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ABSTRACT

Scientific workflows consisting of a high number of depen-
dent tasks represent an important class of complex scientific
applications. Recently, a new type of serverless infrastruc-
tures has emerged, represented by such services as Google
Cloud Functions or AWS Lambda. In this paper we take
a look at such serverless infrastructures, which are designed
mainly for processing background tasks of Web applications.
We evaluate their applicability to more compute- and data-
intensive scientific workflows and discuss possible ways to
repurpose serverless architectures for execution of scientific
workflows. A prototype workflow executor function has been
developed using Google Cloud Functions and coupled with
the HyperFlow workflow engine. The function can run work-
flow tasks on the Google infrastructure, and features such ca-
pabilities as data staging to/from Google Cloud Storage and
execution of custom application binaries. We have success-
fully deployed and executed the Montage astronomic work-
flow, often used as a benchmark, and we report on initial re-
sults of performance evaluation. Our findings indicate that
the simple mode of operation makes this approach easy to
use, although there are costs involved in preparing portable
application binaries for execution in a remote environment.

While our evaluation uses a preproduction (alpha) ver-
sion of the Google Cloud Functions platform, we find the
presented approach highly promising. We also discuss pos-
sible future steps related to execution of scientific workflows
in serverless infrastructures, and the implications with re-
gard to resource management for scientific applications in
general.
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1. INTRODUCTION

Scientific workflows consisting of a high number of depen-
dent tasks represent an important class of complex scien-
tific applications that have been successfully deployed and
executed in traditional cloud infrastructures, including In-
frastructure as a Service (IaaS) clouds. Recently, a new type
of serverless infrastructures emerge, represented by such ser-

vices as Google Cloud Functions (GCF) [2] or AWS Lambda [1].

These services allow deployment of software in the form of
functions that are executed in the provider’s infrastructure
in response to specific events such as new files being up-
loaded to a cloud data store, messages arriving in queue
systems or direct HT'TP calls. This approach frees the user
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from having to maintain a server, including configuration
and management of virtual machines, while resource man-
agement is provided by the platform in an automated and
scalable way.

In this paper we take a look at such serverless infras-
tructures. Although designed mainly for processing back-
ground tasks of Web applications, we nevertheless investi-
gate whether they can be applied to more compute- and
data-intensive scientific workflows. The main objectives of
this paper are as follows:

e To present the main features of serverless infrastruc-
tures, comparing them to traditional infrastructure-as-
a-service clouds,

e To discuss the options of using serverless infrastruc-
tures for execution of scientific workflows,

e To present our experience with a prototype implemented
using HyperFlow [3] workflow engine and Google Cloud
Functions (alpha version),

e To evaluate our approach using the Montage work-
flow [20], a real-world astronomic application,

e To discuss the costs and benefits of this approach, to-
gether with its implications for resource management
of scientific workflows in emerging infrastructures.

The paper is organized as follows. We begin with an
overview of serverless infrastructures in Section 2l In Sec-
tion |3| we propose and discuss alternative options for server-
less architectures of scientific workflow systems. Our pro-
totype implementation, based on HyperFlow and GCF, is
described in Section This is followed by evaluation us-
ing the Montage application, presented in Section We
discuss implications for resource management in Section [f]
and present related work in Section [7} Section [§] provides a
summary and description of future work.

2. OVERVIEW OF SERVERLESS CLOUDS

Writing “serverless” applications is a recent trend, mainly
addressing Web applications. It frees programmers from
having to maintain a server — instead they can use a set
of existing cloud services directly from their application.
Examples of such services include cloud databases such as
Firebase or DynamoDB, messaging systems such as Google
Cloud Pub/Sub, notification services such as Amazon SNS
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and so on. When there is a need to execute custom applica-
tion code in the background, special “cloud functions” (here-
after simply referred to as functions) can be called. Exam-
ples of such functions are AWS Lambda and Google Cloud
Functions (GCF).

Both Lambda and GCF are based on the functional pro-
gramming paradigm: a function is a piece of software that
can be deployed on the providers’ cloud infrastructure and it
performs a single operation in response to an external event.

