
Comparing Reuse Mechanisms for Model Transformation
Languages: Design for an Empirical Study

Daniel Strüber
Universität Koblenz-Landau, Germany∗ and

Philipps-Universität Marburg, Germany
strueber@uni-koblenz.de

Anthony Anjorin
University of Paderborn, Germany

anthony.anjorin@upb.de

ABSTRACT
Reuse mechanisms for model transformation languages help
avoid duplication, thereby increasing maintainability and
enabling a more systematic overall development process. As
the introduction of such reuse mechanisms to model trans-
formation languages is still in its preliminary stages, howe-
ver, language designers are currently faced with the chal-
lenge of choosing from amongst diverse proposed approa-
ches. Although there are a few surveys comparing syntactic
and semantic differences, there is still a need for empirical
studies on the actual effectiveness of different reuse mecha-
nisms for transformation developers. In this paper, there-
fore, we present a study design for a controlled experiment
to investigate the benefits and drawbacks of two specific re-
use mechanisms for model transformation languages: rule
refinement and variability-based rules. Both mechanisms
are tailored to graph-based model transformation languages,
yet represent two contrasting reuse paradigms: modularizing
rules by composing them from smaller, shared fragments,
versus maintaining a single, integrated representation via
variability annotations. We propose to compare these two
approaches using comprehension and bug-finding tasks to
investigate understandability, and bug-fixing and modifica-
tion tasks to study changeability.

1. INTRODUCTION
Model transformations play a fundamental role in Model-

Driven Engineering (MDE), where software systems are pro-
duced by the continuous refinement, translation, and syn-
chronization of models [19].

As the field matures and MDE approaches are faced with
increasingly complex development tasks, the size and com-
plexity of required model transformations also increases. De-
veloping and especially maintaining such large transforma-
tions is challenging without dedicated support for reusing
parts of existing transformations [22]. As such reuse mecha-
nisms for model transformation languages are just starting
to emerge [14], however, transformation developers are often
forced to resort to code or pattern duplication, well-known
for its manifold maintainability-related drawbacks.

But how can language designers decide which reuse me-
chanisms to integrate in their model transformation langu-
ages? While some surveys exist comparing syntactic and
semantic differences of various proposed reuse mechanisms
∗This research was partially supported by the research pro-
ject Visual Privacy Management in User Centric Open
Environments (supported by the EU’s Horizon 2020 pro-
gramme, Proposal number: 653642).

(cf., e.g., [14]), there exist no empirical studies of various
transformation reuse mechanisms and their actual useful-
ness for transformation developers.

In this work, therefore, we present our design for a contro-
lled experiment that aims to explore the benefits and dra-
wbacks of the proposed reuse mechanisms for model trans-
formation languages. Specifically, we intend to compare two
recently emerging reuse mechanisms: rule refinement [4] and
variability-based rules [24]. This choice is motivated by the
fact that both mechanisms address the same technical scope
- the reuse of graph-based model transformations [7] - while
contrasting in the employed reuse paradigm: rule refinement
reuses transformation rules by breaking them into smaller
fragments that can be assembled using a composition me-
chanism, while a variability-based rule represents a family of
multiple, similar rules in an integrated form, using variabi-
lity annotations to denote individual parts. This distinction
between composition- and annotation-based approaches is
well-known from the domain of software product lines [11].

We are interested in the influence of these reuse mecha-
nisms on maintainability, a main quality aspect of software
artifacts [1] that is particularly important in the face of con-
tinuous development and evolution. More specifically, our
study targets the maintainability aspects of understanda-
bility and changeability of model transformations [18, 26].
Given a group of participants, understandability can be qu-
antified in terms of correctness, completion time, and percei-
ved effort during bug-finding and multiple-choice style com-
prehension tasks. To measure changeability, we plan to use
bug-fixing and modification tasks, again using correctness,
completion time, and perceived effort for quantification.

The rest of the paper is structured as follows: Section 2
discusses related work. Section 3 introduces a motivating
running example that is used to explain the two reuse me-
chanisms for the comparison. Section 4 presents our study
design with an outline of the experimental variables of the
set-up, while Section 5 concludes.

