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Abstract. This work describes a heterogeneous sensor platform for elderly peo-

ple useful in Ambient Assisted Living context for sleep disorder evaluation. 

The platform integrates hardware (ambient and wearable sensors), as well as 

software components (data simulation tool, reasoning). Three sensors with dif-

ferent sensing principles are considered: a Time-Of-Flight camera, a MEMS 

wearable wireless accelerometer and an Ultra-Wideband radar. The inputs of 

the platform are the postural information, even simulated, in common to all in-

volved sensors (i.e., Standing , Bending, Sitting, Lying down). Since they are 

extensively used both for analysis of Activities of Daily Living and human be-

haviour understanding. A posture simulator, calibrated on real experiments per-

formed by each sensor involved in the platform, has been implemented in order 

to compensate the lack of wide datasets containing long-term data. Moreover, 

the platform integrates a reasoning layer for automatic sleep disorder evaluation 

by using an unsupervised learning technique. The effectiveness of the platform 

was demonstrated by preliminary results, exhibiting high accuracy in sleep dis-

order evaluation using the three aforementioned sensors. 

Keywords: sleep disorder evaluation; ambient sensor technologies; wearable 

sensor technologies; ambient assisted living; time-of-flight 3D sensor; ultra-

wideband radar sensor; wearable accelerometer ; unsupervised learning 

1 Introduction 

The demography distribution of the developed world is set to change dramatically 

over the coming decades. The world’s older population continues to grow at an un-

precedented rate. Today, 8.5 % of people worldwide (617 million) are aged 65 and 

over. According to a new report [1], this percentage is projected to jump to nearly 17 

% of the world’s population by 2050 (1.6 billion). This trend of population ageing is 

as a result of reduction in fertility combined with increases in life expectancy. Alt-
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hough the latter issue is a positive situation, a number of related effects require con-

sideration. In this context, the need to explore new solutions is considered essential. 

In the last years, two priorities in research are investigated: a) to establish novel 

and effective methods for assessment of activity levels at home, and b) to establish 

appropriate methods for the long term monitoring and management of chronic condi-

tions with the purpose of alleviating the increased strain on healthcare resources. The 

use of sensor technologies within intelligent environments (IEs) is one such approach 

which has the potential to facilitate these needs. IEs can provide objective data de-

scribing behaviour and health status, facilitating the development of novel activity 

recognition, assisted living, or healthcare monitoring solutions. Moreover, the current 

technologies, such as smart sensors, allows to keep the privacy and let the end-users 

to live in their own homes reducing the need for assistance from medical staff or 

caregiver. Integrated platforms of heterogeneous smart sensors are becoming more 

and more a key technology player in Ambient Assisted Living (AAL) scenarios. 

Moreover, advancement in sensor technologies give us the opportunity to recognize 

ADLs [2] for a long-period of time. Continuous monitoring of ADLs is helpful for 

detection of lifestyle disorders. Irregular human sleep patterns, for example, may 

cause health problems, such as disorders of psychological or neurological nature. 

Consequently, early detection of sleep anomalies can be useful for the prevention of 

such problems. In literature many approaches have been proposed for only monitoring 

human behaviour, reporting information about user’s health and life patterns [3,4]. On 

the other hand, in [5-7] some methodologies for the detection of anomalies in behav-

iour pattern are described, whereas in [8] is presented a platform for sleep monitoring 

and bedsores prevention. In the above systems set of features obtained from raw data 

provided by specific sensor technology are considered (e.g. pressure sensor, motion 

sensor, IR sensor, wearable sensor...). In these works, using probabilistic approach, 

the detection of sleep anomalies is reached with a good level of accuracy. However, 

these systems have some limitations. In fact, they do not have the ability to manage 

long-term data and in some circumstances a training phase is required. 

This paper reports the description of a heterogeneous platform for human sleep 

disorders evaluation within AAL context. The input of the system is constituted by 

sequences of human postures generated using an activity simulation approach specifi-

cally designed and implemented within this work. The simulator provides sequences 

of postures according to a calibrated simulation based on real-life experiments con-

ducted with three different sensors: a Time-Of-Flight (TOF) sensor, a Ultra-wideband 

(UWB) radar and a ST MEMS three-axial accelerometer (ACC). The use of postures 

is motivated by their extensive use in ADLs modelling [9], besides that ADL se-

quences allow to model human behaviour. The main contribution of this work is re-

lated to the design and development of a platform for automatic detection of anoma-

lies in sleep patterns by using an unsupervised methodology. It is important to high-

light the platform capability in providing a technology invariant interface abstract 

from any specific sensing technology. The preliminary results show the ability of the 

presented approach to detect with good accuracy sleep/wake phases for subsequent 

medical evaluation of sleep disorders. 



