
Continuous Prototyping:
Unified Application Delivery
from Early Design to Code

Lukas Alperowitz1, Andrea Marie Weintraud2, Stefan Christoph Kofler3, and Bernd Bruegge4

Abstract: Developing for devices like smartphones, tablets or smartwatches is more than just
“shipping code“. Especially in mobile development there is a strong focus on user interface de-
sign and user experience. In order to explore the design space, development teams and designers
need early feedback from users testing the designs.

Continuous Delivery (CD) is a well-established technique for the delivery of software. In this paper
we describe Continuous Prototyping which extends CD to cover the delivery of early artifacts like
user interface mockups that usually do not benefit from an automated delivery process. Continuous
Prototyping enables stakeholders to receive all artifacts through a unified delivery channel in fast
cycles, from the first mockup to the finished product.

We developed PROTOTYPER as a tool to demonstrate the technical feasibility of Continuous Proto-
typing. PROTOTYPER allows developers and designers to deliver mockups, mobile applications as
well as a mixture of both using the same deployment pipeline.

1 Introduction

Developing for devices like smartphones or smartwatches is more than just “shipping
code“. Especially in mobile application development user expectations regarding the user
interface design and user experience are high. Therefore, development teams do not only
consist of software developers. User interface and experience designers play an essential
role in all phases of the evolution of a mobile application. In early project phases they
provide interactive mockups to help the development team to define and refine the re-
quirements. By providing design elements or mockups for a certain functionality, they
contribute to new features in later phases of a project [Ru09]. These mockups help the
software team to define the overall interaction of the user with the application [Be09]. Cur-
rent mobile applications are leveraging multi-modal interaction techniques such as touch
or speech input. They also often incorporate heterogeneous IoT devices like sensors and
wearables. A mockup for such an application can be complex already in an early project
stage.

1 Technical University of Munich, Germany, alperowi@in.tum.de
2 Technical University of Munich, Germany, weintraa@in.tum.de
3 Technical University of Munich, Germany, koflers@in.tum.de
4 Technical University of Munich, Germany, bruegge@in.tum.de

Copyright c© 2017 for the individual papers by the papers’ authors. Copying permitted for private and aca-
demic purposes. This volume is published and copyrighted by its editors.

2nd Workshop on Continuous Software Engineering

36



Target 
Environment

Non-Target 
Environment

Integration 
Service

Delivery 
ServiceRepository

Designers

Developers

Au
to

m
at

ed
 D

ep
lo

ym
en

t
M

an
ua

l D
ep

lo
ym

en
t

UsersE-Mail

OfflineWeb

Paper

App

Proprietary 
Solution

Sourcecode

PDF

Proprietary
Format

Paper

HTML

Mockups

PDF

Proprietary
Format

Paper

HTML
Mockups

Figure 1: Current Practice: Software is delivered using a deployment pipeline, mockups
manually and using various channels.

Although mockups are an important part of mobile application development, their delivery
is given little attention. While Continuous Delivery (CD) is a well-established technique
for the delivery of software, mockups are delivered manually using various channels rang-
ing from e-mail, offline media to web-based solutions and come in various file-formats.
Figure 1 illustrates this discrepancy.

We think the delivery of mockups should be as easy and automated as the delivery of soft-
ware. We believe there is a need for a unified delivery concept for application development
which covers all phases from the creation of mockups to actual software.

This paper introduces the concept of Continuous Prototyping to bridge the gap between the
delivery of mockups and software. Continuous Prototyping allows designers and develop-
ers to deliver mockups as well as software using the same, unified deployment pipeline.

The remainder of this paper is structured as follows. In Section 2 we revisit the current
research in the field of user interface prototyping and CD. We then define the term Con-
tinuous Prototyping in Section 3. In Section 4 we describe how we evaluated Continuous
Prototyping using a design-demonstration called PROTOTYPER. We finally provide an out-
look on our next steps in Section 5.

