 [online]. Dec 2005 [cited 23 Jan 2006].
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnpag2/html/wssp.asp

. The Open Group. Single Sign-On [online]. 2005 [cited 1 Feb 2006]. http://www.opengroup.

org/security/sso/

56

