
Copyright held by the author(s)

Integrating Domain-data Steering with Code-profiling Tools
to Debug Data-intensive Workflows

Vítor Silva§, Leonardo Neves§, Renan Souza§◊, Alvaro Coutinho§,

Daniel de Oliveira★, Marta Mattoso§
§Federal University of Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, Brazil
★
Computing Institute, Fluminense Federal University (IC/UFF), Niterói, Brazil

◊IBM Research Brazil, Rio de Janeiro, Brazil

{silva, renanfs, marta}@cos.ufrj.br, lrmneves@poli.ufrj.br,
alvaro@nacad.ufrj.br, danielcmo@ic.uff.br

ABSTRACT

Computer simulations may be composed of scientific programs
chained in a coherent flow and executed in High Performance
Computing environments. These executions may present anomalies
associated to the data that flows in parallel among programs. Several
parallel code-profiling tools already support performance analysis,
such as Tuning and Analysis Utilities (TAU) or provide fine-grained
performance statistics such as the System Activity Report (SAR).
However, these tools do not associate their results to their
corresponding dataflows. Such analysis is fundamental to trace back
the data origins of an error. In this paper, we propose to couple a
workflow monitoring data approach to parallel code-profiling tools
for workflow executions. The goal is to profile and debug parallel
workflow executions by querying a database that is able to integrate
performance, resource consumption, provenance, and domain data
from simulation programs at runtime. We have implemented our data
monitoring approach as a software component that was coupled to
TAU and SAR code profiling tools. We show how querying the
resulting integrated database enables domain-aware runtime steering
of performance anomalies by using the astronomy Montage
workflow, as a motivating example. We observe that the overhead
introduced by our approach is negligible.

Keywords

Performance analysis; debugging; scientific workflow; provenance.

1. INTRODUCTION

A workflow is an abstraction that defines a set of activities and a
dataflow among them [1]. Each activity is associated to a simulation
program, which is responsible for the consumption of an input
dataset and the production of an output dataset. Many workflows
process a large volume of data, requiring the effective use of High
Performance Computing (HPC) or High-Throughput Computing
(HTC) environments allied to parallelization techniques such as data
parallelism or parameter sweep [2].

To support the modeling and execution of workflows in those
environments, standalone parallel Scientific Workflow Management
Systems (SWfMS) were developed, such as Swift/T [3], Pegasus [4]
and Chiron [5], or SWfMS embedded in Science gateways such as
WorkWays [6]. To foster data parallelism, the activities of workflows
can be instantiated as tasks for each input data, known as activations
[6] (we are going to use the term activation consistently throughout
this paper). Each activation executes a specific program or
computational service in parallel, consuming a set of parameter

values and input data that produces output data. Besides the
activations, parallel SWfMS control the data dependencies among
activities. It is worth mentioning that the dependency management of
this dataflow and provenance support are some of the advantages of
SWfMS in relation to executing workflows using Python scripts [8]
or Spark [7].

It is far from trivial to monitor and steer performance of the resource
consumption related to domain data during the parallel execution of
workflows [8]. Users need to relate performance and resource
consumption information with domain data to plan actions. For
example, the execution of simulation programs with several
combinations of parameter values correspond to the production of
many data files, whose contents present relevant domain data to the
result analysis. Despite the challenges to find those several raw data
files, users have to develop ad-hoc programs to access and extract the
contents of these files (often binary or specific formats) to analyze
the workflow results.

Most of the parallel SWfMS have addressed the need of performance
and resource consumption monitoring facilities by adding new
components in their workflow engines, or loading data into databases
(at runtime or after the workflow execution) to be further queried by
users [9]. Approaches such as STAMPEDE [10], which has been
coupled to Pegasus, are also able to monitor the execution of
workflows in HPC environments at runtime. However, this coarse
grain information prevents users to understand the behavior of the
data derivation (i.e., dataflow path) associated to the performance and
resource consumption.

To address low level execution information, there are code-profiling
tools that support debugging and profiling of HPC scientific
applications, such as Tuning and Analysis Utilities (TAU) [11]. TAU
instruments the application code to capture performance data and
invokes ParaProf for presenting these data, for instance, using 3D
visualizations. Other tools, such as System Activity Report (SAR)1,
provide system statistics from time to time, but disconnected from
the workflow execution data. When performance and resource
consumption data are not related to fine-grained domain data (i.e.
data value within raw data files), the user may not see that a certain
data value from a huge file is presenting an anomalous behavior.