2 Material and Methods 

The platform architecture is organized, as shown in Figure 1, in three main layers: 

detection layer, simulation layer, reasoning layer.  

The detection layer provides sequences of human postures detected by three differ-

ent sensors: a Time-Of-Flight (TOF) sensor, a Ultra-wideband (UWB) radar and a ST 

MEMS triaxial accelerometer (ACC). The first two (TOF, UWB) approaches refer to 

ambient solutions, whereas the last one falls into wearable ones.  

In the simulation layer, long-term posture sequences are generated according to a 

calibrated simulation, based on real-life experiments and conducted with the three 

aforementioned sensors. 

The reasoning layer offers an automatic tool for the detection of anomalies in CR 

by using an unsupervised methodology.  

Fig. 1. Implemented logical modules overview. 

2.1 Detection Layer 

Human postures can be detected by using several sensing approaches implemented 

with either ambient or wearable solutions. In this paper, three different kind of sens-

ing approaches are taken into account: (1) TOF 3D vision, (2) UWB radar and (3) 

ACC. All these posture detection approaches are differently characterized in terms of 

invasiveness, accuracy, robustness to object occlusion and cluttering and data rich-

ness, as summarized in Table 1.  

For the assessment of the sensor’s accuracy with respect to the posture recognition 

task, a common experimental framework has been used, in which eighteen healthy 

subjects (9 males and 9 females, age 38±6 years, height 175±20 cm, weight 75±22 

kg) have been involved. The participants performed typical ADLs such as household 

tasks, meal preparation, feeding, sitting and watching TV, relaxing and sleeping. 



Table 1. . Comparison of Three Posture Detectors 

Characteristic TOF UWB ACC 
Invasiveness Low Very Low Medium 

Accuracy Very High Medium Medium 

Robustness to object occlusion and 

cluttering 

Low High Very High 

Data richness Very High Medium Medium 

During such experimental sessions, data were collected simultaneously by a TOF 

sensor, a UWB radar and a MEMS accelerometer worn by participants. For all ap-

proaches, the detection algorithms ran on a fan-less embedded-PC equipped with 

Intel® Atom™ processor. The following subsections describe each sensor in detail 

with specific focus on posture detection approach used. 

Time-Of-Flight (TOF) sensor. This detector adopts the MESA SR-4000 [10] shown 

in Figure 2, a state-of-the-art TOF sensor having compact (65×65×68 mm) dimensions, 

noiseless (0 dB) working, QCIF (176×144 pixels) resolution, long (10 m) distance 

range, wide (69°×56°) field-of-view, and low power (9.6 W) consumption. The TOF-

based posture recognition is inspired by the work of Diraco et al. [11]. At early pro-

cessing level, the computational framework includes a self-calibration procedure to 

allow for easy installation of the TOF sensor, without requiring neither calibration 

objects nor user intervention. The self-calibration makes use of the popular RANSAC-

based plane detector to identify the position of the floor, which is used to estimate the 

extrinsic calibration parameters. Moving foreground objects are extracted from cali-

brated range data by modelling the background with a mixture of Gaussian and seg-

menting the foreground with a Bayesian classifier. Finally, people are detected and 

tracked using the CONDENSATION (Conditional Density Propagation) algorithm. 

The remaining part of the computational framework focuses on feature extraction and 

posture classification. The intrinsic topology of a generic shape, i.e. a human body scan 

captured via TOF sensor, is graphically encoded by using the concept of Discrete Reeb 

Graph (DRG) proposed by Xiao et al. [12]. To extract the DRG, the Geodesic distance 

is used as invariant Morse function [13] since it is invariant not only to translation, 

scale and rotation but also to isometric transformations ensuring high accuracy in body 

parts representation under postural changes. The geodesic distance map is computed by 

using a two-step procedure. Firstly, a connected mesh, shown in Figure 3.a, is built on 

the 3D point cloud by using the nearest-neighbour rule. Secondly, given a starting 

point M (i.e. the body’s centroid) the geodesic distance between M and each other 

mesh node is computed as the shortest path on mesh by using an efficient implementa-

tion of Dijkstra’s algorithm suggested by Verroust and Lazarus [14]. The computed 

geodesic map is shown in Figure 3.b in which false colours represent geodesic distanc-

es.  