2 Background

2.1 Prototyping

There are several definitions of prototypes in software engineering and human-computer
interaction. Bruegge and Dutoit refer to prototypes as simplified versions of a system,
similarly to Guida et al. who state that ”[a] prototype is a dynamic model of the soft-
ware system under construction” [BD10]. Prototypes are demonstrating parts of the final
system in a simplified manner. They are often used for the exploration and elicitation of
requirements.

2nd Workshop on Continuous Software Engineering

37



Several purposes and benefits of prototypes are mentioned in literature: a prototype tests
and demonstrates the feasibility of the functionality of a system while assessing possible
risks; it provides a common basis for discussion between developers, users and other stake-
holders; and it is useful to explore a project’s requirements which are often not completely
known upfront [Ru09][Ur92][Bu92][Be09][GLZ99].

In the domain of mobile applications, the term mockup is frequently used in place of or
in relation to prototype. Within this paper the term ’mockup’ shall refer to prototypes of
applications that are not written in code.

Mockups can be analyzed along different dimensions: representation, precision, interactiv-
ity and evolution [BLM12]. The representation depends on the format, which might be on
paper, created with a design tool or with an online service. According to the representation,
the mockup can then vary in detail and can be interactive or non-interactive, evolutionary
or revolutionary. Furthermore, mockups can be executable. We define a mockup to be ex-
ecutable if it can be executed on the target environment of a system to be developed.

There is a variety of tools to create mockups of different form, precision, interactivity and
executability. Several design programs and online tools, such as Illustrator1, Sketch2, Bal-
samiq3 and Marvelapp4 are capable of creating interactive mockups. Some services offer
the possibility to download and execute a mockup on a mobile phone using proprietary so-
lutions. However, as shown in Figure 1, none of these services comprehends the delivery
process as a whole of both mockups and software being executable in the target environ-
ment. The term target environment refers to the hardware and software environment the
product in development will be deployed to when released to its end users.

2.2 Continuous Delivery

CD is a software delivery concept which fits, because of its iterative nature, well into agile
software projects [HF10a]. It implies that the software being developed is always in a state
where it can easily be delivered to the customer or end user – but also that software is in
fact frequently and regularly released. With the practices Humble and Farley describe in
their book ”Continuous Delivery”, they claim that ”[s]oftware releases can – and should –
be a low-risk, frequent, cheap, rapid, and predictable process” [HF10a]. In order to achieve
this, the process of building, deploying, testing and releasing software should be largely
automated and tracked [Na15][HF10a]. CD is based on appropriate tool support for build-
ing a deployment pipeline. A typical deployment pipeline consists of a version control
system which keeps artifacts like source code or media items, an integration service which
automates the build and test process and a delivery service which covers aspects related to
deployment.

1 http://www.adobe.com/de/products/illustrator.html
2 https://www.sketchapp.com
3 https://www.balsamiq.com
4 https://www.marvelapp.com

2nd Workshop on Continuous Software Engineering

38



2.3 Our Contribution

Although there are several connections in literature between prototyping on the one hand
and agile methods on the other, there does not seem to be an explicit link between CD
and prototyping. While CD is well established for the delivery of software built from
code, the automated delivery of mockups is not covered yet. Indeed, during our literature
research we could not find a source explicitly concerned with the automated delivery of
mockups. We also found no source that analyzed the role of the delivery process during the
transition from mockups to actual software. In the next section we discuss how Continuous
Prototyping solves this by allowing development teams to use the same delivery process
for mockups as they use for software.

3 Continuous Prototyping

Continuous Prototyping incorporates iterative prototyping as an approach to software de-
velopment. Additionally, it adopts CD for the delivery of these prototypes, such as mock-
ups. Continuous Prototyping provides an automated and repeatable delivery process for all
kinds of product increments from mockups to applications. We believe that the benefits of
CD claimed by Humble and Farley should be applied to the delivery of mockups: shorter
development cycles, faster collection of user feedback and in the end higher quality of
software products [HF10b].