Functions can be triggered by:

e an event generated by the cloud infrastructure, e.g.
a change in a cloud database, a file being uploaded
to a cloud object store, a new item appearing in a
messaging system, or an action scheduled at a specified
time,

e a direct request from the application via HTTP or
cloud API calls.

The cloud infrastructure which hosts the functions is re-
sponsible for automatic provisioning of resources (including
CPU, memory, network and temporary storage), automatic
scaling when the number of function executions varies over
time, as well as monitoring and logging. The user is re-
sponsible for providing executable code in a format required
by the framework. Typically, the execution environment is
limited to a set of supported languages: Node.js, Java and
Python in the case of AWS Lambda, and Node.js in the
case of GCF. The user has no control over the execution
environment, such as underlying operating system, version
of the runtime libraries, etc., but can use custom libraries
with package managers and even upload binary code to be
executed.

Functions are thus different from Virtual Machines in IaaS
clouds where the users have full control over the OS (includ-
ing root access) and can customize the execution environ-
ment to their needs. On the other hand, functions free the
developers from the need to configure, maintain, and man-
age server resources.

Cloud providers impose certain limits on the amount of re-
sources a function can consume. In the case of AWS Lambda
these limits are as follows: temporary disk space: 512 MB,
number of processes and threads: 1024, maximum execution
duration per request: 300 seconds. There is also a limit of
100 concurrent executions per region, but this limit can be
increased on request. GCF, in its alpha version, does not
specify limit thresholds. There is, however, a timeout pa-
rameter that can be provided when deploying a function and
the default value is 60 seconds.

Functions are thus different from permanent and state-
ful services, since they are not long-running processes, but
rather serve individual tasks. Resource limits indicate that
such cloud functions are not currently suitable for large-scale
HPC applications, but can be useful for high-throughput
computing workflows consisting of many fine-grained tasks.

Functions have a fine-grained pricing model associated
with them. In the case of AWS Lambda, the price is $0.20
per 1 million requests and $0.00001667 for every GB-second
used, defined as CPU time multiplied by the amount of
memory used. There are also additional charges for data
transfer and storage (when DynamoDB or S3 is used). The
alpha version of Google Cloud Functions does not have a
public pricing policy.
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Serverless infrastructures can be cost-effective compared
to standard VMs. For example, the aggregate cost of run-
ning AWS Lambda functions with 1 GB memory for 1 hour
is $0.060012. This is more expensive than the t2.micro in-
stance, which also has 1 GB of RAM but costs $0.013 per
hour. A T2.micro instance, however, offers only burstable
performance, which means only a fraction of CPU time per
hour is available. The smallest standard instance at AWS is
m3.medium, which costs $0.067 per hour, but gives 3.75 GB
of RAM. Cloud functions are thus more suitable for vari-
able load conditions while standard instances can be more
economical for applications with stable workloads.

3. OPTIONS FOR EXECUTION OF SCIEN-
TIFIC WORKFLOWS IN SERVERLESS
INFRASTRUCTURES

In light of the identified features and limitations of server-
less infrastructures and cloud functions, we can discuss the
option of using them for execution of scientific workflows.
We will start with a traditional execution model in laaS
cloud with no cloud functions (1), then present the queue
model (2), direct executor model (3), bridge model (4), and
decentralized model (5). These options are schematically
depicted in Fig. [1] and discussed in detail further on.

3.1 Traditional model

The traditional model assumes the workflow is running
in a standard IaaS cloud. In this model the workflow ex-
ecution follows the well-known master-worker architecture,
where the master node runs a workflow engine, tasks that are
ready for execution are submitted to a queue, and worker
nodes process these tasks in parallel when possible. The
master node can be deployed in the cloud or outside of the
cloud, while worker nodes are usually deployed as VMs in
a cloud infrastructure. The worker pool is typically created
on demand and can be dynamically scaled up or down de-
pending on resource requirements.