Fig. 2. MESA SR-4000 Time-Of-Flight sensor. 

Fig. 3. TOF-based features. (a) Mesh; (b) Geodesic map; (c) DRG-based features 

The DRG is extracted by subdividing the geodesic map in regular level-sets and 

connecting them on the basis of an adjacency criterion as described by Diraco et al. 

[10] that suggest also a methodology to handle self-occlusions (due to overlapping 

body parts). The DRG-based features are shown in Figure 3.c and represented by the 

topological descriptor that includes DRG nodes {Ci,Cj,Ck} and related angles {θijk}. A 

multiclass formulation of the SVM (Support Vector Machine) classifier [15] based on 

the one-against-one strategy is adopted to classify (St, Be, Si, Ly) postures. Since in-

teresting results have been reported with the Radial Basis Function (RBF) kernel for 

posture recognition [16], such a kernel is used and associated parameters, namely regu-

larization constant K and the kernel argument γ, are tuned according to a global grid 

search strategy. The classification performance, estimated using the datasets previously 

discussed, are reported in Table 2 in terms of confusion matrix. 



Table 2. TOF Confusion Matrix 

Predicted postures (%) 

St Be Si Ly 

A
c
tu

a
l 

p
o
st

u
re

s 
(%

) 

St 99 1 0 0 

Be 0 97 3 0 

Si 3 0 97 0 

Ly 0 2 0 98 

Ultra-wideband (UWB) radar sensor. This detector adopts the PulsON 410 manu-

factured by Time Domain Corporation [17] shown in Figure 4, a state-of-the-art UWB 

radar sensor, having a good wall penetration capability (2 GHz bandwidth), RF trans-

missions from 3.1 GHz to 5.3 GHz centered at 4.3 GHz, compact (76×80×16 mm) 

board dimensions, and it is able to operate in both mono- and multi-static configura-

tions. UWB radar sensors find many applications ranging from vital signs detection to 

target localization and tracking, not only in contactless modality but also through the 

walls. In this study, the PulsON 410 sensor is used for recognition of human postures 

regardless to the presence of large occluding objects (e.g., pieces of furniture, walls, 

etc.) interposed between target and sensor. The computational framework includes 

three main stages: (1) the preprocessing for clutter reduction/removal, (2) the feature 

extraction, and (3) the posture classification. At the preprocessing stage, after band-

pass filtering (Butterworth IIR 16
th
 order) with a transition band of 3.1-5.3 GHz for 

filtering out frequencies outside the transmitter range, the clutter is removed by using 

the Running Gaussian Average technique for background subtraction [18]. Given the 

Time-Of-Arrival (TOA) corresponding to the component of the human body, the fea-

ture extraction stage is based on the estimation of the following quantities: normalized 

energy, variance, skewness, kurtosis, as defined in [19]. Finally, the feature vector is 

classified by means of ensemble classification technique based on Real AdaBoost [20]. 

The AdaBoost classifier was trained by using the 10% of posture sequences, instead 

the remaining sequences were used for testing. The classification performance was 

estimated either with and without large occluding objects, and the related averaged 

confusion matrix is provided in Table 3. 

Fig. 4. MESA SR-4000 Time-Of-Flight sensor. 



Table 3. UWB Confusion Matrix 

Predicted postures (%) 

St Be Si Ly 

A
c
tu

a
l 

p
o
st

u
re

s 
(%

) 

St 82 13 5 0 

Be 18 75 6 1 

Si 11 8 79 2 

Ly 0 4 15 81 

MEMS three-axial accelerometer (ACC) sensor. The wearable device used in this 

version of the platform is the Wearable Wellness System (WWS), produced by 

Smartex [21]. It made up of a sensorized garment and an electronic device (SEW) for 

the acquisition, the storage and the wireless transmission of the data. It has been de-

signed to continuously monitor main vital parameters (ECG, Heart rate, Breathe rate) 

and the movements. The WWS garment is suitable and comfortable, reducing the well-

known usability problems of the smart wearable devices. Moreover it can be washed 

and it can be in tight contact with the body without any creases. In Figure 5 the male 

version of the t-shirt is shown. It integrates a) two textile electrodes, b) one textile pie-

zo resistive sensor and c) a pocket, placed on the chest, for the electronic device in 

which it is integrated a tri-axial MEMS accelerometer for the movement monitoring. 

