
ActiveRDF: object-oriented RDF in Ruby?

Eyal Oren and Renaud Delbru

DERI Galway
firstname.lastname@deri.org

Abstract. Although most developers are object-oriented, programming
RDF is triple-oriented. Bridging this gap, by developing a truly object-
oriented API that uses domain terminology, is not straightforward, be-
cause of the dynamic and semi-structured nature of RDF and the open-
world semantics of RDF Schema.
We present ActiveRDF, our object-oriented library for accessing RDF
data. ActiveRDF is completely dynamic, offers full manipulation and
querying of RDF data, does not rely on a schema and can be used against
different data-stores. In addition, the integration with the popular Rails
framework enables very easy development of Semantic Web applications.

1 Introduction

The Semantic Web is a web of data that can be processed by machines, enabling
them to interpret, combine and use Web data [1, p. 191]. RDF1 is one of the
foundations of the Semantic Web. A statement in RDF is a triple stating that a
subject has a property with some value.

Programming in the Semantic Web means programming against RDF data.
And although most current developers have an object-oriented attitude, pro-
gramming in RDF is currently triple-based, and getting from the one to the
other is cumbersome.

The development of an object-oriented RDF API has been suggested sev-
eral times [2,7,8], but developing such an API faces several challenges. Using a
statically typed and compiled language like Java does not address the challenges
correctly (as explained next). A scripting language such as Ruby on the other
hand, allows us to fully address these challenges and develop ActiveRDF2, our
“deeply integrated” [8] object-oriented RDF API.

1.1 Overview

The following example summarises ActiveRDF and its features. The example
program connects to a YARS3 RDF database, creates a person and saves that
person into the database:
? This material is based upon works supported by the Science Foundation Ireland

under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694.
1 http://w3.org/RDF/
2 See http://activerdf.m3pe.org for download and documentation (open source).
3 http://sw.deri.org/2004/06/yars/

http://w3.org/RDF/
http://activerdf.m3pe.org
http://sw.deri.org/2004/06/yars/

� �
1 c l a s s Person < I d e n t i f i e d R e s o u r c e
2 s e t c l a s s u r i ’ h t tp : // xmlns . com/ f o a f /0 .1/ Person ’
3 end
4

5 NodeFactory . c onne c t i on (: adap t e r => : ya r s , : ho s t => ’m3pe . org ’)
6

7 renaud = Person . c r e a t e ’ h t tp : // a c t i v e r d f . m3pe . org / renaud ’
8 e y a l = Person . f i n d b y f i r s tN ame ’ eya l ’
9 renaud . f i r s tName = ’ Renaud ’

10 renaud . lastName = ’ Delbru ’
11 renaud . knows = e y a l
12 renaud . save� �

The main features of ActiveRDF are the following (Tramp4 is a comparable
dynamic API, but has only the two first features):

1. An RDF manipulation language (domain-specific language) using the termi-
nology from the dataset, e.g. offering renaud.firstName in line 9 instead of
Resource.getProperty.

2. Read and write access to arbitrary RDF data, exposing data as objects,
and translating all method invocations on those objects as RDF queries, e.g.
renaud.firstName and renaud.save in line 12.

3. Usage of various data-stores through adapter system, indicated in line 5 with
:adapter => :yars.

4. Dynamic query methods based on the data properties, for example the
find by firstName in line 8.

5. Data-schema independence: classes, objects, and methods are created on-
the-fly from the apparent structure in the data (currently using the URI
definition given in class Person on line 1–3).

6. Object caching that optimises performance and preserves memory through
lazy data fetching.

7. Integration with Rails5, a popular web application framework for Ruby,
putting the Semantic Web on Rails.

1.2 Outline

The rest of the paper proceeds as follows: in Sect. 2 we discuss the challenges
in designing an object-oriented RDF API and argue that a dynamic scripting
language (as opposed to a static language) is very suitable for such an API. We
demonstrate the usage of ActiveRDF in more detail in Sect. 3 and describe the
internal architecture in Sect. 4. In Sect. 5 we describe how we used ActiveRDF
to create a Web application for browsing arbitrary RDF data with little effort,
and we conclude in Sect. 6.