Such a model is represented e.g. by Pegasus and Hyper-
Flow. The Pegasus Workflow Management System [6] uses
HTCondor [18] to maintain its queue and manage work-
ers. HyperFlow [3] is a lightweight workflow engine based
on Node.js — it uses RabbitMQ as its queue and AMQP
Executors on worker nodes. The deployment options of Hy-
perFlow on grids and clouds are discussed in detail in [4].

In this model the user is responsible for management of
resources comprising the worker pool. The pool can be pro-
visioned statically, which is commonly done in practice, but
there is also ongoing research on automatic or dynamic re-
source provisioning for workflow applications |13} [15], which
is a non-trivial task.

In the traditional cloud workflow processing model there
is a need for some storage service to store input, output
and temporary data. There are multiple options for data
sharing |9], but one of the most widely used approaches is to
rely on existing cloud storage, such as Amazon S3 or Google
Cloud Storage. This option has the advantage of providing
a permanent store so that data is not lost after the workflow
execution is complete and the VMs are terminated.

3.2 Queue model

This model is similar to the traditional model: the master
node and the queue remain unchanged, but the worker is
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Figure 1: Options of serverless architectures for execution of scientific workflows.

replaced by a cloud function. Instead of running a pool
of VMs with workers a set of cloud functions is spawned.
Each function fetches a task from a queue and processes it,
returning results via the queue.

The main advantage of this model is its simplicity, since
it only requires changes in the worker module. This may
be simple if the queue uses a standard protocol, such as
AMQP in the case of HyperFlow Executor, but in the case
of Pegasus and HTCondor a Condor daemon (condor_startd)
must run on the worker node and communicate using a pro-
prietary Condor protocol. In this scenario implementing a
worker as a cloud function would require more effort.

Another advantage of the presented model is the ability
to combine the workers implemented as functions with other
workers running e.g. in a local cluster or in a traditional
cloud. This would also enable concurrent usage of cloud
functions from multiple providers (e.g. AWS and Google)
when such a multi-cloud scenario is required.

An important issue associated with the queue model is
how to trigger the execution of the functions. If a native
implementation of the queue is used (e.g. RabbitMQ as in
HyperFlow), it is necessary to trigger a function for each task
added to the queue. This can be done by the workflow engine
or by a dedicated queue monitoring service. Other options
include periodic function execution or recursive execution:
a function can itself trigger other functions once it finishes
processing data.

To ensure a clean serverless architecture another option is
to implement the queue using a native cloud service which is
already integrated with cloud functions. In the case of AWS
Lambda one could implement the queue using DynamoDB:
here, a function could be triggered by adding a new item to
a task table. In the case of GFC, a Google Cloud Pub/Sub
service can be used for the same purpose. Such a solution,
however, would require more changes in the workflow engine
and would not be easy to deploy in multi-cloud scenarios.

3.3 Direct executor model

This is the simplest model and requires only a workflow
engine and a cloud function that serves as a task executor.
It eliminates the need for a queue since the workflow en-
gine can trigger the cloud function directly via API/HTTP
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calls. Regarding development effort, it requires changes in
the master and a new implementation of the worker.

An advantage of this model is its cleanness and simplic-
ity, but these come at the cost of tight master-worker cou-
pling Accordingly, it becomes more difficult to implement
the multi-cloud scenario, since the workflow engine would
need to be able to dispatch tasks to multiple cloud function
providers.

3.4 Bridge model

This solution is more complex but it preserves the de-
coupling of the master from the worker, using a queue. In
this case the master and the queue remain unchanged, but
a new type of bridge worker is added. It fetches tasks from
the queue and dispatches them to the cloud functions. Such
a worker needs to run as a separate service (daemon) and
can trigger cloud functions using the provider-specific API.

The decoupling of the master from the worker allows for
more complex and flexible scenarios, including multi-cloud
deployments. A set of bridge workers can be spawned, each
dispatching tasks to a different cloud function provider. More-
over, a pool of workers running in external distributed plat-
forms, such as third-party clouds or clusters, can be used
together with cloud functions.