The WWS can operate in streaming via Bluetooth up to 20 meters (in free space) or in 

off-line modality, storing the data on a micro-SD integrated in the SEW device. In 

streaming mode the duration of its rechargeable battery life is about 8 hours, while in 

off-line the duration is more than 18 hours. For the elaboration, the raw acceleration 

data have been sent to the embedded PC with a 25 Hz frequency, that it is enough to 

recognize the physical activity [22]. The data are in the decimal format and represent 

the acceleration values with full scale in the range of ±2g for an high sensitivity and a 

10 bit resolution. The MEMS accelerometer is DC coupled, so it measures both static 

and dynamic acceleration along the 3 axes and allows to get information on the 3D 

spatial relative position (compared to the Earth gravity vector) of the person who wears 

it. Indeed, if the accelerometer relative orientation is known, the resulting data can be 

used to determinate the angle α of the user position with respect to the vertical direc-

tion. The main computational steps of the software architecture for the posture recogni-

tion are: data acquisition, data pre-processing, system calibration, feature extraction 

and classification. Data are converted into gravitational units to represent acceleration 

data in the range of ±2g, in order to make possible to extract the angle α and avoiding 

different orders of magnitude in the features. The samples coming from the device are 

filtered out by a low pass FIR filter to reduce the noise due to the electronic compo-

nents, environment and human tremor. In order to correctly handle the pre-processed 

data, a calibration procedure was accomplished by recovering the initial conditions 

after the device mounting. The features extracted to detect the posture are: the Aver-

aged Acceleration Energy (AAE), the mean and the standard deviation [23] over three 

acceleration axes by using a 5 sec sliding window. Moreover the features obtained in 

[24] have been used, they consider the variation of dynamic acceleration and the 



change of position during a sitting/lying/standing up actions with respect to an upright 

position. The classification of the (St, Be, Si, Ly) postures have been obtained by im-

plementing the effective and robust semi-supervised k-means clustering algorithm and 

Euclidean distance [25]. The classification performance, estimated using the datasets 

previously discussed, are reported in Table 4 in terms of confusion matrix. 

 Fig. 5. Smartex WWS composed by a sensorized garment and an electronic device (SEW). 

Table 4. ACC Confusion Matrix 

Predicted postures (%) 

St Be Si Ly 

A
c
tu

a
l 

p
o
st

u
re

s 
(%

) 

St 92 2 6 0 

Be 2 84 2 12 

Si 11 2 87 0 

Ly 0 5 1 94 

2.2 Simulation Layer 

Since the availability of datasets for behaviour analysis is limited by difficulties asso-

ciated with the collection of such data, and considered the lack of datasets containing 

long-term postural sequences, a simulator of ADLs/postures has been implemented. 

The simulator provides synthetic data with the ability to rapidly generate a large simu-

lated dataset driven by different parameters which allow to reproduce different nor-

mal/abnormal behaviours (in particular human sleep patterns). 

The simulator is composed by two stages; the first for simulation of long-term 

ADLs/postures, the last for a calibrated simulation of long-term postures referred to a 

specific sensing approach. 

Long-term ADL/posture simulator. The general architecture of the simulator is 

inspired from the work of Noury et al. [26]. The authors assumed that the daily activi-

ties of a subject are almost regular. Thus, the simulator is based on a Markov model 

with homogeneous periods, while the time for transitions is ruled by a Finite State 

Machine (FSM) [27]. The Markov chains are frequently used to represent a Bayesian 

process with multiple states and their associated conditional probabilities. Thus the 

use of HMM seems a suitable probabilistic approach to model the whole system.  



As shown in Figure 6, the day is segmented into seven periods (e.g., wake up, morn-

ing, lunch, afternoon, dinner, going to bed, sleep) and thus seven Markov models 

corresponding to well identified circadian rhythms were modelled. In this way, each 

period can be represented by a graph of the transitions (used for the translation in 

activity sequences that can occur during the specific daily period) that are controlled 

by their probabilities. The simulated data are structured in the following matrix ex-

pression: M = [Date, StartTime, EndTime, Activity], where Date, StartTime, End-

Time and Activity are column vector representing respectively the date of the simula-

tion day (expressed in the following format: dd/mm/yyyy), the start time, the end time 

of the simulated activity (expressed in the following format: hh:mm:ss) and the name 

of the latter. 