In this paper, we present a database-oriented approach that is able to
extract and represent fine-grained performance with resource
consumption data associated to workflow information, provenance
and domain-specific data all into a single database managed by a

1
 http://pubs.opengroup.org/onlinepubs/7908799/xsh/sysstat.h.html

59

WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

relational database management system at runtime. In [12] and [13],
we showed how domain and provenance data associated to execution
data are able to improve steering, debugging and workflow execution
time. However, execution data was limited to performance data
captured by SWfMS. Thus, users still had to explore TAU or other
tools to improve debugging, while having a hard time to associate
debugging tools to the enriched provenance database. Moreover, we
also contribute in this paper by developing a component for capturing
performance and resource consumption metrics that is designed on
top of TAU and SAR tools, which we named as PerfMetricEval. We
coupled PerfMetricEval to Chiron SWfMS.

This paper is organized in five sections. Section II discusses related
work. Section III describes our approach for performance and
resource consumption monitoring and the integration between
PerfMetricEval with Chiron SWfMS. We also show the evaluation of
the proposed approach in this section using the Montage workflow in
a cluster environment. Section IV concludes the paper and presents
some final remarks.

2. RELATED WORK

Related work is organized in two broad categories, systems that
monitor the execution of workflows and tools for monitoring low
level information on performance and resource consumption. There
are several SWfMS that provide monitoring and performance
analysis mechanisms within their engines. ASKALON [13], Swift/T,
Pegasus (kickstart tool [14]), Makeflow [15] and Chiron provide
monitoring mechanisms for users to follow the execution of the
workflow and to analyze its behavior. Swift/T and Pegasus provide
interfaces to follow the execution while Chiron allows for database
queries to be submitted at runtime for workflow monitoring. Swift/T
and Pegasus provide information about the amount of activations
executed, the execution time of each activation and the resources
used. Specifically, Pegasus SWfMS uses the Kickstart tool to do
performance analyses that can also be associated to provenance data.
Makeflow is a workflow approach that enables performance
monitoring and debugging on HPC environments, such as application
elapsed time. Chiron provides information about the amount of
activations, their execution times, and domain data in the same
database, but it does not provide performance metrics neither
resource consumption data. STAMPEDE [10] is a SWfMS-
independent solution that provides a common model for workflow
monitoring, however it does not consider domain-specific data. These
SWfMS solutions fail to combine domain data and workflow
execution data with performance and resource consumption
information.

WorkWays [6] and FireWorks [17] enable users to monitor the status
and the elapsed time of tasks, and correlate those data to domain-
specific data. They also display performance data related to memory
usage and I/O operations. Those performance data allow for
identifying performance bottlenecks in HPC environments, however,
they are not related to domain data.

There are other approaches that provide detailed performance and
resource consumption information for applications (i.e. disconnected
from the workflow concept). Tuning and Analysis Utilities (TAU)
[11] is a profiling tool that gathers performance information and
visualize it on interactive graphs using ParaProf. TAU gathers
performance information by instrumenting functions, methods, basic
blocks, and statements as well as event-based sampling. To use TAU
in workflows, it is required to instrument both the applications and
the workflow engine to collect performance data. Similar to TAU,

DARSHAN is a resource consumption profiler that monitors I/O
operations in applications with a non-intrusive solution.

System Activity Report (SAR) is a Linux monitor command that
informs system loads, including CPU activity, memory usage
statistics, etc. The statistics provided by SAR are fine-grained, but
this approach is disconnected from the workflow concept. To use
SAR in SWfMS, one should couple it to the workflow engine or call
it within the program that is invoked. We have used SAR to help on
other workflow applications, but associating SAR information to
provenance and domain-specific data is far from trivial. Similarly to
SAR, CCTools 2 presents a resource monitor tool for gathering
performance data during the execution of applications, which enables
visualization of performance data, such as the memory usage and %
of CPU usage. Ganglia [18] is a distributed monitoring system for
distributed infrastructures. Ganglia captures performance information
from infrastructure and also presents similar visualizations for
memory, disk usage, network statistics, number of running processes,
etc. However, Ganglia usage is similar to SAR’s and CCTools’, and
thus they all present the same difficulties to associate performance
data with provenance and domain-specific data.

Therefore, we observe that existing approaches do provide valuable
information for computer science experts to debug a code or to
understand the performance of a workflow execution or to follow a
scientific workflow execution in an HPC environment. However,
when using those existing solutions, users may miss important
opportunities to understand the behavior of data derivation based on
resource consumption information. When resource consumption data
are not related to domain data, it may be hard to find which specific
data value is presenting an anomalous memory consumption or
execution behavior and act directly on this. In data-intensive
workflows this lack becomes really an issue.

