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Abstract. The area of commonsense reasoning aims at the creation
of systems able to simulate the human way of rational thinking. This
paper describes the use of automated reasoning methods for tackling
commonsense reasoning benchmarks. For this we use a benchmark suite
introduced in the literature. Our goal is to use general purpose back-
ground knowledge without domain specific hand coding of axioms, such
that the approach and the result can be used as well for other domains
in mathematics and science. We furthermore report about a preliminary
experiment for finding most plausible results. 1

1 Introduction

Commonsense reasoning aims at creating systems able to simulate the human
way of rational thinking. This area is characterized by ambiguity and uncer-
tainty since it deals with problems humans are confronted with in everyday life.
Humans performing reasoning in everyday life do not necessarily obey the rules
of classical logic. This causes humans to be susceptible to logical fallacies but
on the other hand to draw useful conclusions automated reasoning systems are
incapable of. Humans naturally reason in the presence of incomplete and in-
consistent knowledge, are able to reason in the presence of norms as well as
conflicting norms and are able to quickly reconsider their conclusions when be-
ing confronted with additional information. The versatility of human reasoning
illustrates that any attempt to model the way humans perform commonsense
reasoning has to use a combination of many different techniques. In this paper,
we describe the progress we made so far in creating a system able to tackle com-
monsense reasoning benchmarks. The system uses techniques from automated
theorem proving but also relies on natural language processing, large ontologies
as background knowledge and machine learning.

In Section 2 several benchmarks for the area of commonsense reasoning are
introduced. Section 3 describes which techniques will be combined in order to cre-
ate a system able to perform commonsense reasoning. Challenges that have to be
faced when including large ontologies as background knowledge are described in
Section 4. In order to find the more plausible answer to the benchmark problems,
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1: My body cast a shadow over the grass. What was the CAUSE of this?

1. The sun was rising.

2. The grass was cut.

13: The pond froze over for the winter. What happened as a RESULT?

1. People skated on the pond.

2. People brought boats to the pond.

Fig. 1: Example problems 1 and 13 from the COPA challenge.

machine learning techniques come to use. Section 5 presents first experimental
results from this area.

2 Benchmarks for Commonsense Reasoning

For a long time, no benchmarks in the field of commonsense reasoning were avail-
able and most approaches were tested only using small toy examples. Recently,
this problem was remedied with the proposal of various sets of benchmark prob-
lems. There is the Winograd Schema Challenge [12] whose problems have a clear
focus on natural language processing whereas background knowledge has an infe-
rior standing. Another example is the Choice Of Plausible Alternatives (COPA)
challenge2 [20] consisting of 1000 problems equally split into a development and
a test set. Each problem consists of a natural language sentence describing a
scenario and a question. In addition to that two answers are provided in natural
language. The task is to determine which one of these alternatives is the most
plausible one. Figure 1 presents two problems from this benchmark suite. Like
in the two presented examples, the questions always ask either for the cause or
the result of an observation.

Even though for the COPA challenge capabilities for handling natural lan-
guage are necessary, background knowledge and commonsense reasoning skills
are crucial to tackle these problems as well, making them very interesting to
evaluate cognitive systems. All existing systems tackling the COPA benchmarks
focus on linguistic and statistical approaches by calculating correlational statis-
tics on words.

Another set of benchmarks is the Triangle-COPA challenge3 [14]. This is a
suite of one hundred logic-based commonsense reasoning problems which was
developed specifically for the purpose of advancing new logical reasoning ap-
proaches. The structure of the problems is the same as in the COPA Challenge
however the problems in the Triangle-COPA challenge are not only given in
natural language but also in first-order logic.

2 Available at http://people.ict.usc.edu/∼gordon/downloads/COPA-questions-
dev.txt.

3 Available at https://github.com/asgordon/TriangleCOPA/.
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Fig. 2: Gathering background knowledge for a benchmark problem. The starting
formulae are generated by transforming the natural language problems of COPA
into first-order logic using the Boxer system.

In this paper we focus on the COPA challenge. However most parts of our
approach can be used for the problems of the Triangle-COPA challenge as well.

3 Combination of Techniques

As described afore, the creation of a system for commonsense reasoning requires
the combination of techniques from different areas [6].