Fig. 6. Conceptual representation of the posture simulator (SI=Sitting, ST=Standing, 

BE=Bending, LY=Lying Down) 

Each period of the day is modelled using a N-states HMM in which N represents 

the ADLs performed during the period itself. The next step of the simulator is devoted 

to translate activities in a sequence of actions. In this work, an action is an atomic 

element which provides the details of a specific activity. For example, the activity 

“have breakfast” is translated by the following sequence of actions: “prepare break-

fast” - “breakfast” - “washing up”. The assumption made in this version of the simula-

tor is always to translate each activity with the same sequence of actions, only varying 

the time duration. 

Finally, as described in the next subsection, the last layer of the simulator is ad-

dressed to model each action as a sequence of the postures (taking into account the 

only four postures previously mentioned). 

Calibrated approach for long-term posture simulator. Starting from the sequence 

of actions provided by the ADL simulator, the posture sequence is generated by using 

a calibrated approach based on real observations conducted with real detectors (i.e., 

TOF, UWB, ACC). Such calibration consists in modelling errors introduced by each 



specific detector, starting from simulated ground-truth sequences. The Model Error 

Modelling (MEM) method [28] together with the Expectation-Maximization (EM) 

algorithm [29] are used to model detection errors. Furthermore, the parameters of the 

simulated detectors are obtained by minimizing a cost function based on the Predic-

tion Error Method (PEM) [30]. 

2.3 Reasoning Layer 

Given long-term posture sequences referred to the different sensing approaches, the 

platform includes a feature extraction procedure aimed to identify the starting point of 

sleep periods and their durations for each day. At this purpose, the most efficient solu-

tion is to recognize human actions from patterns of posture sequences, and more spe-

cifically to extract starting points of the actions: “going to bed”, “sleep in bed” and 

“wake up”. The approach implemented in this work allows ADLs recognition using 

the technique described below. Basically, human actions are recognized by consider-

ing successive postures over time periods. A transition action occurs when the person 

changes the current action to another action. Thus, a transition action might include 

several transition postures. Transition actions are merged together to form single 

atomic actions and global events are recognized by using Dynamic Bayesian Net-

works (DBNs) specifically designed for indoor application scenario, following an 

approach similar to Park and Kautz [31]. Designed DBNs have a hierarchical struc-

ture with three node layers: activity, interaction and sensor. The activity layer stays on 

top of hierarchy and includes hidden nodes to model high-level activities (i.e. ADLs, 

behaviours, etc.). The interaction layer is a hidden layer as well and it is devoted to 

model the states of evidence for interactions inside the home (i.e. appliances, furni-

ture, locations, etc.). The detector layer, at the bottom of hierarchy, gathers data from 

detector sensors (postures). Each DBN is hence decomposed in multiple Hidden Mar-

kov Models (HMMs) including interaction and sensor layers, and trained on the basis 

of the Viterbi algorithm [32]. In this way, the detection of sleep start time can be de-

rived from the recognition of the action “going to bed”, and the duration of sleep can 

be obtained evaluating the difference between “wake up” time and “sleep in bed” 

time.  

The extracted features (start time of sleep and relative duration) are used for the de-

tection of sleep periods and also to estimate human sleep trends evaluating their map-

ping into the two-dimensional space in which the x-axis indicate the start time of 

sleep and the y-axis its duration (expressed in hours and minutes). This step is ex-

plored with a reinforcement learning procedure; in particular, using an incremental 

clustering technique [33], the last step of the platform provides an unsupervised ap-

proach for real-time discovery of changes in a sleep patterns with respect to an initial 

pattern assumed as reference, namely Reference Sleep Pattern (RSP). This is achieved 

by incrementally clustering incoming features (extracted from the current day whose 

postures are simulated) in the aforementioned feature space. When a new cluster ap-

pears, a change in the sleep pattern is detected (and thus classified as normal or 

anomalous) if the features belonging to the new cluster are extracted from N consecu-

tive days (not necessary adjacent), with N set according to physician’s indications. 