3. THE PERFMETRICEVAL COMPONENT

TAU is a tool that supports debugging and profiling of HPC
scientific applications for computer experts, like instrumenting the
application code to capture performance data and to present these
data using a graphical representation. However, users from the
application domain also need to analyze performance and resource
consumption together with the domain-specific data, as well as to be
aware of all data transformations that have occurred in the workflow
parallel execution. In this section, we show how TAU, SAR and
other tools may be integrated to the provenance database of a
SWfMS. To integrate TAU, SAR and the provenance database, we
have extended a W3C PROV-compliant provenance database schema
with performance and resource consumption information.

In this paper we consider metrics such as total elapsed time (that can
be decomposed to identify bottlenecks related to the computational
simulation; for example, communication bottleneck), CPU usage,
memory consumption and I/O, and transfer rates statistics to be
captured and stored in the provenance database. We decomposed the
total workflow elapsed time (T_wf), which corresponds to the
workflow wall-clock time, into three different metrics: useful
computing time (time needed for executing a specific activation –
T_comp), communication time (time needed to perform
communication between processes/machines – T_comm) and time
taken to access the provenance database (T_prov), thus T_wf =
T_comp + T_comm + T_prov.

2 http://ccl.cse.nd.edu/software

60

WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

For CPU usage, we consider the cumulative runtime CPU usage of
all machines involved in the execution of the workflow. The CPU
usage can be decomposed into the percentage of CPU utilization that
occurred while executing the application (usr), the percentage of
CPU utilization that occurred while executing at the system level
(sys), the percentage of time that the CPU was idle during which the
system had an outstanding disk I/O request (iowait) and the
percentage of time that the CPU was idle and the system did not have
an outstanding disk I/O request (idle).

PerfMetricEval captures performance and resource consumption
metrics using both TAU and SAR. Using TAU, we capture the
elapsed time of computing, communication, and provenance
operations. However, since TAU does not provide memory, CPU and
I/O statistics, we get those from SAR.

The integration of Chiron with PerfMetricEval is based on inserting
an invocation of PerfMetricEval component (after the execution of
each activation) to gather fine-grained performance information from
TAU and SAR, insert this data in the provenance database and then
convert it into TAU files (profiles for each computing node, e.g.
profile.0.x.0 for node x). The generated TAU files serve as input for
TAU to plot, for instance, 3D graphs using ParaProf [11].
PerfMetricEval execution flow is presented in Figure 1. In
https://github.com/hpcdb/PerfMetricEval, the component is available
for download with explanations on how to configure a database and
invoke Chiron with PerfMetricEval.

Figure 1. The PerfMetricEval execution flow

After the execution of each activation, Chiron invokes the
PerfMetricEval component that identifies the elapsed time of the
activation and invokes SAR to gather resource consumption
information related to the corresponding activation. For each metric,
it is created a new file and stored in the workflow workspace. By
creating those files, PerfMetricEval is able to parse them, extract
performance information, and asynchronously load it into the
provenance database.

After loading the performance and resource consumption data into
the same database, the PerfMetricEval component provides a feature
to query the data relevant to the user-defined parameters for
performance and resource consumption analysis by executing
standard SQL queries made by users. After querying the database and
gathering the results, the PerfMetricEval provides a component to
generate a file in TAU format to profile the execution. The TAU
visualization tool (paraprof command) graphically displays the
generated files. Since the used format is compatible with this code-
profiling tool, it enables the creation of images as bar graphs, 3D
meshes and scatter charts, all interactive and with customization
capabilities inherent to TAU. This integration of PerfMetricEval and
Chiron enables in-depth analysis graphs generated within seconds
and support decision-making by users at runtime.

We use the well-known scientific workflow Montage [19], presented
in Figure 2, from the astronomy domain as the case study of
PerfMetricEval. A basic analysis assessment is the workflow
computing time in each machine. One simple SQL query can sum the
actual computing time, the time spent with communication and the
time needed for storing provenance for each activation and group by
each used machine. Based on these queries, we register that the
experimental results refer to a workflow execution of 17 hours in a
SGI Altix ICE 8200 at NACAD/COPPE/UFRJ with four machines
2x Quad Core Intel Xeon X5355 2.66 GHz (32 cores). The Montage
execution consumed 1,585 input file images, which produced 17,503
activations that were executed in parallel.

