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Abstract. This paper describes a novel approach for human gesture
recognition from motion data captured by a Kinect camera. The pro-
posed method is based on encoding the temporal history of input data
using bidirectional Echo State Networks, whereas the output is computed
by means of a multi-layer perceptron with softmax. Results achieved at
the time-series classification challenge organized within the 2016 ECML
PKDD Workshop on Advanced Analytics and Learning on Temporal
Data show the potentiality of the approach.
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1 Introduction

A major aspect of Ambient Assisted Living (AAL) and Ambient Intelligence
(AmI) applications regards the development of human-centric computer inter-
faces [12, 28]. Indeed, interfaces that are easy and natural to use allow for a
simplification of the interaction between the user and the intelligent environ-
ment, ultimately leading to an overall improvement of acceptance and usability
of the developed systems. In particular, in the area of human-machine interac-
tion a relevant task is represented by the the automatic recognition of human
gestures [32], where the challenge consists in interpreting the sensed data in order
to recognize patterns of human body motion in a robust fashion. In recent years,
the availability of relatively cheap cameras and motion sensor devices, such as
Microsoft Kinect, allowed for a broader diffusion of methods based on captured
data in the form of a set of 3-dimensional trajectories of human skeleton joints.
In this context, literature approaches mainly consist in systems that exploit the
extraction of relevant features from such 3-dimensional trajectories, along with
classification methods based e.g. on multi-layer perceptrons (MLPs) [34], sup-
port vector machines [34, 8, 7], dynamic time warping [31, 23, 16], decision trees
[34, 7], or hidden Markov models [23].

In this paper we propose a novel approach to the problem of human gesture
recognition from noisy 3-dimensional motion data from a Kinect device, based
on the efficient Reservoir Computing (RC) [30] paradigm for modeling Recur-
rent Neural Networks (RNNs) [29]. In particular, we describe the application



of this RC-based method to the time-series classification challenge organized in
the context of the 2nd ECML/PKDD Workshop on Advanced Analytics and
Learning on Temporal Data (AALTD2016) [1]. A major characterization of the
proposed approach consists in addressing the problem of learning with temporal
data through a direct processing of time-series signals without further steps of
feature extraction with respect to the provided challenge datasets.

2 RC for Human Gesture Recognition

RC represents a framework for modeling RNNs based on a conceptual and prac-
tical separation between an untrained recurrent component that encodes the
input history within the “reservoir” state of the network, and a readout com-
ponent, which is trained to compute the output based on the information in
the reservoir state space. In particular, within this context, the Echo State Net-
work (ESN) model [26, 25, 17] is considered as a state-of-the-art approach for
efficiently learning in sequential/temporal domains, with outstanding results in
various real-world domains (possibly involving heterogeneous and noisy input
information) such as time-series prediction [26], financial forecasting [13], sen-
timent analysis [19], speech processing [38, 39] health care monitoring [20, 21],
human activity recognition (e.g. [33, 3, 2, 14]) and robotics (e.g. [15, 5, 4, 36]).

In our approach to human gesture recognition, we used Leaky Integrator
ESNs (LI-ESNs) [27], in which the reservoir part of the network is implemented
by means of leaky integrator units. We modeled the evolution of the network
state dynamics by splitting the reservoir into two parts that receive the input
elements in opposite orders, i.e. from left to right and from right to left, respec-
tively. Such strategy is rooted in the bidirectional approaches for RNN dynamics
[37, 6], also explored in the context of RC models (e.g. [39, 35]). Note that the
use of this bidirectional strategy allows the network to develop a state dynamics
that at each time step is able to include information coming from both the left
side and right side of the sequence, thereby resulting in a richer state represen-
tation of the input than adopting a standard uni-directional strategy. Moreover,
in order to process the input information in the two directions at the same time,
it is required that each input sequence is entirely available during the encoding
process, an assumption that is practically fulfilled in our application context
and in the AALTD2016 challenge, in which each sequence corresponds to an iso-
lated human gesture that should be classified as soon as its execution has been
completed.

Considering an input sequence s of length Ls, i.e. s = [u(1) . . .u(Ls)], where
u(t) ∈ RNU for each t = 1 . . . Ls, the state of the bidirectional LI-ESN is com-
puted by applying the following state update equations:

xF (t) = (1− a)xF (t− 1) + a tanh(Winu(t) + ŴxF (t− 1))

xB(t) = (1− a)xB(t+ 1) + a tanh(Winu(t) + ŴxB(t+ 1))

