
Towards DevOps in Multi-provider Projects

Masud Fazal-Baqaie1, Baris Güldali2, Simon Oberthür3

Abstract: DevOps addresses the continuity of development and operations activities in the

software development lifecycle in order to achieve a better software experience via shorter

development and release cycles with improved quality. A challenge in enterprise context is to

achieve DevOps in multi-provider projects by synchronizing and coordinating various teams. We

report on our experience in implementing DevOps principles in such a multi-provider environment

and present good practices as well as open challenges.

Keywords: Multi-provider projects, DevOps, Continuous Software Engineering, Continuous

Quality Management

1 Motivation

Big, enterprise-scale software systems are nowadays typically developed in a multi-

provider environment with several onshore and offshore vendors. Adopting agile

practices allows for frequent deliveries by the vendors, thus enabling frequent integration

and early feedback by customers and reducing the project risks. In order to handle the

customer requirements and the production incidents as soon as possible, companies are

thriving to implement DevOps principles [Da16].

DevOps is based on and extends agile principles by fostering communication and

collaboration. It advocates to overcome an “us-and-them” mentality, especially between

people involved in software development (Dev) and people involved in software

operations (Ops). Ideally, software teams have end-to-end responsibility for a software

artefact throughout its whole lifecycle: from the product planning and the

implementation, over its delivery and rollout to its operation. This is especially

challenging in multi-provider environments that induce an additional layer of complexity

for delivery management and quality management.

In this paper, we report on our experience based on a project from the financial domain.

The client company is introducing a new client-centered, digital sales channel.

Technically, this requires to open and extend existing backend systems for access via

web-based interfaces for business partners and customers. Business processes need to be

redeveloped and aligned, involving multiple business departments at once. The project

consists of multiple sub-projects, where teams from the client company and teams from

1 S&N CQM GmbH, Klingenderstraße 5, 33100 Paderborn, masud.fazal-baqaie@sn-cqm.de
2 S&N CQM GmbH, Klingenderstraße 5, 33100 Paderborn, baris.gueldali@sn-cqm.de
3 Mobile & Cloud Systems, Software Innovation Campus Paderborn, Zukunftsmeile 1, 33102 Paderborn,

oberthuer@sicp.de

Copyright © 2017 for the individual papers by the papers' authors. Copying permitted for private and academic

purposes. This volume is published and copyrighted by its editors.

2nd Workshop on Continuous Software Engineering

18

several providers work together, involving also an offshore provider. The project was set

up to follow an agile methodology. After realizing several improvements by better

aligning with agile practices [FR15], it now adopts more and more DevOps principles

for further improvements.

2 Experiences in Dev and Ops in Multi-provider Projects

Applying DevOps in a multi-provider project poses additional challenges. The first

factor is heterogeneity. On the one hand, multi-provider projects can have cultural

heterogeneity on different levels: Based on responsibilities, e.g., development vs.

operation, based on the region people are working in, e.g., when offshoring, or based on

differing company philosophies, e.g., regarding formality and hierarchies. On the other

hand, multi-provider projects can have legal differences based on regulations and

contracts, e.g., who is allowed to work on what and how. The second factors is scale:

multi-provider projects are facing additional complexity with respect to the coordination

of all the activities due to the size of the project that is typically big.

In the following, we want to describe challenges and good practices based on our

experience. We do this based on the software lifecycle from planning to operations.

Adopting a DevOps software lifecycle requires continuous quality management. We

describe also the integration of quality assurance activities throughout the lifecycle.

In Product Planning, the project is facing mainly two challenges. First, overall business

processes need to be realized by the interplay of various IT systems, thus they need to be

cut down to system-specific requirements and distributed among the teams. Here, the

heterogeneity described in the introduction needs to be accounted for, e.g., differing

delivery dates. Second, new requirements have to be prioritized together with defects

and improvement changes reported from production. In our project, we have created a

macro plan (Project backlog) specifying the features of components (Product backlogs)

and delivery schedules. Visual workflow modelling using BPMN helps for better

understanding of the workflows, the component interfaces and the SLAs. Dev teams of

providers derive their requirements (Sprint Backlogs) based on the Product backlog and

the SLAs. All backlogs and production incidents are transparent to the project

management all the time. Continuous reporting enables monitoring of risks and

synchronizing the sprint planning of provider teams (see also using the agile release train

pattern [Le11]). As quality guards, we use agile metrics indicating the execution status

of test cases and criticalities of defects. The defects are classified and prioritized in direct

communication between business departments, project managements and vendor teams

[FGS15].

For the Implementation, beside architectural topics, a main concern is to achieve

transparency about the quality delivered by various teams. This varied heavily among

the different teams and was an obstacle for judging about the overall quality of the

product. We have developed a maturity model to get transparency about the quality

levels of subprojects and to motivate them to reach the next maturity level. The maturity

2nd Workshop on Continuous Software Engineering

19

levels define minimal requirements on quality aspects (e.g. unit testing, UI testing) and

standards (e.g. minimum test coverage, code quality measures) [FGG16]. Defining

standardized Git (source code management) workflows and continuous integration

pipelines helps to onboard new teams quickly. Teams use common artifact repositories

and common Docker base images, which enable quick reaction to security vulnerabilities

and to performance issues. We defined a microservice-based architecture [Ne15], which

improves the flexibility of applications and reduces the dependencies between functional

components.