3.5 Decentralized model

This model re-implements the whole workflow engine in a
distributed way using cloud functions. Each task of a work-
flow is processed by a separate function. These functions
can be triggered by (a) new data items uploaded to cloud
storage, or (b) other cloud functions, i.e. predecessor tasks
triggering their successor tasks following completion. Op-
tion (a) can be used to represent data dependencies in a
workflow while option (b) can be used to represent control
dependencies.

In the decentralized model the structure and state of work-
flow execution have to be preserved in the system. The sys-
tem can be implemented in a fully distributed way, by de-
ploying a unique function for each task in the workflow. In
this way, the workflow structure is mapped to a set of func-
tions and the execution state propagates by functions being
triggered by their predecessors. Another option is to deploy
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Figure 2: Architecture of the prototype based on
HyperFlow and Google Cloud Functions

a generic task executor function and maintain the workflow
state in a database, possibly one provided as a cloud service.

The advantages of the decentralized approach include fully
distributed and serverless execution, without the need to
maintain a workflow engine. The required development ef-
fort is extensive, since it requires re-implementation of the
whole workflow engine. A detailed design of such an en-
gine is out of scope of this paper, but remains an interesting
subject of future research.

3.6 Summary of options

As we can see, cloud functions provide multiple integra-
tion options with scientific workflow engines. The users need
to decide which option is best for them based on their re-
quirements, most notably the allowed level of coupling be-
tween the workflow engine and the infrastructure and the
need to run hybrid or cross-cloud deployments where re-
sources from more than one provider are used in parallel.
We consider the fully decentralized option as an interesting
future research direction, while in the following sections we
will focus on our experience with a prototype implemented
using the direct executor model.

4. PROTOTYPE BASED ON HYPERFLOW

To evaluate the feasibility of our approach we decided to
develop a prototype using the HyperFlow engine and Google
Cloud Functions, applying the direct executor model. This
decision has several reasons. First, HyperFlow is imple-
mented in Node.js, while GCF supports Node.js as a native
function execution environment. This good match simpli-
fies development and debugging, which is always non-trivial
in a distributed environment. Our selection of the direct
execution model was motivated by the extensible design of
HyperFlow, which can associate with each task in a work-
flow a specific executor function responsible for handling
command-line tasks. Since GCF provides a direct trigger-
ing mechanism of cloud functions using HTTP calls, we can
apply existing HTTP client libraries for Node.js, plugging
support for GCF into HyperFlow as a natural extension.

4.1 Architecture and components
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The schematic diagram of the prototype is shown in Fig.
The HyperFlow engine is extended with the GCFCommand
function which is responsible for communication with GCF.
It is a replacement for AMQPCommand function, which is used

in the standard HyperFlow distributed deployment with AMQP

protocol and RabbitMQ. GCFCommand sends the task de-
scription in a JSON-encoded message to the cloud function.
The GCF Executor is the main cloud function which needs
to be deployed on the GCF platform. It processes the mes-
sage, and uses the Storage Client for staging in and out the
input and output data. It uses Google Cloud Storage and
requests parallel transfers to speed up download and upload
of data. GCF Executor calls the executable which needs to
be deployed together with the function. GCF supports run-
ning own Linux-based custom binaries, but the user has to
make sure that the binary is portable, e.g. by statically link-
ing all of its dependencies. Our architecture is thus purely
serverless, with the HyperFlow engine running on a client
machine and directly relying only on cloud services such as
GCF and Cloud Storage.

4.2 Fault tolerance

Transient failures are a common risk in cloud environ-
ments. Since execution of a possibly large volume of con-
current HT'TP requests in a distributed environment is al-
ways prone to errors caused by various layers of network and
middleware stacks, the execution engine needs to be able to
handle such failures gracefully and attempt to retry failed
requests.

In the case of HyperFlow, the Node.js ecosystem appears
very helpful in this context. We used the requestretry li-
brary for implementing the HTTP client, which allows for
automatic retry of failed requests with a configurable num-
ber of retries (default: 5) and delay between retries (default:
5 seconds). Our prototype uses these default settings, but
in the future it will be possible to explore more advanced
error handling policies taking into account error types and
patterns.