4 http://www.aaronsw.com/2002/tramp
5 http://rubyonrails.org

http://www.aaronsw.com/2002/tramp
http://rubyonrails.org

2 Background

In this section, we introduce scripting languages, describe the challenges that
need to be addressed to develop an object-oriented RDF API, and explain why
a scripting language such as Ruby is well suited for such an API.

2.1 Scripting languages

There is no exact definition of “scripting languages”, but we can generally charac-
terise them as high-level programming languages, less efficient but more flexible
than compiled languages [6]:

Interpreted Scripting languages are usually interpreted instead of compiled,
allowing quick turnaround development and making applications more flex-
ible through runtime programming.

Dynamic typing Scripting languages are usually weakly typed, without prior
restrictions on how a piece of data can be used. Ruby for example has the
“duck-typing” mechanism in which object types are determined by their
runtime capabilities instead6 of by their class definition.

Meta-Programming Scripting languages usually do not strongly separate data
and code, and allow code to be created, changed, and added during runtime.
In Ruby, it is possible to change the behaviour of all objects during runtime
and for example add code to a single object (without changing its class).

Reflection Scripting languages are usually suited for flexible integration tasks
and are supposed to be used in dynamic environments. Scripting languages
usually allow strong reflection (the possibility to easily investigate data and
code during runtime) and runtime interrogation of objects instead of relying
on their class definitions.

The flexibility of scripting languages (as opposed to statically-typed and
compiled languages) allows us to develop a truly object-oriented RDF API.

2.2 Challenges in object-oriented RDF

There are many RDF APIs available in various different programming lan-
guages7, most of them for accessing one specific RDF data-store. Most RDF
APIs, such as in Sesame8, Jena9 or Redland10 offer only generic methods such
as getStatement, getResource, getProperty, getObject.

Using these generic APIs is quite cumbersome, and a more usable API has
been advocated several times [2,7,8]. Such an API would map RDF resources to

6 Ruby also has the strong object-oriented notion of (defined) classes, but the more
dynamic notion of duck-typing is preferred.

7 http://www.wiwiss.fu-berlin.de/suhl/bizer/toolkits
8 http://openrdf.org
9 http://jena.sourceforge.net

10 http://librdf.org

http://www.wiwiss.fu-berlin.de/suhl/bizer/toolkits
http://openrdf.org
http://jena.sourceforge.net
http://librdf.org

programming objects, RDF predicates to methods on those objects, and possibly
RDF Schema11 classes to programming classes. This API would for example not
contain Resource.getProperty but Person.getFirstName.

However, providing such an object-oriented API for RDF data is not straight-
forward, given the following issues:

Type system The semantics of classes and instances in (description-logic based)
RDF Schema and the semantics of (constraint-based) object-oriented type
systems differ fundamentally [4].

Semi-structured data RDF data are semi-structured, may appear without
any schema information and may be untyped. In object-oriented type sys-
tems, all objects must have a type and the type defines their properties.

Inheritance RDF Schema allows instances to inherit from multiple classes
(multi-inheritance), but many object-oriented type systems only allow single
inheritance.

Flexibility RDF is designed for integration of heterogeneous data with varying
structure. Even if RDF schemas (or richer ontologies) are used to describe
the data, these schemas may well evolve and should not be expected to be
stable. An application that uses RDF data should be flexible and not depend
on a static RDF Schema.

Given these issues, we investigate the suitability of scripting languages for
RDF data.