The Delivery Management coordinates the deliveries of various teams on the basis of

macro planning and product backlogs. After we have experienced some heavy delays of

critical components, which resulted in delay of the whole project, we have worked on

backward-compatibility of components. Teams have to implement database changes and

interface changes in a backward compatible way. Thus, we can deploy components of

various vendors as soon as they are delivered. Automated test scripts help to quickly

validate that no regressions are injected between component interfaces due to

unsynchronized deliverables.

Rollout Management: Deployments of many components by different vendors can be

complex because of dependencies and thus need to be carefully planned. Typically such

deployments contain applications, microsservices and databases. If offshore providers

are involved, time zone differences and holidays may be a real problem for rollout

management. Also the conditions of the hosting providers must be considered in rollout

planning. The more components and teams a deployment involve, the longer is the

installation time and the higher is the risks that something goes wrong. We made use of

container technologies, e.g. Docker, for efficiently preparing installation packages and

push them to various environments in very short times. Automated sanity tests validate,

whether the productive system behaves as expected in production environment. Both the

container technology and the backward compatible deliveries help us to reduce the risks

of rollbacks in case of production problems.

Operations: Using an agile delivery model allows to continuously improve the product

based on the feedback from the operations. Especially for enterprise-scale software in a

multi-provider environment, it is important to maintain an overview and to associate

incidents with responsible components/providers. In order to ensure the reliability and

high availability of our systems, we have implemented clustering and failover

mechanisms. Monitoring techniques detect performance issues and if components are

not available they restart them. Meanwhile emergency teams are informed to resolve

incidents, when automated start/stop scripts do not manage to resolve the production

problems. We have used central logging for collecting runtime data from all components

and created a log dashboard for various teams. We had to fulfill some special legal

requirements for logging in order to supply offshore teams with logs for debugging.

2nd Workshop on Continuous Software Engineering

20

3 Outlook

While we are making progress in our project with adopting DevOps principles, we are at

no means at the end. One interesting aspect we are seeing is that in the past, effort was

put in test mainly to increase the quality. Today with DevOps, automated software test is

an enabler for shortening the release cycles while keeping or even increasing the quality.

Thus, quality assurance can lead not only to increased quality but also to reduction of

cost. Our vision is to push our concept of quality guards further, such that they become a

self-contained part of the software lifecycle. Quality guards at different stages of the

complete development and operation pipeline (from unit tests, over integration tests, to

monitoring in production) assure that the requirements are fulfilled and, if they are not

met, appropriate measures can be applied. The tool and framework landscape, which

support such processes is today manifold, but needs proper selection and integration. A

continuous quality management is therefore required. In this management, the quality

guards have to be defined. Also important is to implement proper reactions for when a

guard is not met. If, for example, an integration test fails, the team which added a new

version of a component must be informed. If a guard fails in production, e.g. the

monitoring detects the failure of components, unavailability of a service or unusual

memory usage, resilient mechanisms must take place. Embracing the failure, e.g., like

Netflix [Tse13] is doing by injecting failure to the productive system (Simian Army) is a

good way to force every involved party to build systems to be able to heal itself.

Independent delivery of chunks of functionality/parts of an application can help to keep

speed for new/changing functionality. Building on an architecture like microservices

[Ne15] and having end-to-end ownership (from dev over deploy to run) allows teams to

deploy on their own speed independently.

Literaturverzeichnis

[Da16] Daly, D. et.al.: Enterprise DevOps – Building a Service Oriented Organization. Atos,

2016. http://ascent.atos.net/?wpdmdl=12439

[FGG16] Fazal-Baqaie, M.; Güldali, B.; Grieger, M.: Ganzheitliches Qualitätsmanagement in

agilen Groß- Projekten. In (Engstler, M. et.al. Hrsg.): Proc of Projektmanagement und

Vorgehensmodelle 2016. Köllen Druck+Verlag GmbH, Bonn, 2016, S. 109-120

[FGS15] Fazal-Baqaie, M.; Grieger, M.; Sauer, S.: Tickets without Fine - Artifact-based

Synchronization of Globally Distributed Software Development in Practice. In

(Abrahamsson, P.; Corral, L.; Oivo, M.; Russo, B. Hrsg.): 16th Int. Conf. of Product

Focused Software Development and Process Improvement. Springer, LNCS, vol. 9459,

2015, S. 167-181

[FR15] Fazal-Baqaie, M.; Raninen, A.: Successfully Initiating a Global Software Project. In:

Industrial Proc of the 22nd European Systems Software & Service Process Improvement

& Innovation Conference (EuroSPI²2015). WHITEBOX, Denmark, 2015.

[Le11] Leffingwell, Dean: Agile Software Requirements. Addison-Wesley, 2011.

[Ne15] Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly, 2015.

[Ts13] Tseitlin, A.: The antifragile organization. In: Commun. ACM 56, 8 (August 2013), S. 40-

44. DOI=http://dx.doi.org/10.1145/2492007.2492022

2nd Workshop on Continuous Software Engineering

21

http://ascent.atos.net/?wpdmdl=12439