5. EVALUATION USING MONTAGE WORK-
FLOW

Based on our prototype which combines HyperFlow and
Google Cloud Functions, we performed several experiments
to evaluate our approach. The goals of the evaluation are as
follows:

e To validate the feasibility of our approach, i.e. to
determine whether it is practical to execute scientific
workflows in serverless infrastructures.

e To measure performance characteristics of the execu-
tion environment in order to provide hints for resource
management.

Details regarding our sample application, experiment setup
and results are provided below.

5.1 Montage workflow and experiment setup

Montage application.
For our study we selected the Montage [§] application,
which is an astronomic workflow. It is often used for various



WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

benchmarks and performance evaluation, since it is open-
source and has been widely studied by the research com-
munity. The application processes a set of input images
from astronomic sky surveys and constructs a single large-
scale mosaic image. The structure of the workflow is shown
in Fig. it consists of several stages which include paral-
lel processing sections, reduction operations and sequential
processing.

mProjectPP
mDiffFit

mConcatFit
mBgModel
mBackground
mimgTbl
mAdd

mShrink
mJPEG

Figure 3: Structure of the Montage workflow used
for experiments

The size of the workflow, i.e. the number of tasks, de-
pends on the size of the area of the target image, which
is measured in angular degrees. For example, a small-scale
0.25-degree Montage workflow consists of 43 tasks, with 10
parallel mProjectPP tasks and 17 mDiffFit tasks, while more
complex workflows can involve thousands of tasks. In our
experiments we used the Montage 0.25 workflow with 43
tasks, and the Montage 0.4 workflow with 107 tasks.

Experiment setup.

We used a recent version of HyperFlow and an Alpha ver-
sion of Google Cloud Functions. The HyperFlow engine was
installed on a client machine with Ubuntu 14.04 LTS Linux
and Node.js 4.5.0. For staging the input and output data,
as well as for temporary storage, we used a Google Cloud
Storage bucket with standard options. Both Cloud Func-
tions and Cloud Storage were located in the us-cental-1
region, while the client machine was located in Europe.

Data preparation and handling.

To run the Montage workflow in our experiments all in-
put data needs to be uploaded to the cloud storage first. For
each workflow run, a separate subfolder in the Cloud Storage
bucket is created. The subfolder is then used for exchange of
intermediate data and for storing the final results. Data can
be conveniently uploaded using a command-line tool which
supports parallel transfers. The web-based Google Cloud
Console is useful for browsing results and displaying the re-
sulting JPEG images.

5.2 Feasibility

To assess the feasibility of our approach we tested our
prototype using the Montage 0.25 workflow. We collected
task execution start and finish timestamps, which give the
total duration of cloud function execution. This execution
time also includes data transfers. Based on the collected
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Figure 4: Sample run of Montage 0.25 workflow.

execution traces we plotted Gantt charts. Altogether, sev-
eral runs were performed and an example execution trace
(representative of all runs) is shown in Fig.

Montage 0.25 is a relatively small-scale workflow, but the
resulting plot clearly reveals that the cloud function-based
approach works well in this case. We can observe that the
parallel tasks of the workflow (mProjectPP, mDiffFit amd
mBackground) are indeed short-running and can be pro-
cessed in parallel. The user has no control over the level of
parallelism, but the cloud platform is able to process tasks
in a scalable way, as stated in the documentation. We also
observe no significant delays between task execution and can
attribute this to the fact that the requests between Hyper-
Flow engine and the cloud functions are transmitted using
HTTP over a wide-area network, including a trans-Atlantic
connection.

Similar results were obtained for the Montage 0.4 work-
flow which consists of 107 tasks, however the corresponding
detailed plots are not reproduced here for reasons of read-
ability. It should be noted that while the parallel tasks of
Montage are relatively fine-grained, the execution time of se-
quential processing tasks such as mImgTbl and mAdd grows
with the size of the workflow and can exceed the default limit
of 60 seconds imposed upon cloud function execution. This
limit can be extended when deploying the cloud function,
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but there is currently no information regarding the maxi-
mum duration of such requests. We can only expect that
such limits will increase as the platforms become more ma-
ture. This was indeed the case with Google App Engine,
where the initial request limit was increased from 30 sec-
onds to 10 minutes [14].