2. RELATED WORK
The planned study is the first empirical investigation of

transformation reuse mechanisms. Empirical studies in the
area of model transformation have so far been confined to
the evaluation of transformation languages and approaches.
Acreţoaie et. al [2] have compared their usability-oriented
Visual Model Transformation Language to traditional visual
and textual languages. They found that their approach es-
tablishes a compromise between effort and correctness. In
an evaluation of their transformation-by-example approach,

Avazpour et al. [6] found that developers perceive the provi-
ded interaction-based tool support as useful during the deve-
lopment of transformations. Guana and Stroulia [9] propose
a study design to understand developer performance during
the development of model-to-code transformations and mea-
sure the effect of traceability visualizations. Conversely, only
reuse mechanisms for code have been investigated so far,
mostly from a product line perspective [8, 15].

3. MOTIVATING SCENARIO
Our motivating scenario (adapted from [23]) is a simpli-

fied move method refactoring, implemented via three trans-
formation rules depicted in Fig. 1: The first rule A transfers
a method m from its current containing class s to another
class t. This rule is a graph transformation rule that preser-
ves all elements marked with preserve, deletes all elements
marked with delete, and creates all elements marked with
create. Such rules are only applicable if all preserved and
deleted elements can be matched in a host model.

Rules B and C represent variants of A: B creates a wra-
pper method w for simple delegation to the method m that
is to be moved. This can be used to limit the effects of the
refactoring and avoid having to change all existing clients
of the class s. Rule C additionally creates an annotation
that marks w as deprecated to discourage future usage of
the wrapper method, which can be eventually deleted.

«create»
:Method

abstract=true
name=m

«preserve»
:Class

abstract=true
name=src

«preserve»
:Class

name=trg

«create»
:Annotation

value="Dep"

«create»
:Method

name=m

«preserve»
:Method

name=m

A: pullUp(src, trg, m)

«preserve»
:Method

name=m

«preserve»
:Class

name=src

3

1

«delete»
methods

«preserve»
:Class

name=trg

2

«create»
methods

«preserve»
extends

B: pushDown(src, trg, m)

«preserve»
:Class

name=src

6

4

«delete»
methods

«preserve»
:Class

name=trg

5«preserve»
extends

«create»
methods

«preserve»
:Method

name=m

9

7

«delete»
methods

8

«create»
methods

«preserve»
extends

10

«create»
methods

C: pushDownWithAbstract(src, trg, m)

«preserve»
:Method

name=m

«preserve»
:Class

name=src

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

«create»
methods

C: moveAndCreateDeprecatedDelegate(src, trg, m)

«preserve»
:Class

name=trg

«preserve»
type

«create»
:Method

name=m

«preserve»
:Method

name=m

«preserve»
:Class

name=src

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

«create»
methods

B: moveAndCreateDelegate(src, trg, m)

«preserve»
:Class

name=trg

«preserve»
type

«preserve»
:Method

name=m

«preserve»
:Class

name=src

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

A: move(src, trg, m)

«preserve»
:Class

name=trg

«preserve»
type

«create»
annotations

Figure 1: Three model transformation rules.

This simple example illustrates how multiple transforma-
tion rules can “share” a common part that must be repeated
in each variant if no reuse mechanism is provided. In realistic

applications where possibly hundreds of rules are required,
such pattern duplication can quickly lead to a maintenance
nightmare as changes, e.g., bug fixes, have to be consistently
applied to multiple, independent rules without tool support.