Even gathering appropriate background knowledge for a specific benchmark
problems requires the use of different techniques. Figure 2 depicts the different
steps necessary to gather suitable background knowledge for a given COPA
problem. When combining an example problem with background knowledge,
several problems have to be solved:

1. If the problem is given in natural language it has to be transformed into a
logical representation.

2. The predicate symbols used in the formalization of the example are unlikely
to coincide with the predicate symbols used in the background knowledge.

3. The background knowledge is too large to be considered as a whole.

The first problem can be solved using the Boxer [2] system which is able to
transform natural language into first-order logic formulae. We assume that this
is done before the techniques given in Figure 2 are applied. Please note that this
step is not necessary when benchmarks given in first-order logic are considered,
like it is the case for the Triangle-COPA challenge.

We address the second problem by using WordNet [15] to find synonyms and
hypernyms of the predicate symbols used in the formalization of the example.
Note that the formalization of the example consists both of the formulae de-
scribing the situation as well as the formulae for the two alternatives. In the
next step, predicate symbols used in OpenCyc [11], which are similar to these
synonyms and hypernyms are determined. With the help of this information, a
connecting set of formulae is created. In this step, it is also necessary to adjust
the arity of predicate symbols which is likely to differ since Boxer only creates
formulae with unary or binary predicates.

The third problem is addressed using selection methods. For this, all predicate
symbols occurring in the formalization of the example and in the connecting set
of formulae are used. As selection methods, SInE as well as k-NN as they are
implemented in the E.T. metasystem [10] come to use. The selected axioms are
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Fig. 3: Addressing a problem in the result category: Using the selected background
knowledge together with Hyper and machine learning.

combined with the connecting set of formulae and the resulting set of formulae
constitutes the background knowledge for the example at hand.

The COPA challenge contains two different categories of problems. In the
first category, a sentence describing an observation is given and it is asked for
the cause of this observation. Probem no. 1 given in Figure 1 is an example for a
question in this category. In this case, the task is to determine which of the two
provided alternatives is more likely to be the cause of the observation described
in the sentence. We call this category the result category.

In the other category a sentence describing an observation is given and it
is asked about the result of this observation. In this case the task is to decide
which of the two alternatives is more likely to result from the situation described
in the sentence. We call this second category the cause category . Even thought
the category does not influence the way the background knowledge is selected, it
is necessary to use different approaches for the two categories when combining
this background knowledge with automated reasoning methods.

Figure 3 depicts how to tackle a problem from the result category in or-
der to determine the more plausible alternative result. Please note that the
selected background knowledge does not only consist of axioms stemming from
the knowledge base used as a source for background knowledge but also contains
the connecting formulae which were created as depicted in Figure 2. First, this
background knowledge is combined with the logical formulae representing the
description of the benchmark problem. The resulting set of formulae serves as
input for a theorem prover, in our case the Hyper prover. Hyper constructs a
model for the set of formulae which, together with the logical representation of
the two alternatives, is used by machine learning techniques to determine which
of the two alternatives is more plausible.

When dealing with problems in the cause category, we have to solve two
reasoning problems. Figure 4 depicts the workflow for this category. In the first
step, the background knowledge is combined with the logical formulae represent-
ing the first alternative. The resulting set of formulae serves as an input for the
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Fig. 4: Addressing a problem in the cause category: Using the selected background
knowledge to call Hyper for both alternatives separately and use machine learn-
ing to choose the more plausible alternative.

Hyper theorem prover, which constructs a model M1. In the second step, the
background knowledge is combined with the logical formulae representing the
second alternative and the resulting set is passed to Hyper which constructs a
model M2. Then both models are inspected in order to determine which of the
two models is closer to the formulae representing the description of the problem.
This inspection of the models is still future work. We are planning to accomplish
this with the help of machine learning.

4 Lessons Learnt so far

We created a prototypical implementation of the workflow depicted in the pre-
vious Section. Our implementation is able to take a problem from the COPA
challenge, selects appropriate background knowledge, generates a connecting set
of formulae and feeds everything into Hyper. The machine learning component
inspecting the generated model is in an experimental phase and is addressed in
Section 5 below.