Target 
EnvironmentIntegration 

Service
Delivery 
ServiceRepository

Designers

Developers

Users

Au
to

m
at

ed
 D

ep
lo

ym
en

t

Sourcecode

App
PDF

Proprietary
Format

Paper

HTML

Mockups

Unified Deployment Pipeline

Figure 2: Solution: Continuous Prototyping - Deployment of software as well as interactive
mockups using a unified deployment pipeline.

The foundation of Continuous Prototyping is a unified deployment pipeline, shown in
Figure 2. Using this pipeline, artifacts like interactive mockups and actual software can
be delivered to the target environment and accessed by users through the same channel.
We believe that developers, designers and users gain the following benefits if they adopt
Continuous Prototyping in their software projects right from the beginning:

Developers apply a certain set of workflows to structure their development activities like
using a branching model in the version control system or a structured build promotion pro-
cess for the delivery to different groups of users. Adopting Continuous Prototyping allows
them to apply the same workflows for mockups as they are already using for apps. For
example they could include the same user feedback system or usage analytics framework,
starting from the delivery of the first mockup.

2nd Workshop on Continuous Software Engineering

39



Designers can deliver executable mockups using the unified deployment pipeline. In col-
laboration with the development team they can prepare combined deliveries which include
mockups and already implemented parts. The unified delivery pipeline allows Designers
to apply concepts such as A/B testing to both mockups and mobile apps.

Testers and Users can access each new iteration, regardless of whether it is an early
mockup or already implemented software, using the same delivery service such as an in-
ternal app-store. Starting from the first mockup, they can provide feedback using the same
workflow for each release.

In the next section we present PROTOTYPER, a tool we developed to demonstrate the
technical feasability of Continuous Prototyping.

4 Design Demonstration

Figure 3: PROTOTYPER’S deployment pipeline architecture

PROTOTYPER is a software solution we developed in order to allow developers and de-
signers to automate the delivery of both mockups and software. In this section we describe
the architecture of the PROTOTYPER solution.

Figure 3 shows PROTOTYPER’s overall architecture. PROTOTYPER allows software teams
to deliver a user-interface mockup – created with a 3rd party mockup tool of their choice
– as an executable mobile application. In order to achieve this, PROTOTYPER is integrated
into a deployment pipeline, which in our example consists of a version control service,
continuous integration service and a delivery service.

Within this pipeline, PROTOTYPER can operate in three modes:

PROTOTYPER PACKAGER Designers can use PROTOTYPER PACKAGER to transform
mockups created using mockup tools into mobile apps. Figure 3 shows the components
involved in this workflow. A developer or designer creates a mockup using a 3rd party tool
(1.1). He uses PROTOTYPER PACKAGER to create an executable app out of the mockup

2nd Workshop on Continuous Software Engineering

40



(1.2): PROTOTYPER PACKAGER first downloads e.g. a web-based representation of the
mockup from the 3rd party tool. In a next step PROTOTYPER PACKAGER adds function-
ality for in-app user feedback and analytics to the downloaded mockup. Finally it creates
a native mobile app matching the target environment of the project, such as an iOS app
for the Apple iOS ecosystem. A developer or designer can then use the same deployment
pipeline (3) that the software team uses for actual mobile apps to deploy the packaged
mockup (4).

PROTOTYPER FRAMEWORK comes into place if a software team has already written
parts of the application in code and creates a mockup for a new or redesigned feature
that needs to be evaluated. Using PROTOTYPER FRAMEWORK, developers can create a
package consisting of the mockup and a framework matching the target environment of
the project. A developer can easily integrate this package into the existing software project
using the IDE of the target environment (2.1). Using PROTOTYPER FRAMEWORK, he can
now add a new part to the existing application which shows the new feature demonstrated
in the mockup (2.2). After this step both parts, i.e. the parts of the application which are
written in code and the mockup, are delivered using the unified deployment pipeline (3)
and can be tested by a group of users (4).