Figure 2. Montage workflow

Analyzing Figure 3 we can also state that only Machine0 loads
provenance data in the database. It is due to the architectural
characteristics of Chiron, where only the master node is responsible
for storing provenance data in the database. This was an architectural
choice for Chiron, since the slave nodes can process new activations
without being locked by the provenance management. We can also
state that Machine0 is the one that presents the highest
communication overhead, because it integrates provenance data
storage and all machines send provenance data to it using messages,
increasing the communication cost for Machine0.

Figure 3. The computing time of each machine

Another important analysis considers activity average resource
consumption per machine. Besides, users need to relate the resource

SAR and TAU

PerfMetricEval

files extracted with
SAR and TAUProvenance

Database

PerfMetricEval

Profile files in TAU’s format

61

WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

consumption and the domain-specific data. Domain scientists
commonly have a fairly good execution time estimate for a specific
activation (based on their experience and previous executions, all
registered in the provenance database). Using Chiron +
PerfMetricEval they are able to check if the real activation execution
time or resource consumption meets the estimate. If the real
execution time is considerably higher than the estimate, they are able
to identify an anomalous behavior with the corresponding domain
files and parameter data of that particular anomaly. For example, it is
well known for Montage users that the image region of interest can
impact the performance and resource consumption of workflow
activations. Thus, users often need to analyze the behavior of a
specific subset of the input data. In this case, the image region of
interest can be defined by setting the domain attributes CRPIX1 and
CRPIX2 (which values are also loaded from data files to the
provenance database) that represent the pixels that define the region
of interest. In this small scale of Montage workflow execution with
Chiron, we observed a generation of 10,647 files. Finding which file
has the region of interest with the anomalous behavior is very error
prone when the performance data is separated from the workflow
execution data and domain data. With the data integration, one query
can retrieve the average memory consumption, the average memory
used, the average CPU usage, the average CPU usage for one
operational system, the average amount of disk blocks read/write, etc.
All these data are associated with the domain attributes CRPIX1 and
CRPIX2 and their corresponding FITS file ids. With the result of this
query, the domain user can monitor the performance of activations
for building the mosaic (Create Mosaic), limited to only one specific
image region to check if there is an anomaly in the execution or on
the data file contents. The data extracted from these queries allowed
us to generate several TAU graphs. In Figure 4 we see the CPU usage
per machine when executing activations where 100 < CRPIX1 < 150
and 50 < CRPIX2 < 80. Since Chiron considers the CPU usage on its
scheduling algorithm, we can state that there is a load balancing
among the machines from the CPU usage perspective, i.e., all
machines present an equivalent CPU use, considering the metrics idle
(in light blue), iowait (dark blue), sys (green), and user (red).
However, the same behavior is not found when we consider both
memory and disk usage statistics.

Figure 4. The CPU statistics for activations executed

4. CONCLUSIONS AND FINAL REMARKS

Performing analytical queries in workflows in distributed
environments is an open, yet important, issue. It is fundamental to
follow the status of the workflow execution, especially when they
execute for weeks or even months. To be aware of the bottlenecks,
resource consumption, and other performance issues is essential.

Most SWfMS already provide some level of monitoring capabilities.
However, their monitoring mechanisms are limited to following the
amount of activations executed, the volume of data transferred, the
average execution time of activities, etc. In this paper, we provided
an important opportunity to understand the behavior of the data
derivation based on the performance and resource consumption
metrics. When performance data and resource consumption data are
not related to domain data, users may not see that a certain data value
is presenting an anomalous behavior.

This paper proposes an approach that integrates provenance data,
domain data, performance information and resource consumption
information in the same integrated database. To achieve this, we
introduce PerfMetricEval, a component for capturing performance
and resource consumption data using specialized tools such as SAR
and TAU. We integrated PerfMetricEval to Chiron SWMS. We
evaluated the present approach by monitoring the Montage workflow
and performing analytical queries that mix different types of data,
thus leaving room for domain specialists and code developers to fine
tune activities such as investigating input and output data for that
particular activity execution when its execution is taking too long.

Using the Montage workflow, we also noticed that the overhead is
negligible when compared to the total time needed to execute the
workflow without PerfMetricEval. In this experiment, it was around
0.6% of the total workflow execution. Although the results are
promising, we still have to evaluate Chiron + PerfMetricEval in large
scale scientific experiments. Despite our component has been only
integrated to Chiron SWfMS, we intend to adapt/integrate it to other
SWfMS in the near future. The only restriction is that the SWfMS
needs to store provenance in a database, like Pegasus and Swift/T do.