3.1 Rule refinement
The basic idea of rule refinement [4] is to enable a flexible

sharing and composition of common rule fragments. Pat-
tern duplication can be avoided in this way by including the
same fragment as a part of multiple rules. Rule refinement
can be applied to our running example to result in a network
of rule fragments as depicted in Fig. 2. Rule A remains un-
changed and is regarded as “resolved” as it does not refine
any other rule fragment (it has no outgoing “inheritance”
arrows). Rule B is reduced to a refinement of A, i.e., it is
produced by merging rule A with the specified refinement.
This merge operator is relatively straightforward: The dis-
joint union of both patterns (in general of multiple patterns)
is formed, and then all elements with the same identifier are
glued together. Similarly, rule C is specified as a refinement
of B, resulting in the same pattern as in Fig 1 by first re-
solving rule B and then repeating the same merging process
with the specified refinement for rule C. Note that the merge
operator requires the manual specification of identical ele-
ments, which is done by assigning names (e.g., s, me) to
pattern variables, a concept that is not to be confused with
parameters (e.g., src, trg, m), which are used to propagate
values across name attributes in this example.

«preserve»
:Class

name=src

«preserve»
:Class

name=trg

«create»
:Method

name=m

«preserve»
:Method

name=m

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

«create»
methods

moveMethodAddWrapper(src,trg,m)

«preserve»
type

«preserve»
:Method

name=m

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

moveMethod(src,trg,m)

«preserve»
type

«preserve»
:Class

name=src

«preserve»
:Class

name=trg

«preserve»
:Class

name=src

«preserve»
:Class

name=trg

«create»
:Annotation

value="Dep"

«create»
:Method

name=m

«preserve»
:Method

name=m

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

«create»
methods

moveMethod(src,trg,m)

«preserve»
type

«create»
annotation

 deprecate -> wrapper

«preserve»
:Class

name=src

«preserve»
:Class

name=trg

«create»
:Annotation

value="Dep"

«create»
:Method

name=m

«preserve»
:Method

name=m

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

«create»
methods

moveMethodAddDeprecatedWrapper(src,trg,m)

«preserve»
type

«create»
annotation

«preserve»s
s:Class

name=src

«create»
me:Method

name=m

«create»
methods

B: addWrapper(src,m)

«preserve»
:Method

name=m

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

A: moveMethod(src,trg,m)

«preserve»
type

«preserve»
s:Class

name=src

«preserve»
:Class

name=trg

«create»
:Annotation

value="Dep"

«create»
me:Method

name=m

C: markDeprecate(m)

«create»
annotation

Figure 2: Refinement rules.

3.2 Variability-based rules
In stark contrast to rule refinement, variability-based rules

[21, 23, 24] enable an integrated representation of multiple
rules in a single diagram. The variability-based rule for our
running example is depicted in Fig. 3. The rule comprises
two configuration options that are denoted via variability an-
notations, e.g., the annotation [wrapper] is used to indicate
which edges and nodes in the diagram are only present when
configuration option wrapper is set to true. Note that depen-

dencies between configuration options can be specified, e.g.,
the dependency deprecate -> wrapper (upper-left corner)
is used to indicate that the configuration option deprecate

requires wrapper, i.e., all elements annotated with wrapper

are also present in the deprecate variant of the rule.

«preserve»
:Class

name=src

«preserve»
:Class

name=trg

«create»
:Annotation

value="Dep"

«create»
:Method

name=m

«preserve»
:Method

name=m

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

«create»
methods

moveMethod(src,trg,m)

«preserve»
type

«create»
annotation

 deprecate -> wrapper

«preserve»
:Method

name=m

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

moveMethod(src,trg,m)

«preserve»
type

«preserve»
:Class

name=src

«create»
:Method

name=m

«create»
methods

addWrapper(src,m)
extends
moveMethod(src,trg,m)

«preserve»
:Class

name=src

«preserve»
:Class

name=trg

«create»
:Annotation

value="Dep"

«create»
:Method

name=m

deprecate(m) extends
addWrapper(src,m)

«create»
annotation

Figure 3: Variability-based rule.

This scenario illustrates a set of maintainability trade-offs
that we aim to explore in our study. Both considered me-
chanisms help avoid pattern duplication, which may simplify
the consistent editing of multiple variants at once. In ad-
dition, if applied skillfully, rule refinement can lead to com-
prehensible and maintainable modular rule fragments, re-
flecting an independent handling and separation of concerns
in the transformation. Variability-based rules improve nota-
tional compactness drastically, thereby potentially reducing
reading effort: it is well-known that humans struggle with
processing more than 7±2 units of information at once [17].
On the downside, as they require developers to derive the
included rule variants in their minds, both approaches may
increase cognitive overhead. In particular, variability-based
rules may suffer from their increased amount of informa-
tion in each individual diagram, comparable to the case of
variability-annotated code, where a decrease in developer
performance was found [15].