Figure 4: PROTOTYPER’S user interface for release group management (Excerpt). Mockup
releases are orange, native apps green.

PROTOTYPER DELIVERY is the third part of our PROTOTYPER solution and the web-
based app delivery solution developed. PROTOTYPER DELIVERY allows the delivery of
all kinds of applications: Pure mockups, applications mixed with mocked parts and appli-
cations developed only in code. An excerpt of PROTOTYPER DELIVERY’S user interface
is presented in Figure 4 and presents shows functionality: Developers and Designers can

2nd Workshop on Continuous Software Engineering

41



define release groups, e.g. to target a Release to the QA-department or to a group of beta
testers. Sometimes a Designer wants to deliver two different variants of a mockup to a
group of testers in order to get feedback which one to choose. Using PROTOTYPER PACK-
AGER he can deliver two Releases at the same time to a release group. A tester can then
install both simultaneously on his mobile device and compare them in the target environ-
ment.

5 Conclusion

In this paper we introduced the concept of Continuous Prototyping. Continuous Proto-
typing allows the automated delivery of user interface mockups as well as actual appli-
cations in fast cycles and using a unified deployment pipeline. We described the concept
and showed PROTOTYPER, a design demonstration implementing the core principles of
Continuous Prototyping in the domain of mobile application development.

The PROTOTYPER solution consists of three components: PROTOTYPER PACKAGER al-
lows designers and developers to package mockups into executable mobile applications.
PROTOTYPER FRAMEWORK allows teams to combine mockups and applications devel-
oped in code. With PROTOTYPER DELIVERY we implemented a uniform delivery pipeline
for both, mockups as well as mobile apps.

As a next step we want to explore the impact of Continuous Prototyping on the commu-
nication between designers, developers and users. For instance, we will investigate how
the more frequent and rapid delivery of mockups influences the quality of the developed
software product. With regard to the PROTOTYPER solution, we will add an analytics com-
ponent to improve the area of user feedback by e.g. automatically collecting contextual
data or recording user interaction steps for a more complete picture of the usage context.
We also plan to support additional target platforms like web-based environments. Finally
we will evaluate PROTOTYPER in an industrial setting.

We believe that applying the concept of Continuous Prototyping will have a lasting benefit
on the collaboration between designers, developers and users.

References

[BD10] Brügge, Bernd; Dutoit, Allen H.: Object Oriented Software Engineering Using UML,
Patterns, and Java. Prentice Hall, 2010.

[Be09] Berenbach, B.; Paulish, D.; Kazmeier, J.; Rudorfer, A.: Software & Systems Require-
ments Engineering: In Practice. McGraw-Hill Education, 2009.

[BLM12] Beaudouin-Lafon, Michel; Mackay, Wendy E.: The Human-Computer Interaction Hand-
book. CRC Press, chapter Prototyping Tools and Techniques, pp. 1081–1104, 2012.

[Bu92] Budde, Reinhard; Kautz, Karlheinz; Kuhlenkamp, Karin; Züllighoven, Heinz: Prototyp-
ing. Springer-Verlag Berlin Heidelberg, 1992.

2nd Workshop on Continuous Software Engineering

42



[GLZ99] Guida, Giovanni; Lamperti, Gianfranco; Zanella, Marina: Software Prototyping in Data
and Knowledge Engineering. Springer Netherlands, chapter The Prototyping Approach
to Software Development, pp. 1–32, 1999.

[HF10a] Humble, Jez; Farley, David: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, 2010.

[HF10b] Humble, Jez; Farley, David: Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education, 2010.

[Na15] Narayan, S.: Agile IT Organization Design: For Digital Transformation and Continuous
Delivery. Pearson Education, 2015.

[Ru09] Rupp, Chris: Requirements-Engineering und -Management. Carl Hanser Verlag
München, 2009.

[Ur92] Urban, Joseph E.: Software Prototyping and Requirements Engineering. Technical report,
Arizona State University, 1992.

2nd Workshop on Continuous Software Engineering

43