5. ACKNOWLEDGMENTS

Authors would like to thank CNPq, FAPERJ, HPC4E (EU H2020
Programme and MCTI/RNP-Brazil, grant no. 689772), and Intel for
partially funding this work. This research made use of Montage,
which is funded by the National Science Foundation (NSF).
Leonardo Neves is currently at Language Technologies Institute,
Carnegie Mellon University, Pittsburgh, PA, USA.

6. REFERENCES

[1] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields,
Workflows for e-Science: Scientific Workflows for Grids, 1st ed.
Springer, 2007.

[2] E. Walker and C. Guiang, “Challenges in executing large
parameter sweep studies across widely distributed computing
environments,” in Workshop on Challenges of large
applications in distributed environments, Monterey, California,
USA, 2007, pp. 11–18.

[3] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E.
Lusk, and I. T. Foster, “Swift/T: Large-Scale Application
Composition via Distributed-Memory Dataflow Processing,” in
CCGrid, 2013, pp. 95–102.

[4] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. Ferreira, M. Livny, and K.
Wenger, “Pegasus, a workflow management system for science
automation,” FGCS, vol. 46, pp. 17–35, 2015.

[5] E. Ogasawara, J. Dias, V. Silva, F. Chirigati, D. Oliveira, F.
Porto, P. Valduriez, and M. Mattoso, “Chiron: A Parallel

62

WORKS 2016 Workshop, Workflows in Support of Large-Scale Science, November 2016, Salt Lake City, Utah

Engine for Algebraic Scientific Workflows,” CCPE, vol. 25, no.
16, pp. 2327–2341, 2013.

[6] H. A. Nguyen, D. Abramson, T. Kipouros, A. Janke, and G.
Galloway, “WorkWays: interacting with scientific workflows,”
CCPE, vol. 27, no. 16, pp. 4377–4397, Nov. 2015.

[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I.
Stoica, “Spark: cluster computing with working sets,” in
USENIX conference on Hot topics in cloud computing, Boston,
2010, pp. 10–17.

[8] B. Balis, M. Bubak, and B. Łabno, “Monitoring of Grid
scientific workflows,” Scientific Programming, vol. 16, no. 2–3,
pp. 205–216, 2008.

[9] M. Mattoso, J. Dias, K. A. C. S. Ocaña, E. Ogasawara, F. Costa,
F. Horta, V. Silva, and D. de Oliveira, “Dynamic steering of
HPC scientific workflows: A survey,” FGCS, vol. 46, pp. 100–
113, May 2015.

[10] D. Gunter, E. Deelman, T. Samak, C. H. Brooks, M. Goode, G.
Juve, G. Mehta, P. Moraes, F. Silva, M. Swany, and K. Vahi,
“Online workflow management and performance analysis with
Stampede,” in CNSM, 2011, pp. 1–10.

[11] S. S. Shende, “The TAU Parallel Performance System,”
International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 287–311, May 2006.

[12] V. Silva, D. de Oliveira, P. Valduriez, and M. Mattoso,
“Analyzing related raw data files through dataflows,” CCPE,
vol. 28, no. 8, pp. 2528–2545, 2016.

[13] J. Dias, G. Guerra, F. Rochinha, A. L. G. A. Coutinho, P.
Valduriez, and M. Mattoso, “Data-centric iteration in dynamic
workflows,” FGCS, vol. 46, pp. 114–126, 2015.

[14] R. Prodan, S. Ostermann, and K. Plankensteiner, “Performance
analysis of grid applications in the ASKALON environment,” in
2009 10th IEEE/ACM International Conference on Grid
Computing, 2009, pp. 97–104.

[15] J. S. Vockler, G. Mehta, Y. Zhao, E. Deelman, and M. Wilde,
“Kickstarting remote applications,” in International Workshop
on Grid Computing Environments, 2007.

[16] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: a
portable abstraction for data intensive computing on clusters,
clouds, and grids,” in Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and
Technologies, 2012, p. 1.

[17] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,
M. Brafman, G. Petretto, G.-M. Rignane, G. Hautier, D. Gunter,
and K. A. Persson, “FireWorks: a dynamic workflow system
designed for high-throughput applications,” CCPE, vol. 27, no.
17, pp. 5037–5059, 2015.

[18] Monitoring with Ganglia, 1 edition. Sebastopol, CA: O’Reilly
Media, 2012.

[19] J.C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity,
E. Deelman, C. Kesselman, G. Singh, M.-H. Su, T. A. Prince,
and R. Williams, “Montage: a grid portal and software toolkit
for science-grade astronomical image mosaicking,” IJCSE, vol.
4, no. 2, pp. 73–87, 2009.

63