(1)



where xF (t) ∈ RNR and xB(t) ∈ RNR denote the states computed by the reser-
voir receiving the input elements respectively in the forward direction (i.e. from
the oldest to the most recent one) and in the backward direction (i.e. from
the most recent to the oldest one), starting from null initial states xF (0) = 0
and xB(Ls) = 0. Moreover, in equation 1, a ∈ [0, 1] denotes the leaking rate,
Win ∈ RNR×NU+1 is the input-to-reservoir weight matrix (including a bias

term), Ŵ ∈ RNR×NR is the recurrent reservoir weight matrix1. The overall
state of the bidirectional LI-ESN at time t, i.e. x(t) ∈ R2NR , is then computed
as:

x(t) =

[
xF (t)
xB(t)

]
(2)

By applying equations 1 and 2, each input sequence s = [u(1) . . .u(Ls)] is
encoded into a sequence of states [x(1) . . .x(Ls)]. In tasks requiring one single
output element in correspondence of each entire input sequence, a state map-
ping function [18] can be used to map the variable-size state representation
[x(1) . . .x(Ls)] into a fixed-size reservoir state χ(s) ∈ R2NR . In particular, the
use of a mean state mapping has proved to be effective in different application
contexts, as reported in [18, 20, 19]. In this case, the states computed at each
time step are averaged and χ(s) is computed as follows:

χ(s) =
1

Ls

Ls∑
t=1

x(t). (3)

The state encoding process operated by the bidirectional LI-ESN and the compu-
tation of the mean state mapping function are graphically illustrated in Figure 1.

The output of the state mapping function is then used as input for the
readout component, implemented by means of a MLP with NH hidden units
and in which the last layer is a softmax layer. In correspondence of each input
sequence s, the output is therefore a 6-class probability distribution y(s) ∈ RNY ,
where NY denotes the number of possible class labels, i.e. the number of possible
human gestures to detect (we used NY = 6 as detailed in the following).

Following the RC approach, the output part of the system, i.e. the MLP in
our case, is the only component of the network architecture that undergoes a
training process, in this case implemented by means of scaled conjugate gradient
backpropagation. The parameters of the reservoir are left untrained after being
initialized basing on the necessary condition for the echo state property [25, 26],
related to the stability of network state dynamics and involving the scaling of
the spectral radius of the matrix (1− a)I + aŴ, denoted by ρ 2. Although the
standard ESN recipe prescribes that ρ < 1, stability of the network dynamics can

1 Note that, although in general the parameters of the reservoirs spanning the input
in the two opposite directions could be different, in our approach for the sake of
simplicity the same reservoir is used to compute both xF (t) and xB(t).

2 The spectral radius ρ is defined as the maximum among the magnitudes of the
eigenvalues of the matrix (1 − a)I + aŴ.



Fig. 1. Bidirectional LI-ESN: the encoding process and the mean state mapping.

be achieved also if this condition is not satisfied, depending on the actual data
that is fed in input to the network (see e.g. [40, 9]). Thereby, in our experiments
we also explored values of ρ slightly larger than 1. The input weights in matrix
Win were randomly chosen from a uniform distribution in [−scalein, scalein]. In
addition to this, in our implementation we considered a pattern of connectivity
among the reservoir units described by a permutation matrix, i.e. Ŵ = DP,
where D ∈ RNR×NR is a diagonal matrix (containing the non-zero elements of

Ŵ) and P ∈ RNR×NR is obtained by a (column) permutation of the identity
matrix. Reservoirs initialized in such a way are related to a critical regime of
network dynamics, which has been shown to have a beneficial effect on the
predictive performance in different ESN applications (see e.g. [11, 10, 22]).



3 Experiments

The RC-based system for human gesture recognition described in Section 2 has
been assessed within the time-series classification challenge organized in the
context of AALTD2016 [1]. In particular, the proposed method has been applied
to task 1 of the challenge, in correspondence of team name “CIML”3 and method
name “RC”.

The task consisted in a multi-class classification of data recorded by a Kinect
system during the execution of isolated gestures by different users. The input
was collected as a multivariate time-series of 3-dimensional data gathered in
correspondence of sensors located at 8 body positions: left hand tip, right hand
tip, left elbow, right elbow, left wrist, right wrist, left thumb and right thumb.
Target data consisted in the type of gesture performed, within a set of 6 possible
values. Overall, this setting resulted in an input of size NU = 24, whereas the
target was represented by means of a 1-of-6 hot encoding of the class label, i.e.
NY = 6. In our approach, a preliminary pre-processing step has been individually
applied to the input sequences in order to re-scale the input components to the
[-1,1] range.

Data for the challenge4 has been provided by means of a labeled (balanced)
training set (with target information) and a blind test set (without target in-
formation), each containing 180 sequences. Data in the training set have been
used for a development phase, consisting in experimental assessment and model
selection according to a stratified 6-fold cross-validation scheme. After that, the
RC setting leading to the best accuracy on the validation set was selected and
successively adopted for training on the whole training set and assessment on
the blind test set, using an ensemble approach as described in the following.