5.3 Deployment size and portability

Our current approach requires us to deploy the cloud func-
tion together with all the application binaries. The Google
Cloud Function execution environment enables inclusion of
dependencies in Node.js libraries packaged using Node Pack-
age Manager (NPM) which are automatically installed when
the function is deployed. Moreover, the user can provide a
set of JavaScript source files, configuration and binary de-
pendencies to be uploaded together with the function.

In the case of the Montage application, the users need
to prepare application binaries in a portable format. Since
Montage is distributed in sourcd’|format, it can be compiled
and statically linked with all libraries making it portable to
any Linux distribution.

The size of the Montage binaries is 50 MB in total, and 20
MB in a compressed format, which is used for deployment.
We consider this deployment size as practical in most cases.
We should note that deployment of the function is performed
only once, prior to workflow execution. Of course, when the
execution environment needs to instantiate the function or
create multiple instances for scale-out scenarios, the size of
each instance may affect performance, so users should try
to minimize the volume of the deployment package. It is
also worth noting that such binary distributions are usually
more compact than the full images of virtual machines used
in traditional TaaS clouds. Unfortunately, if the the source
distribution or portable binary is not available, then it may
not be possible to deploy it as a cloud function. One use-
ful option would be to allow deployment of container-based
images, such as Docker images, but this is currently not
supported.

5.4 Variability

Variability is an important metric of cloud infrastructures,
since distribution and resource sharing often hamper consis-
tent performance. To measure the variability of GCF while
executing scientific workflows, we collected the duration of
parallel task execution in the Montage (0.25 degree) work-
flow — specifically, mBackground, mDiffFit and mProjectPP
— running 10 workflow instances over a period of one day.

Results are shown in Fig. We can see that the distri-
bution of tasks is moderately wide, with the inter-quartile
range of about 1 second width. The distribution is skewed
towards longer execution times, up to 7 seconds, while the
median is about 4 seconds. It is important that we do not
observe any significant outliers. We have to note that the
execution times of the tasks themselves vary (they are not
identical) and that the task duration includes data transfer
to/from cloud storage. Having taken this into account we
can conclude that the execution environment behaves con-
sistently in terms of performance, since the observed varia-
tion is rather low. Further studies and long-term monitoring
would be required to determine whether such consistency is
preserved over time.

Thttp://montage.ipac.caltech.edu/
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Figure 5: Distribution of execution times of parallel
tasks of the Montage 0.25 workflow.

6. DISCUSSION

The experiments conducted with our prototype implemen-
tation confirm the feasibility of our approach to execution of
scientific workflows in serverless infrastructures. There are,
however, some limitations that need to be emphasized here,
and some interesting implications for resource management
of scientific workflows in such infrastructures.

6.1 Granularity of tasks

Granularity of tasks is a crucial issue which determines
whether a given application is well suited for processing us-
ing serverless infrastructures. It is obvious that for long-
running HPC applications a dedicated supercomputer is a
better option. On the other hand, for high-throughput com-
puting workloads distributed infrastructures such as grids
and clouds have proven useful. Serverless infrastructures can
be considered similar to these high-throughput infrastruc-
tures, but they usually have shorter limits of task execution
size (300 seconds in the case of AWS Lambda, 60-second de-
fault timeout for GCF). While these limits may vary, may be
configurable or may change over time, we must assume that
each infrastructure will always impose some kind of limit,
which will constrain the types of supported workflows to
those consisting of relatively fine-grained tasks. Many high-
throughput workflows can fit into these constraints, but for
the rest, other solutions should be developed, such as hybrid
approaches.

6.2 Hybrid solutions

In addition to purely serverless solutions, one can pro-
pose hybrid approaches, such as the one outlined in Sec-
tion [3] The presented bridge model is a typical hybrid solu-
tion which combines traditional VMs with cloud functions
for lightweight tasks. This architecture can overcome the
limitations of cloud functions, such as the need to create
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custom binaries or execution time limits.