4. STUDY DESIGN
To investigate the identified trade-offs further, we propose

the following research questions:

• RQ1: Which reuse mechanism is most beneficial for
developers in terms of understandability and changea-
bility?

• RQ2: How do the studied reuse mechanisms compare
to offering no reuse at all?

• RQ3: Can the understandability and changeability of
the selected reuse mechanisms be further improved via
the available tool support?

To address these research questions, we plan to administer
a set of comprehension and implementation tasks to parti-
cipants who are familiar with graph-based model transfor-
mations. Such participants will be recruited from research
groups, as well as master-level model-driven engineering co-
urses.

We plan to apply a crossover trial, a variant of the within-
subject design [10]: in this design, all subjects are sequen-
tially exposed to each treatment. This choice is motivated
by the statistical efficiency of the design: it allows the nu-
mber of required participants to be minimized. Moreover,

the influence of confounding factors (e.g., participant ex-
pertise) is reduced as each participant serves as their own
control. A main threat to this kind of study design are lear-
ning effects: over the course of the experiments, participants
become more experienced and might carry over gained expe-
rience among tasks. A viable mitigation to this threat is to
vary the order of treatments among participants. We discuss
additional threats and mitigation strategies in Sec. 4.3.

To discuss the different dimensions that influence our ex-
periment, we first outline its variables in the following. We
then specify our research plan as one possible path through
the design space spanned by these variables. Finally, we
describe potential threats to validity in our set-up, and our
means of mitigating these threats.

4.1 Experimental variables

4.1.1 Independent variables
As the single independent variable in the planned experi-

ment, we measure the effects of the employed reuse mecha-
nism. For RQ1 and RQ3, only the data points of the two
proposed reuse mechanisms are considered, whereas RQ2 in-
corporates the data points for the no-reuse case as well.

4.1.2 Dependent variables
The variables we want to observe as a result of the expe-

riment are the following:
Correctness score. We plan to measure correctness ba-

sed on how well participants are able to solve certain tasks.
As these tasks might not be directly comparable, counting
the number of correctly solved tasks only provides ordinal
values.

Perceived effort. Participants will be asked to rate the
perceived effort it took to solve all tasks using a suitable
ordinal scale ranging from, e.g., 0 to 10 to quantify effort.

Completion time. For all tasks, completion times will
be measured for all participants. This qualitative value can
be contrasted with correctness scores and perceived effort to
yield further insights.

User preference. Finally, regardless of correctness, per-
ceived effort, and completion time, we shall ask users which
reuse mechanism they prefer and enjoyed using the most.

For statistical analysis, we intend to apply the Wilcoxon
signed-rank test [28], which is a robust non-parametric test
to identify significant differences between two treatments. It
assumes data measured at least on an ordinal scale, which
applies to all of our dependent variables.

A remaining issue concerns the fact that we are interested
in two different quality goals that should ideally be studied
as separate entities. Yet, as changeability clearly depends
on understandability, it is not obvious how these two diffe-
rent goals can be studied in isolation. To this end, a viable
method is to collect performance data for both goals, and
to subtract the understandability from the changeability re-
sults. For instance, the time required to actually change
the affected rules can be obtained from subtracting the time
required to understand the rules from the full completion
time. A prerequisite for this method is that subtraction
is supported by the underlying scale, which is the case for
completion times.