2.3 Addressing these challenges with a dynamic language

The development of an object-oriented API has been attempted using a statically-
typed language (Java) in RdfReactor12, Elmo13 and Jastor14. These approaches
ignore the flexible and semi-structured nature of RDF data and instead:

1. assume the existence of a schema, because they rely on the RDF Schema to
generate corresponding classes,

2. assume the stability of the schema, because they require manual regeneration
and recompilation if the schema changes and

3. assume the conformance of RDF data to such a schema, because they do not
allow objects with different structure than their class definition.

Unfortunately, these three assumptions are generally wrong, and severely
restrict the usage of RDF. A dynamic scripting language on the other hand
is very well suited for exposing RDF data and allows us to address the above
issues15:
11 http://www.w3.org/TR/rdf-schema/
12 http://rdfreactor.ontoware.org/
13 http://www.openrdf.org/doc/elmo/users/index.html
14 http://jastor.sourceforge.net/
15 We do not claim that compiled languages cannot address these challenges (they are

after all Turing complete), but that scripting languages are especially suited and
address all these issues very easily.

http://www.w3.org/TR/rdf-schema/
http://rdfreactor.ontoware.org/
http://www.openrdf.org/doc/elmo/users/index.html
http://jastor.sourceforge.net/

Type system Scripting languages have a dynamic type system in which objects
can have no type or multiple types (although not necessarily at one-time).
Types are not defined prior but determined at runtime by the capabilities
of an object.

Semi-Structured data Again, the dynamic type system in scripting languages
does not require objects to have exactly one type during their lifetime and
does not limit object functionality to their defined type. For example, the
Ruby “mixin” mechanism allows us to extend or override objects and classes
with specific functionality and data at runtime.

Inheritance Most scripting languages only allow single inheritance, but their
meta-programming capabilities allow us to either i) override their internal
type system, or ii) generate a compatible single-inheritance class hierarchy
on-the-fly during runtime.

Flexibility Scripting languages are interpreted and thus do not require compi-
lation. This allows us to generate a virtual API on the fly, during runtime.
Changes in the data schema do not require regeneration and recompilation
of the API, but are immediately accounted for. To use such a flexible virtual
API the application needs to employ reflection (or introspection) at runtime
to discover the currently available classes and their functionality.

In summary, dynamic scripting languages offer us exactly those properties
to offer a virtual and flexible API for RDF data. Our arguments apply equally
well to any dynamic language with these capabilities. We have chosen Ruby as
a simple yet powerful scripting language, which in addition allows us to leverage
the popular Rails framework for easy development of complete Semantic Web
applications.

3 Usage

We now show the most salient ActiveRDF features with two examples. Please
refer to the manual16 for more information on the usage of ActiveRDF. Sect. 4
and will explain how the features are implemented.

3.1 Create, read, update and delete

ActiveRDF maps RDF resources to Ruby objects and RDF properties to meth-
ods (attributes) on these objects. If a schema is defined, we also map RDF
Schema classes to Ruby classes and map predicates to class methods. The de-
fault mapping uses the local part of the schema classes to construct the Ruby
classes; the defaults can be overridden to prevent naming clashes (e.g. foaf:name
could be mapped to FoafName and doap:name to DoapName).

If no schema is defined, we inspect the data and map resource predicates to
object properties directly, e.g. if only the triple :eyal :eats "food" is available,

16 http://activerdf.org/manual/

http://activerdf.org/manual/

we create a Ruby object for eyal and add the method eats to this object (not
to its class).

For objects with cardinality larger than one, we automatically construct an
array with the constituent values; we do not (yet) support RDF lists and collec-
tions.