4.1 Issues with Inconsistencies

We performed a very preliminary experiment to test this workflow. From the
COPA benchmark set we selected 100 problems. Feeding these examples into
the workflow resulted finally in 100 prove tasks for Hyper and we learned a
lot — about problems which have to be solved. Hyper found 37 proofs and 57
models; the rest are time-outs. One problem we encountered is that some con-
tradictions leading to a proof are introduced by selecting too general hypernyms
from WordNet. E.g. the problem description of example 1 given in Figure 1 is
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transformed into the following first-order logic formula by Boxer:

∃A(ngrassC(A) ∧ ∃B,C,D(rover(B,A) ∧ rpatient(B,C) ∧ ragent(B,D)

∧ vcast(B) ∧ nshadow(C) ∧ nbody(D) ∧ rof(D,C) ∧ nperson(C)))).

From WordNet the system extracted the information, that ‘individual’ is a
hypernym of ‘shadow’ and ‘collection’ is a hypernym of ‘person’ leading to the
two connecting formulae:

∀X(nshadow(X) → individual(X))

∀X(nperson(X) → collection(X)).

The selection from OpenCyc resulted among others in the axiom

∀X¬(collection(X) ∧ individual(X)).

These formulae together lead to a closed tableau —a proof of unsatisfiability—
because of a contradiction between a shadow which stems from a person, whereas
WordNet gives that a shadow is an individual, a person is a collection and to-
gether with the Cyc axiom we get the contradiction. This has nothing to do with
one of the alternatives that the sun was rising or the grass was cut.

To remedy this problem, we use a tool called KNEWS [1] 4 to disambiguate
Boxer’s output. This tool calls the Babelfy5 [16] service to link entities to Ba-
belNet6 [17]. Babelfy is a multilingual, graph-based approach to entity linking
and word sense disambiguation. BabelNet is a multilingual encyclopedic dictio-
nary and a semantic network. Since the BabelNet entries are linked to Word-
net synsets, this tool provides the suitable Wordnet synset for predicate names
generated by Boxer. In a second run of the experiment we only used the disam-
biguated results to construct a bridging set of formulae and to select background
knowledge. It turned out that the selected background knowledge is much more
focused on the problem under consideration. Furthermore, only one of the 100
COPA problems we tested, was inconsistent. So we solved this first problem by
disambiguating Boxer’s output.

The one contradiction which still occurred in the second experiments stems
directly from inconsistencies in the knowledge base used as source for background
knowledge (in our case OpenCyc). E.g. the two formulae

∀Xspeed(fqpquantityfnspeed(X))

∀X¬speed(X)

were selected immediately leading to a contradiction which again does not have
to do anything with the two alternatives about the sun rising or the grass be-
ing cut. This illustrates that we have to find a way to deal with inconsistent
background knowledge.

4 Many thanks to Valerio Basile for being so kind to share his tool for disambiguation.
The tool is available at https://github.com/valeriobasile/learningbyreading

5 Available at: http://babelfy.org
6 Available at: http://babelnet.org
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4.2 Insufficient Background Knowledge

Another challenge when combining problems with background knowledge is the
lack of appropriate background knowledge. Consider the example number 13
from the COPA challenge which we presented in Figure 1. The background
knowledge selected for this example contains formulae on skating like for exam-
ple:

∀X(skateboard(X) → device usercontrolled(X))

and even on iceskating

∀X(iceskate(X) → isa(X, c iceskate)).

However the information, that freezing of a pond in winter results in a surface
suitable for skating, is missing. This explains, why not enough inferences were
performed and therefore the constructed model does not contain information on
ice skating.

In general there are two possible explanations for the lack of inferences:

1. The way the bridging between the vocabulary used in the benchmark prob-
lem and the vocabulary used in OpenCyc is still very prototypical. We heav-
ily rely on Boxer’s output to construct the connecting formulae. However
sometimes Boxer marks adjectives as nouns and vice versa which misguides
the search for synonyms and hypernyms in WordNet. We are planning to
improve this by updating to the most recent Boxer version.