3 Experimental Results 

The robustness of the feature extraction step has been evaluated on a series of exper-

iments in which synthetic data, obtained after calibrated simulation of real data gener-

ated by TOF sensor, were affected by different percentages of errors related to: (1) 

sensor noise and (2) fault situation which can occur in real contexts (e.g. wearable 

sensor not worn, vision sensor turned off or occluded, resulting in postures not availa-

ble during a time period). The purpose to simulate situations close to reality has been 

reached by modeling the noise with two kinds of components: bias noise (uniform 

distribution) and posture transition noise (Gaussian distribution). Performances have 

been evaluated in terms of Mean Absolute Error (MAE) by measuring the misalign-

ment between ground-truth sleep phases and detected ones, and also in terms of Mean 

Relative Error (MRE) related to the percentage of undetected sleep phases. The previ-

ous error measurements are estimated through 13 synthetic datasets constituted by 

different time periods, and characterized by an average length of sleep pattern equal 

to 8 hours. The duration of sleep is randomly perturbed by variance values between 

0.5h and 1.5h. The number of simulated days for each experiment, the percentage of 

errors and relative performances are reported in Table 5. 

Table 5. Experimental results of the feature extraction step 

# 

Days 
Bias Noise 

Posture tran-

sition Noise 

Fault 

situation 

Alignment MAE 

(minutes) 

Detection 

MRE (%) 

E
x

p
er

im
en

t 

1 120 0% 0% 0% 5 0 

2 90 20% 10% 0% 5,2 0 

3 150 20% 30% 0% 5,3 0 

4 90 30% 10% 0% 5,2 0 

5 90 30% 30% 0% 20,1 5 

6 120 20% 10% 15% 8,4 4 

7 120 20% 30% 15% 9,5 6 

8 90 30% 10% 15% 11,7 7 

9 90 30% 30% 15% 26,8 13 

10 150 20% 10% 30% 14,4 10 

11 120 20% 30% 30% 18,8 10 

12 150 30% 10% 30% 25,1 12 

13 120 30% 30% 30% 36,5 21 

The results obtained reveal that a total noise level of about 60% can affect the accura-

cy of the detected sleep phases in terms of temporal misalignment compared with the 

ground-truth. Moreover, if a fault situation is added to the noise the percentage of 

undetected sleep phases grows and this happens more if the fault situation occurs 

during the sleep periods. 

For the validation of the incremental clustering step, experiments that simulate dif-

ferent time periods have been carried out reproducing postural time series according 

to posture classification performance. Three time intervals (60, 120 and 180 days) 



have been taken into account as reference period M, followed by periods within 

which a change in the CR pattern was simulated (labelled with N). In Table 6, the 

detection rate of trend changes, at varying of both M and N, is reported for each de-

tector. It is important to note that at the increasing of M, the incremental clustering 

achieves good performance if changes in CR pattern persist for a time period N. 

However, it is important to note that an acceptable detection rate (at least of 80%) is 

obtained for period N (in days) closely related to each detector: a greater amount of 

days N is required at the increasing of M. 

Table 6. Detection rate (%) of deviations from the reference CR at varying of “M” and “N” 

N (days) 

Detector 7 14 21 28 35 42 49 

M
 (

d
a
y

s)
 

60 
TOF 76,4 

73,1 

69,7 

90,2 

84,6 

73,5 

90,7 

86,1 

77,2 

94,6 

89,5 

81,4 

95 

92,3 

84,5 

95,8 

93,1 

87.7 

96.5 

94,5 

90,2 
ACC 

UWB 

120 

TOF 72,1 

69,8 

65,2 

74,4 

70,1 

67,6 

80,3 
73,9 

70,2 

88,7 

76,8 

73,5 

88,9 

80,2 

78,5 

89,2 

83,6 

81,4 

90,5 

86,7 

82,9 

ACC 

UWB 

180 

TOF 60,4 

58,7 

56,4 

73,7 

62,6 

60,1 

79,7 

66,9 

63 

80,2 
70,4 

67,9 

87,4 

74,2 

72,7 

88,9 

79,7 
77,5 

90,4 

83,7 

80 

ACC 

UWB 

4 Discussion and Conclusion 

From the analysis of the obtained results, it is evident the platform ability in identifi-

cation of changes in human sleep patterns with high accuracy. However, the perfor-

mances are strictly related to the sensing technology involved; in fact, at varying of 

the detector, a different number of days N is required to reach a satisfactory detection 

rate. For example, if we consider a reference period of length M=120 days, a detec-

tion rate of about 80% is reached within N=21 days (TOF), N=35 days (ACC), N=42 

days (UWB). The platform has been validated by using posture sequences simulated 

in a calibrated way (with calibration error less than 5%) and referring to common 

ADLs carried out by older people in their home environment. Furthermore, the solu-

tion was tested considering reference periods M very different in order to taking into 

account any deviation with respect to standard execution of ADLs.  