Creating objects either loads an existing resource or creates a new resource.
The following example shows how to load an existing resource, interrogate its
capabilities, read and change one of its properties, and save the changes back.
The last part shows how to use standard Ruby closure to print the name of each
of Renaud’s friends.� �
renaud = Person . c r e a t e (’ h t tp : // a c t i v e r d f . m3pe . org / renaud ’)
renaud . methods . . . [’ f i r s tName ’ , ’ lastName ’ , ’ knows ’ , . . .]
renaud . f i r s tName . . . ’ renaud ’
renaud . f i r s tName = ’ Renaud ’
renaud . save

renaud . knows . each do | f r i e n d |
put s f r i e n d . f i r s tName

end� �
3.2 Dynamic finders

ActiveRDF provides dynamic search methods based on the runtime capabili-
ties of objects. We can use these dynamic search methods to find particular
RDF data; the search methods are automatically translated into queries on the
dataset.

The following example shows how to use Person.find by firstName and
Person.find by knows to find some resources. Finders are available for all com-
binations of object predicates, and can either search for exact matches or for
keyword matches (if the underlying data-store supports keyword search).� �
e y a l = Person . f i n d b y f i r s tN ame ’ Eyal ’
renaud = Person . f i n d by knows e y a l
a l l j o h n s = Person . f i nd by keyword name ’ john ’
o t h e r = Person . f i nd by keywo rd name and age ’ j ack ’ , ’ 30 ’� �
4 Architecture

In this section, we give a brief overview of the architecture of ActiveRDF. Ac-
tiveRDF follows ActiveRecord pattern [3, p. 160] which abstracts the database,
simplifies data access and ensures data consistency, but adjusted for RDF data.

4.1 Overview

ActiveRDF is composed in four layers, shown in Fig. 1:

Virtual API
Cache

Mapping
Adapter

RDF Database

Application

accessing
database

exposing
database

Fig. 1. Overview of the ActiveRDF architecture

Virtual API The virtual API is the application entry point and provides all
the ActiveRDF functionality: it provides the domain model with all its ma-
nipulation methods and generic search methods. It is not a generated API
(hence the name virtual) but uses Ruby meta-programming to catch unhan-
dled method calls (such as renaud.firstName) and respond to them.

Cache A caching mechanism can be used to reduce access to the database and
improve time performance (in exchange for memory).

Mapping Maps RDF data to Ruby objects and data manipulation to Ruby
methods. For example, when the application calls a find method or when
we create a new person, the mapping layer translates this operation (using
an adapter) into a specific query on the data-store. The mapping layer also
creates Ruby classes from RDF Schema classes (with methods), or adds
Ruby objects (with their own methods) if no schema is available.

Adapter Provides access to a specific RDF data-store by translating generic
RDF operations to a store-specific API17. The adapter layer enables com-
munication with a specific RDF data-store. Each adapter offers a simple
low-level API (consisting of query, add, remove and save) which is used by
the mapping layer. The low-level API is purposely kept simple, so that new
adapters can be easily added. The real mapping logic is provided by the
generic mapping layer.

4.2 Feature implementation

We now briefly explain how the features mentioned in Sect. 1.1 are implemented
in the architecture:

1. The virtual API offers a RDF manipulation language (using Ruby meta-
programming) which uses the mapping layer to create classes, objects, and
methods which respect the terminology of the RDF data.

17 in absence of general standardised query language that provides create, read, update,
and delete access to RDF data-stores.

2. The virtual API offers read and write access and uses the mapping layer to
translate operations into RDF queries.

3. Adapters provide access to various data-stores and new adapters can easily
be added since they require only little code.

4. The virtual API offers dynamic search methods (using Ruby reflection) and
uses the mapping layer to translate searches into RDF queries.

5. The mapping layer is completely dynamic and maps RDF Schema classes
and properties to Ruby classes and methods. In the absence of a schema the
mapping layer infers properties of instances and adds it to the corresponding
objects directly achieving data-schema independence.

6. The caching layer (if enabled) minimises database communication by keeping
loaded RDF resources in memory and ensures data consistency by making
sure not more than one copy of an RDF resource is created.

7. The implementation design ensures integration with Rails: we have created
ActiveRDF to be API-compatible with the Rails framework.

The functionality of ActiveRDF (especially if combined with Rails) allows
rapid development of Semantic Web applications that fully respect the principles
of RDF.