2. Currently, we are only using OpenCyc as a source of background knowledge.
However this is not sufficient. We are planning to remedy this situation by
including different other sources of background knowledge like ConceptNet
[13], the Suggested Upper Merged Ontology (SUMO) [18, 19], the Human
Emotion Ontology (HEO) [7] and the Emotion Ontology (EMO) [9].
ConceptNet is a semantic network containing large amounts of commonsense
knowledge. This graph consists of labeled nodes and edges. The nodes are
also called concepts and represent words or word senses. The edges are re-
lations between these concepts and represent common-sense knowledge that
connect the concepts. Relating to the COPA problem described afore, Con-
ceptNet contains very helpful knowledge like the fact that in winter one likes
to skate.

winter–CausesDesire → skate

SUMO is a very large upper ontology containing knowledge which could be
helpful as background knowledge. For example SUMO contains the knowl-
edge, that icing is a subclass of freezing which could be helpful for our
benchmark problem. One very interesting point is that there is a mapping
from SUMO to WordNet synsets. This will be very helpful during the cre-
ation of formulae bridging from the vocabulary of the benchmark problem
and the synonyms and hypernyms to the vocabulary used in SUMO.
Due the fact that the structure of problems of the Triangle-COPA challenge
is very similar to the structure of the problems of the COPA challenge,
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our approach can be used for the Triangle-COPA challenge without much
changes. Since the problems given in the Triangle-COPA challenge consist of
descriptions of small episodes on interpersonal relationships, the HEO and
EMO ontology, both containing information on human emotions, provide
useful background knowledge.

5 Ranking of Proofs and Proof Attempts

When using the automated reasoning system Hyper within the Deep Question
Answering system LogAnswer ([3]) we already had to tackle the problem that
the prover nearly never found a complete proof of the given problem. Instead
we had to delete some subgoals of the proof-task which could not be solved
within a given time-bound — we called this relaxation. In order to find a best
answer of the system we had to compare several proofs, or rather proof attempts,
because of the relaxations. For this ranking we used machine learning to find
the best proof rsp. answer. We are planning to use a similar approach for the
afore-mentioned benchmarks.

Like depicted in Figure 4, for the cause category two models are generated.
Each of these models corresponds to knowledge which was derived using one of
the two alternatives. In future work we are planning to use these two models
together with the formulae representing the description of the situation in order
to find out which alternative is the more plausible one. For this we are planning
to use machine learning techniques to determine if the formulae describing the
situation is rather a logical consequence of the first or the second model. Up
till now, we focused our research on the result category which is why we cannot
provide further results for the cause category.

In the sequel we describe how to use machine learning techniques for problems
of the result category and give results of a first experiment. The situation is such
that we have a problem description P , in our COPA example above the logical
representation of ‘The pond froze over for the winter.’ together with two possible
answers E1 and E2.

In the workflow described until now, we constructed a tableau for P ∪ BG,
where BG is the background knowledge as discussed in Section 3. This tableau
may contain open and closed branches. The closed branches are parts of a proof
and the open branches either are a model (and hence no closed tableau exists) or
they are only open because of a time-out for this branch. With the help of this
tableau, we try to decide which of the two alternatives E1 and E2 is ‘closer’ to a
logical consequence of P ∪BG. In other words we try to decide if the constructed
tableau can be rather closed by adding alternative E1 or by adding alternative
E2.

In the LogAnswer system we gave the two answers to humans to decide
which is closer to a logical consequence and we then used this information to
train a machine learning system. For the scenario of the COPA and Triangle-
COPA benchmarks we designed a preliminary study, which aims at using the
information about the tableau created for P ∪ BG together with information
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from formulae of the problem and the background P ∪BG to generate examples
for training.

We restricted our preliminary study to propositional logic and analyzed
tableaux created by the Hyper prover for randomly created sets of clauses. For
each pair of propositional logic variables p and q occurring in a clause set, we
were interested in the question if p or q is ‘closer’ to a logical consequence. We
reduced this question to a classification problem: for each pair of variables p
and q, the task is to learn if p < q, p > q or p = q, where p < q means, that
q is ‘closer’ to a logical consequence than p and p = q means that p’s and q’s
‘closeness’ to a logical consequence is equal. Consider the following set of clauses:

p0

p4 → p2 ∨ p3 ∨ p7

p0 → p4

p3 ∧ p5 → p6

p3 ∧ p5 ∧ p8 → p1

p2 → ⊥

Clearly, p0 and p4 are logical consequences of this clause set. Therefore p0 = p4
and p0 > q for all other variables q. On the other hand, from p2 it is possible to
deduce a contradiction, which leads to p2 < q for all other variables q. Comparing
p6 and p1 is a little bit more complicated. Neither of these variables is a logical
consequence. However assuming p3 and p5 to be true, allows to deduce p6 but
not p1. In oder to deduce p1 it is necessary to assume not only p3 and p5 to be
true but also p8. Therefore p1 < p6.