4.1.3 Controlled variables
The design space of our controlled variables comprises the

Name Possible values

Independent variable Reuse mechanism { Rule refinement, variability-based rules, no reuse }
Controlled variables Transformation language { Henshin, ATL, EOL, ... }

Example type { queries, endogenous, exogenous }
Task type { bug-finding, quiz, bug-fixing, modification task }
Environment { pen-and-paper, tool }

Dependent variables Correctness score Ordinal
Perceived effort Ordinal
Completion time Interval
User preference Ordinal

Table 1: Experimental variables

following dimensions:
Transformation language. The variety of available mo-

del transformation languages is usually classified along a nu-
mber of main paradigms, most prominently imperative, hy-
brid, and graph-based model transformations [7, 16]. In the
planned study, we aim to investigate reuse in the context
of Henshin [5], a graph-based language. The reason for this
choice is twofold: first, examples and tool support for one
of the supported reused mechanisms are readily available in
Henshin (convenience sampling). Second, the graphical syn-
tax of Henshin closely resembles that of a group of languages
including eMoflon [3], EMorF [12], and QVTs [29], rende-
ring it a promising choice to obtain results which might also
generalize to these languages. In addition, Henshin is under
active development and in widespread use.1 Our study will
be based on bug-finding and bug-fixing tasks, since these ta-
sks can avoid lengthy textual task descriptions that might be
hard to match to the presented visual representations [27].
Our example rules will mostly be endogenous, such as those
shown in the running example, allowing us to establish a
compromise between external and internal validity.

Example types. In the choice of example transforma-
tions, we need to account for the inherent trade-off between
external and internal validity [20]: by using simple and easy-
to-understand examples, we can mitigate the effect of parti-
cipant heterogeneity, but risk ending up with an experiment
that is not realistic enough. The simplest transformation
that can be expressed using rules is a query – a rule perfor-
ming no modifications of the input model. Queries are ge-
nerally easy to understand; yet in realistic settings they are
likely to be expressed using dedicated query languages. En-
dogenous transformations – transformations that update the
input model or translate it to a model of the same language
– are a typical use-case for graph-based model transforma-
tion, but require an understanding of its underlying repla-
cement mechanism. Exogenous transformations, creating an
output model of a different language, are most complicated
as they require the understanding of two meta-models and
their relations; yet they are particularly important for the
typical forward-engineering process in model-driven engine-
ering. Two other sub-dimensions of this dimension are the
number of examples and the size of the individual examples.

We intend to conduct a pilot study to find a suitable co-
llection of examples that avoids participant fatigue, using a
different set of participants than in the actual study to avoid

1For a selection of publications describing Henshin’s use
in numerous research projects, see https://www.eclipse.org/
henshin/publications.php

history effects. Other goals of the pilot study are to deter-
mine if we can extract any meaningful results (e.g. maybe
all task are too difficult and we do not gather sufficient use-
ful data), and to see if our assumptions about participant’s
abilities hold true.

Task types. To study understandability and changeabi-
lity, we plan to administer tasks allowing us to quantify these
properties. The understandability of a software artifact can
be investigated using bug-finding tasks or quiz-style com-
prehension questions. In the example, a bug-finding task
would be to swap the delete and create edges and have the
user find and mark this error on a printout. A comprehen-
sion question could be “How many individual rules can be
derived from this representation?”. Changeability refers to
the ease of modifying or extending the functionality of a
system. Two possible kinds of tasks to study changeability
are the fixing of a preconceived bug, such as the one des-
cribed above, and the implementation of a feature request
such as “I need a set of transformation rules with the same
behavior as the given ones, but with one modification: the
target class must have a field whose type is the source class”.
A challenge for the study design lies in choosing a feasible
subset of all tasks so as to avoid exhausting the participants.
To this end, we plan to use bug-finding and bug-fixing tasks,
since these tasks can avoid lengthy textual task descriptions
that might be hard to match against the presented visual
representations [27].

Environment. Another balancing act between control
and remaining adequately realistic concerns the experimen-
tal environment. By setting up the participants in a contro-
lled pencil-and-paper environment, we can eliminate confo-
unding factors related to the tool implementations, for in-
stance, differences in visual appearance. Such a controlled
environment is, however, not really comparable to the real-
world environment that actual users of the reuse mechanisms
find themselves in, especially in the case of changeability ta-
sks. Moreover, RQ3 can only be studied by comparing the
reuse mechanisms with and without the actual tool support
provided. As of now, tool support for rule refinement [13]
and VB rules [25] exists, but is implemented within different
model transformation languages and corresponding tool en-
vironments – eMoflon and Henshin. To ensure optimal con-
trol during the experimental comparison, both mechanisms
should be implemented for the same language and tool en-
vironment.