The hybrid approach can also be used to minimize costs
and optimize throughput. Such optimization should be based
on cost analysis of leasing a VM and calling a cloud func-
tion, assuming that longer-term lease of resources typically
corresponds to lower unit costs. This idea is generally ap-
plicable to hybrid cloud solutions [21]. For example, it may
be more economical to lease VMs for long-running sequen-
tial parts of the workflow and trigger cloud functions for
parallel stages, where spawning VMs that are billed on an
hourly basis would be more costly. It may also prove in-
teresting to combine cloud functions with spot instances or
burstable [11] instances, which are cheaper but have varying
performance and reliability characteristics.

The hybrid approach can also help resolve issues caused
by the statelessness and transience of cloud functions, where
no local data is preserved between function calls. By adding
a traditional VM as one of the executor units, data transfers
can be significantly reduced in the case of tasks that need
to access to the same set of data multiple times.

6.3 Resource management and autoscaling

The core idea behind serverless infrastructures is that they
free the users from having to manage the server — and this
also extends to clusters of servers. Decisions concerning re-
source management and autoscaling are thus made by the
platform based on the current workload, history, etc. This
is useful for typical Web or mobile applications that have
interactive usage patterns and whose workload depends on
user behavior. With regard to scientific workflows which
have a well-defined structure, there is ongoing research on
scheduling algorithms for clusters, grids and clouds. The
goal of these algorithms it to optimize such criteria as time
or cost of workflow execution, assuming that the user has
some control over the infrastructure. In the case of server-
less infrastructures the user does not have any control over
the execution environment. The providers would need to
change this policy by adding more control or the ability to
specify user preferences regarding the performance.

For example, users could specify priorities when deploying
cloud functions, and a higher priority would mean faster re-
sponse time, quicker autoscaling, etc., but at an additional
price. Lower-priority functions could have longer execution
times, possibly relying on resource scavenging, but at a lower
cost. Another option would be to allow users to provide
hints regarding expected execution times or anticipated par-
allelism level. Such information could be useful for internal
resource managers to better optimize the execution envi-
ronment and prepare for demand spikes, e.g. when many
parallel tasks are launched by a workflow.

Adding support for cooperation between the application
and the internal resource manager of the cloud platform
would open an interesting area for research and optimiza-
tion of applications and infrastructures which both users and
providers could potentially benefit from.

7. RELATED WORK

Although scientific workflows in clouds have been widely
studied, research focus is typically on IaaS and is little re-
lated work regarding serverless or other alternative types of
infrastructures.

An example of using AWS Lambda for analyzing genomics
data comes from the AWS blog [5]. The authors show how
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to use R, AWS Lambda and the AWS API gateway to pro-
cess a large number of tasks. Their use case is to compute
some statistics for every gene in the genome, which gives
about 20,000 tasks in an embarrassingly parallel problem.
This work is similar to ours, but our approach is more gen-
eral, since we show how to implement generic support for
scientific workflows.

A detailed performance and cost comparison of traditional
clouds with microservices and the AWS Lambda serverless
architecture is presented in [19]. An enterprise application
was benchmarked and results show that serverless infras-
tructures can introduce significant savings without impact-
ing performance. Similarly, in [20] the authors discuss the
advantages of using cloud services and AWS Lambda for sys-
tems that require higher resilience. They show how server-
less infrastructures can reduce costs in comparison to tradi-
tional TaaS resources and the spot market. Although these
use cases are different from our scientific scenario, we believe
that serverless infrastructures offer an interesting option for
scientific workflows.

An interesting general discussion on the economics of hy-
brid clouds is presented in [21]. The author shows that even
if when a private cloud is strictly cheaper (per unit) than
public clouds, a hybrid solution can result in a lower over-
all cost in the case of a variable workload. We expect that
a similar effect can be observed in the case of a hybrid so-
lution combining traditional and serverless infrastructures
for scientific applications which often have a wide range of
granularity of tasks.