This leads up to believe that the performances that can be reached using real moni-

toring systems should be included between M=60 and M=180, with N corresponding 

to the sensing technology used. From the usability perspective, the platform is con-

sistent with the independent living context; in fact the detection of changes in sleep 

patterns can be automatically obtained allowing offline analysis by a caregiver/doctor 

for subsequent clinical evaluations. Finally, it is important to stress the versatility of 

the platform which can potentially operate with any kind of detector able to provide 

postural information. 



Acknowledgments: This work was carried out within the project “ACTIVE 

AGEING AT HOME” funded by the Italian Ministry of Education, Universities and 

Research, within the National Operational Programme for “Research and Competi-

tiveness” 2007-2013. 

References 

1. An Aging World: 2015, International Population Reports, issued March 2016,

http://www.census.gov/content/dam/Census/library/publications/2016/demo/p95-16-1.pdf,

accessed September 2016

2. P. Urwyler, L. Rampa, R. Stucki, M. Büchler, R. Müri, U.P. Mosimann, T. Nef, “Recogni-

tion of activities of daily living in healthy subjects using two ad-hoc classifiers”, Biomedi-

cal engineering online, 14(1), 1, 2015.

3. G. Virone, M. Alwan, S. Dalal, S. Kell, B. Turner, J.A. Stankovic, R. Felder, “Behavioral

patterns of older adults in assisted living”, in IEEE Trans. Inf. Technol. Biomed, 12, pp.

387–398, 2008.

4. A.A. Chaaraoui, J.R. Padilla-López, F.J. Ferrández-Pastor, M. Nieto-Hidalgo, F. Flórez-

Revuelta, “A vision-based system for intelligent monitoring: human behaviour analysis

and privacy by context”, in Sensors, 14(5), pp. 8895-8925, 2014

5. G. Virone, N. Noury, J. Demongeot, “A system for automatic measurement of circadian

activity deviations in telemedicine”, in IEEE Transaction in Biomedical Engineering, 49,

pp. 1463–1469, 2002.

6. F. Cardinaux, S. Brownsell, M. Hawley, D. Bradley, “Modeling of behavioral patterns for

abnormality detection in the context of lifestyle reassurance”, in LNCS, 5197, pp. 234–

251, 2008.

7. J. Shin, B. Lee, K. Park, “Detection of abnormal living patterns for elderly living alone us-

ing support vector data description”, in IEEE ransactions on Information Technology in

Biomedicine, 15, pp. 438–448, 2011.

8. F. Palumbo, P. Barsocchi, F. Furfari, E. Ferro, E., “AAL middleware infrastructure for

green bed activity monitoring” Journal of Sensors, 2013.

9. V. Kellokumpu, M. Pietikäinen, J. Heikkilä, “Human activity recognition using sequences

of postures”, In MVA, pp. 570-573, 2005.

10. MESA Imaging AG, SR4000/SR4500 User Manual, Version 3.0, 

http://www.realtechsupport.org/UB/SR/range_finding/SR4000_SR4500_Manual.pdf, ac-

cessed September 2016

11. G. Diraco, A. Leone, P. Siciliano, “In-home hierarchical posture classification with a time-

of-flight 3D sensor”, Gait and Posture; 39(1):182-187, 2014.

12. Y. Xiao, P. Siebert, N. Werghi, “Topological segmentation of discrete human body shapes

in various postures based on geodesic distance”, Proc of ICPR, Vol. 3, pp.131-135, 2004.

13. S. Baloch, H. Krim, I. Kogan, et al., “Rotation invariant topology coding of 2D and 3D ob-

jects using Morse theory”, IEEE International Conference on Image Processing 2005, pp.

III-796-9, 2005.

14. A. Verroust, F. Lazarus, “Extracting skeletal curves from 3-D scattered data”, The Visual

Computer, 16 (1), pp.15-25, 2000.

http://www.census.gov/content/dam/Census/library/publications/2016/demo/p95-16-1.pdf


15. R. Debnath, N. Takahide, H. Takahashi, “A decision based one-against-one method for

multi-class support vector machine”, Pattern Analysis and Applications, 7, (2), pp.164-

175, 2004.