4.2 Quantitative data
To gain additional insight about the perceived benefits

and pitfalls of both reuse approaches, we also plan to col-
lect quantitative data, using text fields in the task sheet to
collect participants’ opinions after their completion of the
experiment.

4.3 Potential threats to validity
In addition to the threats already described in the previ-

ous discussion, we plan to mitigate researcher bias by stri-
ving to ensure that participants are unable to directly map
reuse mechanisms to researchers, e.g., by anonymising tool
names.

To avoid selection bias in favor of volunteers, whose level
of motivation does not reflect that of the whole population,
we will offer a small prize among participants.

Finally, the participants’ performance can be confounded
by relevant prior knowledge, e.g., from exercise in the area
of software product lines and other annotation-based model
families. To study the effect of prior knowledge, we plan to
ask participants to rate their own prior knowledge of relevant
topics.

5. CONCLUSION
In this paper, we present our study design for an empi-

rical comparison of two reuse mechanisms for graph-based
model transformation languages. The selected reuse mecha-
nisms exemplify the contrasting reuse paradigms of modula-
rizing a set of rules and merging similar rules in a variability-
annotated representation.

Our prior expectations are as follows: we expect refine-
ments to be (perhaps only slightly) more understandable
but less changeable than variability rules (RQ 1), both re-
use mechanisms to substantially improve changeability but
(at least without substantial training) reduce understanda-
bility (RQ 2), and that appropriate tool support plays a
crucial role in both cases (RQ 3). It remains to be seen if
our experiment results will support or refute these initial hy-
potheses. Addressing the trade-off between different forms
of experimental validity [20], our set-up aims to establish a
compromise between internal and external validity. A series
of follow-up studies moving the spotlight in either direction
can lead to a more comprehensive picture.

The results of our study will provide evidence to desig-
ners of model transformation languages who are planning
to include a reuse mechanism within their language. In a
broader context, we hope to shed a new light on the discus-
sion of when and how software reuse can be established in a
manner that is most beneficial to all involved stakeholders.

Acknowledgements: The authors wish to thank Vlad
Acret,oaie and the anonymous reviewers for their careful rea-
ding of this paper and their detailed comments and sugges-
tions.

6. REFERENCES
[1] ISO/IEC 25010:2011. Systems and software

engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System
and software quality models, 2011.

[2] V. Acreţoaie, H. Störrle, and D. Strüber. VMTL: a
language for end-user model transformation. Software
& Systems Modeling, pages 1–29, 2016.

[3] A. Anjorin, M. Lauder, S. Patzina, and A. Schürr.
eMoflon: Leveraging EMF and Professional CASE
Tools. Informatik, 192:281, 2011.

[4] A. Anjorin, K. Saller, M. Lochau, and A. Schürr.
Modularizing Triple Graph Grammars Using Rule
Refinement. In International Conference on
Fundamental Approaches to Software Engineering,
pages 340–354. Springer, 2014.

[5] T. Arendt, E. Biermann, S. Jurack, C. Krause, and
G. Taentzer. Henshin: Advanced Concepts and Tools
for In-Place EMF Model Transformations. In
International Conference on Model Driven
Engineering Languages and Systems, pages 121–135.
Springer, 2010.

[6] I. Avazpour, J. Grundy, and L. Grunske. Specifying
model transformations by direct manipulation using
concrete visual notations and interactive
recommendations. Journal of Visual Languages and
Computing, 28:195 – 211, 2015.

[7] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems
Journal, 45(3):621–645, 2006.

[8] J. Feigenspan, C. Kästner, S. Apel, J. Liebig,
M. Schulze, R. Dachselt, M. Papendieck, T. Leich, and
G. Saake. Do background colors improve program
comprehension in the #ifdef hell? Empirical Software
Engineering, 18(4):699–745, 2013.