Regarding the use of alternative cloud solutions for sci-
entific applications, there is work on evaluation of Google
App Engine for scientific applications [16, [14]. Google App
Engine is a Platform-as-a-Service cloud, designed mostly
for Web applications, but with additional support for pro-
cessing of background tasks. App Engine can be used for
running parameter-study high-throughput computing work-
loads, and there are similar task processing time limits as in
the case of serverless infrastructures. The difference is that
the execution environment is more constrained, e.g. only one
application framework is allowed (such as Java or Python)
and there is no support for native code and access to local
disk. For these reasons, we consider cloud functions such as
AWS Lambda or Google Cloud Functions as a more inter-
esting option for scientific applications.

The concept of cloud functions can be considered as an
evolution of former remote procedure call concepts, such
as GridRPC |[17], proposed and standardized for Grid com-
puting. The difference between these solutions and current
cloud functions is that the latter are supported by commer-
cial cloud providers with emphasis on ease of use and de-
velopment productivity. Moreover, the granularity of tasks
processed by current cloud functions tends to be finer, so
we need to follow the development of these technologies to
further assess their applicability to scientific workflows.

A recently developed approach to decentralized workflow
execution in clouds is represented by Flowbster [10], which
also aims at serverless infrastructures. We can expect that
more such solutions will emerge in the near future.

The architectural concepts of scientific workflows are dis-
cussed in the context of component and service architec-
tures [7]. Cloud functions can be considered as a specific
class of services or components, which are stateless and can
be deployed in cloud infrastructures. They do not impose
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any rules of composition, giving more freedom to developers.
The most important distinction is that they are backed by
the cloud infrastructure which is responsible for automatic
resource provisioning and scaling.

The architectures of cloud workflow systems are also dis-
cussed in [12|. We believe that such architectures need to be
re-examined as new serverless infrastructures become more
widespread.

Based on the discussion of related work we conclude that
our paper is likely the first attempt to use serverless clouds
for scientific workflows and we expect that more research in
this area will be needed as platforms become more mature.

8. SUMMARY AND FUTURE WORK

In this paper we have presented our approach to combin-
ing scientific workflows with the emerging serverless clouds.
We believe that such infrastructures based on the concept
of cloud functions, such as AWS Lambda or Google Cloud
Functions, provide an interesting alternative not only for
typical enterprise applications, but also for scientific work-
flows. We have discussed several options for designing server-
less workflow execution architectures, including queue-based,
direct executor, hybrid (bridged) and decentralized ones.

To evaluate the feasibility of our approach we implemented
a prototype based on the HyperFlow engine and Google
Cloud Functions, and evaluated it with the real-world Mon-
tage application. Experiments with small-scale workflows
consisting of 43 and 107 tasks confirm that the GCF plat-
form can be successfully used, and that it does not introduce
significant delays. We have to note that the application
needs to prepared in a portable way to facilitate execution
on such infrastructure and that this may be an issue for more
complex scientific software packages.

Our paper also presents some implications of serverless
infrastructures for resource management of scientific work-
flows. First, we observed that not all workloads are suitable
due to execution time limits, e.g. 5 minutes in the case of
AWS Lambda — accordingly, the granularity of tasks has to
be taken into account. Next, we discussed how hybrid so-
lutions combining serverless and traditional infrastructures
can help optimize the performance and cost of scientific
workflows. We also suggest that adding more control or
the ability to provide priorities or hints to cloud platforms
could benefit both providers and users in terms of optimizing
performance and cost.

Since this is a fairly new topic, we see many options for
future work. Further implementation work on development
and evaluation of various serverless architectures for sci-
entific workflows is needed, with the decentralized option
regarded as the greatest challenge. A more detailed per-
formance evaluation of different classes of applications on
various emerging infrastructures would also prove useful to
better understand the possibilities and limitations of this
approach. Finally, interesting research can be conducted in
the field of resource management for scientific workflows, to
design strategies and algorithms for optimizing time or cost
of workflow execution in the emerging serverless clouds.
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