16. F. Buccolieri, C. Distante, A. Leone, “Human posture recognition using active contours

and radial basis function neural network”, Proc of AVSS, pp. 213-218, 2005

17. TIME DOMAIN, PulsON®410, P410 radar kit, http://www.timedomain.com/p400-

mrm.php, accessed September 2016

18. C. Wren, A. Azarbayejani, T. Darrell, T., et al., “Pfinder: real-time tracking of the human

body”, IEEE Trans. Pattern Analysis Machine Intelligence, 19, (7), pp. 780–785, 1997

19. M.A. Kiasari, Y.N. Seung, J.Y. Kim, “Classification of Human Postures Using Ultra-Wide

Band Radar Based on Neural Networks”, Proc of ICITCS 2014, Beijing, pp. 1-4, 2014

20. R.E. Schapire, Y. Singer, Y., “Improved boosting algorithms using confidence-rated pre-

dictions’, Machine Learning., 37, pp.297–336, 1999

21. Smartex Wearable Wellness System, http://www.smartex.it/index.php/en/products/ weara-

ble-wellness-system, accessed September 2016

22. Y. He, Y., Li, “Physical Activity Recognition Utilizing the Built-In Kinematic Sensors of a

Smartphone”, International Journal of Distributed Sensor Networks, vol. 2013, Article ID

481580, 10 pages, 2014.

23. M. Zhang, A. Sawchuk, “A feature selection-based framework for human activity recogni-

tion using wearable multimodal sensors”, Proceedings of the 6th International Conference

on Body Area Networks, p 92-98, 2011.

24. G. Rescio, A. Leone, P. Siciliano, “Supervised Expert System for Wearable MEMS Accel-

erometer-Based Fall Detector,” Journal of Sensors, vol. 2013, Article ID 254629, 11 pag-

es, 2013.

25. Y. Gao, H. Q. Da-you Liu, H. Liu, "Semi-supervised k-means clustering for multi-type re-

lational data" in Machine Learning and Cybernetics, 2008 International Conference on ,

vol.1, p.326,330, 2008.

26. N. Noury, T. Hadidi, "Computer simulation of the activity of the elderly person living in-

dependently in a Health Smart Home", in Computer Methods and Programs in Biomedi-

cine, 108(3), pp. 1216-1228, 2012.

27. G. Virone, B. Lefebvre, N. Noury, N., et al., “Modeling and computer simulation of physi-

ological rhythms and behaviors at home for data fusion programs in a telecare system”, in

Proceedings of Healthcom’03, 5th International Workshop Enterprise Networking and

Computing in Healthcare Industry, Los Angeles, USA, pp. 111–117, 2003.

28. L. Ljung, “Model validation and model error modelling,” in The Astrom symposium on

control, Lund, Sweden, 1999.

29. R. A. Delgado, G. C. Goodwin, R. Carvajal, J. C. Agüero, “A novel approach to model er-

ror modelling using the expectation-maximization algorithm,” In CDC, pp. 7327-7332,

December, 2012.

30. Y. Zhao, B. Huang, H. Su, J. Chu, “Prediction error method for identification of LPV

models,” Journal of process control, 22(1), 180-193, 2012.

31. S. Park, H. Kautz, “Privacy-preserving recognition of activities in daily living from multi-

view silhouettes and rfid-based training”, In AAAI Symposium on AI in Eldercare: New

Solutions to Old Problems, 2008.

32. F.V. Jensen, T.D. Nielsen, “Bayesian networks and decision graphs”, in Jordan, M.,

Kleinberg, J., Schölkopf, B. (Eds.): Information Science and Statistics; Springer Science

Business Media, NY USA, 2007.

http://www.timedomain.com/p400-mrm.php
http://www.timedomain.com/p400-mrm.php
http://www.smartex.it/index.php/en/products/wearable-wellness-system
http://www.smartex.it/index.php/en/products/wearable-wellness-system


33. W.A. Barbakh, Y. Wu, C. Fyfe, “Online Clustering Algorithms and Reinforcement Learn-

ing”, in Non-Standard Parameter Adaptation for Exploratory Data Analysis, pp. 85-108,

2009. 