[9] V. Guana and E. Stroulia. How Do Developers Solve
Software-engineering Tasks on Model-based Code
Generators? An Empirical Study Design. In First
International Workshop on Human Factors in
Modeling, pages 33–38. CEUR-WS.org, 2015.

[10] B. Jones and M. G. Kenward. Design and analysis of
cross-over trials. CRC Press, 2014.

[11] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In International Conference
on Software Engineering, pages 311–320. ACM, 2008.

[12] L. Klassen and R. Wagner. EMorF-A tool for model
transformations. Electronic Communications of the
EASST, 54, 2012.

[13] G. Kulcsár, E. Leblebici, and A. Anjorin. A Solution
to the FIXML Case Study Using Triple Graph
Grammars and eMoflon. In Transformation Tool
Contest, pages 71–75. CEUR-WS.org, 2014.

[14] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel,
W. Retschitzegger, and W. Schwinger. Reuse in
model-to-model transformation languages: are we
there yet? Software & Systems Modeling,
14(2):537–572, 2015.

[15] J. Melo, C. Brabrand, and A. W ↪asowski. How Does
the Degree of Variability Affect Bug Finding? In
International Conference on Software Engineering,
ICSE ’16, pages 679–690, New York, NY, USA, 2016.
ACM.

[16] T. Mens and P. V. Gorp. A taxonomy of model
transformation. Electr. Notes Theor. Comput. Sci.,
152:125–142, 2006.

[17] G. A. Miller. The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. Psychological review, 63(2):81, 1956.

[18] S. Nalchigar, R. Salay, and M. Chechik. Towards a
catalog of non-functional requirements in model

transformation languages. In Workshop on the
Analysis of Model Transformations. CEUR-WS.org,
2013.

[19] S. Sendall and W. Kozaczynski. Model
Transformation: The Heart and Soul of Model-Driven
Software Development. IEEE Software, 20(5):42–45,
2003.

[20] J. Siegmund, N. Siegmund, and S. Apel. Views on
internal and external validity in empirical software
engineering. In International Conference on Software
Engineering, volume 1, pages 9–19. IEEE, 2015.

[21] D. Strüber. Model-Driven Engineering in the Large:
Refactoring Techniques for Models and Model
Transformation Systems. PhD thesis, University of
Marburg, 2016.

[22] D. Strüber, T. Kehrer, T. Arendt, C. Pietsch, and
D. Reuling. Scalability of Model Transformations:
Position Paper and Benchmark Set. In Workshop on
Scalable Model Driven Engineering, pages 21–30.
CEUR-WS.org, 2016.

[23] D. Strüber, J. Rubin, T. Arendt, M. Chechik,
G. Taentzer, and J. Plöger. RuleMerger: Automatic
Construction of Variability-Based Model
Transformation Rules. In International Conference on
Fundamental Approaches to Software Engineering,

pages 122–140. Springer, 2016.

[24] D. Strüber, J. Rubin, M. Chechik, and G. Taentzer. A
Variability-Based Approach to Reusable and Efficient
Model Transformations. In International Conference
on Fundamental Approaches to Software Engineering,
pages 283–298. Springer, 2015.

[25] D. Strüber and S. Schulz. A Tool Environment for
Managing Families of Model Transformation Rules. In
International Conference on Graph Transformation,
pages 89–101. Springer, 2016.

[26] E. Syriani and J. Gray. Challenges for addressing
quality factors in model transformation. In
International Conference on Software Testing,
Verification and Validation, pages 929–937, 2012.

[27] I. Vessey and D. Galletta. Cognitive fit: An empirical
study of information acquisition. Information systems
research, 2(1):63–84, 1991.

[28] F. Wilcoxon. Individual Comparisons by Ranking
Methods. Biometrics Bulletin, 1(6):80–83, Dec. 1945.

[29] E. D. Willink. Optimized Declarative Transformation:
First Eclipse QVTc Results. In Workshop on Scalable
Model Driven Engineering, pages 47–56.
CEUR-WS.org, 2016.