To use machine learning techniques to classify these kind of examples, we
represent each pair of variables (p, q) as an instance of the trainings examples
and we provide the information, which of the three relations <,>,= is correct for
p and q. Each of these instances contains 22 attributes. Some of these attributes
represent information on the clause set like the proportion of clauses with p or
q in the head as well as rudimentary dependencies between the variables in the
clause set. In addition to that, we determine attributes representing information
on the hypertableau for the set of clauses like the number of occurrences of
p and q in open branches. Furthermore, we determine an attribute mimicking
some aspects of abduction by estimating the number of variables which have to
be assumed to be true in order to deduce p or q respectively. This allows us to
perform comparisons like the one between p1 and p6 in the above example. Of
course we also take into account whether one of the two variables is indeed a
logical consequence.

For the first experiments, 1,000 sets of clauses each consisting of about 10
clauses and containing about 12 variables were randomly generated. These sets of
clauses were analyzed and used to create a training set. For each pair of variables
occurring in one of the clause sets, an instance was generated. All in all this led to
123,246 examples for training purposes. In these examples, the classes < and >
each consists of 57,983 examples and the class = of 7,280 examples. We used the
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< > =
(predicted) (predicted) (predicted)

< (actual) 5,595 78 33
> (actual) 90 5,589 27
= (actual) 9 5 772

Table 1: Confusion matrix for classifying the test set with the learnt decision
tree. The numbers occurring in the diagonal represent all correctly classified
instances, whereas the other cells list incorrectly classified instances.

J48 tree classifier implemented in the Weka [8] system to construct a decision
tree for the training set. This classifier implements the C4.5 algorithm. The
result was a decision tree for our training examples. We tested this decision tree
with a test set which was generated from 100 randomly generated sets of clauses
different from the clause sets used for the training examples. This resulted in a
test set consisting of 12,198 instances. The learnt decision tree correctly classified
98.02 % instances of our test set. Table 1 provides information on correctly and
incorrectly classified instances of the different classes.

We are aware that automatically classifying the test set might introduce
errors into the test set and therefore tampers the results. Since it is very labor-
intensive to manually generate test data, we only created test instances from two
clause sets manually. For this much smaller test set, depending on the classifier
used, we reached percentages of correctly classified instances of up to 80 %.

In the next step, we are planning to expand our experiments to clause sets
P ∪ BG and alternatives E1 and E2 given in first-order logic. When creating
the instances of the trainings examples for first-order logic, attributes different
from the ones in the previous experiment have to be considered. For example it
is not sufficient to have an attribute indicating the proportion of open branches
containing a certain subgoal of E1. Since both the open branch and the subgoal
of E1 are given in first-order logic, unification has to be taken into account.
In this case the proportion of open branches containing an atom which can
be unified with one of the subgoals of E1 constitutes an interesting attribute.
Another interesting attribute would take relaxation into account: for an open
branch not containing any atom which can be unified with one of the subgoals
of E1, it is interesting if this branch contains an atom which can be unified with
a generalization of one of the subgoals in E1. This attribute allows us to mimic
the relaxation like it is used in the LogAnswer system.

6 Conclusion

We presented an approach to tackle benchmarks for commonsense reasoning.
This approach relies on large existing ontologies as a source for background
knowledge and combines different techniques like theorem proving and machine
learning with tools for natural language processing. With the help of a proto-
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typical implementation of our approach, we conducted some experiments with
problems from the COPA challenge. We presented our experiences made in these
experiments together with possible solutions for the problems occurring in the
examples considered.

Future work aims at the integration of additional sources of background
knowledge as well as improving the bridging between the vocabulary used in the
benchmarks and the background knowledge.
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