In our experiments we considered network hyper-parametrizations varying
the values of: reservoir size NR ∈ {200, 500}, spectral radius ρ ∈ {0.9, 1, 1.1} and
leaking rate a ∈ {0.1, 0.5, 1}. The input scaling and the number of MLP hidden
units were fixed based on preliminary experiments to the values scalein = 1 and
NH = 10, respectively. For each reservoir hyper-parametrization we indepen-
dently and randomly generated 10 reservoir guesses, and averaged the perfor-
mance on such guesses. As for the challenge, during the model development phase
the predictive performance of the RC networks has been assessed by computing
the multi-class (6-class) accuracy (i.e. the rate of correctly classified sequences).

The values of the hyper-parameters selected by the model selection process
during the development phase and the correspondingly obtained validation ac-
curacy are reported in Table 1. As it can be seen, the accuracy achieved on
the validation set in the 6-fold cross-validation scheme is 95.7% (±5.6). This re-
sult indicates that the proposed approach was able to tackle the human gesture
recognition task achieving a very good performance with a validation accuracy
that is in line with the best results reported in literature (see e.g. [24]). It is

3 Computational Intelligence & Machine Learning (CIML) group, Department of Com-
puter Science, University of Pisa. Website http://www.di.unipi.it/groups/ciml/.

4 Datasets are property of IRISA, research team EXPRESSION, see [1].



Hyper-parameter Selected Value

reservoir size 500
spectral radius 1
leaking rate 0.1

Validation Set Accuracy

95.7% (±5.6)

Table 1. Values of RC hyper-parameters selected in the development phase and cor-
responding validation accuracy.

also worth reporting that the selected RC configuration in Table 1 led to a 100%
training accuracy, whereas configurations with a lower training performance also
generally resulted in a worse validation performance.

The selected configuration was then considered for a further experimental
phase in which training has been performed on the whole training set of the
challenge and the final classification for each sequence was computed by an
ensemble of 30 RC networks, all with the same hyper-parametrization as in
Table 1 (but differing for the RC initialization values). The achieved accuracy is
reported in Table 2, showing the performance on the validation set (according
to the same 6-folds splitting considered in the development phase), as well as
the result on the blind test set as provided by the challenge organizers after the
submission deadline. As can be seen in Table 2, the proposed RC-based approach
achieved a 94.4% accuracy on the test set of the AALTD2016 challenge, ranking
5-th overall in the competition, with an accuracy in the top 4 best performances
on a total number of 22 submissions (spanning test set accuracy values in the
range 78.9% - 96.1%). The official leaderboard of the challenge, showing the
final results of all the submissions can be found at [1]. Moreover, a comparison
between the values of the validation accuracy obtained by the proposed approach
in the development phase (Table 1) and in the final setting (Table 2), points out
the significant improvement obtained by the ensemble method, resulting in a
performance gain of more than 2% (on the same data).

Validation Set Test Set

97.8% 94.4%

Table 2. Accuracy achieved by the ensemble of 30 RC networks on the validation
and test sets. The performance on the validation set corresponds to the same 6-fold
cross-validation scheme used in the development phase, whereas the performance on
the test set corresponds to the accuracy obtained on the blind test set of the AALTD
2016 challenge task, as reported by the organizers.



4 Conclusions

We have presented a novel approach for human gesture recognition from Kinect
data, based on an ensemble of bidirectional RC networks using MLP readouts
with softmax. The proposed method has been experimentally assessed during
the AALTD2016 time-series classification challenge, achieving a classification
accuracy of 97.8% in the development phase, and of 94.4% on the blind test set of
the challenge. The outcome of the challenge showed that our approach compared
well with the heterogeneity of methods used by the challenge participants (see
details at [1]), with a classification accuracy within the best 4 values over 22
submissions.

Overall, the experimental analysis described in this paper has put in evidence
the potentiality of the proposed RC-based approach, especially in light of its
suitability for direct processing of time-series data, its general applicability (it
has not been specifically tailored for this type of application) and of its training
efficiency (typical of all RC models). Such characterizations allow us to envisage
possible developments within integrated activity monitoring systems for AAL
and AmI applications, able to jointly exploit both a good recognition rate of
human gestures and a fast re-training e.g. in presence of concept drifts.
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27. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applica-
tions of echo state networks with leaky-integrator neurons. Neural Networks 20(3),
335–352 (2007)

28. Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient intel-
ligence in assisted living: enable elderly people to handle future interfaces. In:
Douzal-Chouakria, A., Vilar, J., Marteau, P.F. (eds.) Universal Access in Human-
Computer Interaction. Ambient Interaction. Lecture Notes in Computer Science,
vol. 4555, pp. 103–112. Springer Berlin Heidelberg (2007)

29. Kolen, J.F., Kremer, S.C.: A field guide to dynamical recurrent networks. IEEE
Press (2001)
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