5 Case Study

We have not yet performed an extensive evaluation of the usability and improved
productivity of ActiveRDF (compared to common RDF APIs). Instead we report
some anecdotal evidence in our own development of a Web applications that uses
ActiveRDF in combination with Rails.

5.1 Semantic Web with Ruby on Rails

Rails is a RAD (rapid application development) framework for web applications.
It follows the model-view-controller paradigm. The basic framework of Rails
allows programmers to quickly populate this paradigm with their domain: the
model is (usually) provided by an existing database, the view consists of HTML
pages with embedded Ruby code, and the controller is some simple Ruby code.

Rails assumes that most web applications are built on databases (the web
application offers a view on the database and operations on that view) and makes
that relation as easy as possible. Using ActiveRecord, Rails uses database tables
as models, offering database tuples as instances in the Ruby environment.

ActiveRDF can serve as data layer in Rails. Two data layers currently exist
for Rails: ActiveRecord provides a mapping from relational databases to Ruby
objects and ActiveLDAP provides a mapping from LDAP resources to Ruby
objects. ActiveRDF can serve as an alternative data layer in Rails, allowing
rapid development of semantic web applications using the Rails framework.

5.2 Building a faceted RDF browser

We have used ActiveRDF in the development of our prototype faceted browser,
available on http://browserdf.org and shown in Fig. 2. We have improved
faceted browsing, a navigation technique for structured data, with automatic
facet construction to enable browsing of semi-structured data [5].

Fig. 2. Faceted browsing prototype

The prototype is implemented in Ruby, using ActiveRDF and Rails. After
finishing the theoretical work on the automated facet construction, the appli-
cation was developed in only several days. In total, there are around 385 lines
of code: 250 lines for the controller (consisting mostly of the facet computation
algorithm), 35 lines for the data model and 100 lines for the interface which
includes all RDF manipulations for display.

6 Conclusion

ActiveRDF is an object-oriented library for RDF data. It can be used with arbi-
trary data-stores and offers full manipulation of RDF through a virtual API that
respects the data terminology. ActiveRDF is completely dynamic and can work
without any schema information. Additionally, the integration with the popular
Rails framework enables very easy development of Semantic Web applications.

We have analysed the problems of object-oriented access to RDF data and
shown that a scripting language is well suited for such a task. In ActiveRDF, we
address the challenges as follows:

1. the mapping layer does not rely on the existence of a schema, but can also
infer properties from the instance data (as shown in Sect. 1.1),

http://browserdf.org

2. the virtual API is provided dynamically and automatically modified during
runtime to stay consistent with a dynamic schema.

3. the mapping layer does not assume the conformance of RDF data to a
schema, but instead allows objects with other capabilities than their class
definition.

6.1 Discussion

ActiveRDF is by design restricted to direct data manipulation; we do not perform
any reasoning, validation, or constraint maintenance. In our opinion, those are
tasks for the RDF store, similar to consistency maintenance in databases.

One could argue that statically generated classes have one advantage: they
result in readable APIs, that people can program against. In our opinion, that
is not a viable philosophy on the Semantic Web. Instead of expecting a static
API one should anticipate various data and introspect it at runtime. On the
other hand, static APIs allow code-completion, but that could technically be
done with virtual APIs as well (using introspection during programming).

6.2 Future work

We have currently released the first version of ActiveRDF and are continuing
to improve it. We outline some important issues and how we intend to resolve
them. First, multiple inheritance is not yet implemented in the first release, but
we are already working on a technique that overrides the internal Ruby type-
system, manages our own types and allows multiple inheritance. Secondly, we
are removing the cumbersome and technically unnecessary need to pre-define all
classes (as shown in the first example in Sect. 1.1). And finally, we plan to do
an usage evaluation of ActiveRDF versus other RDF APIs, on (data querying)
perfomance and on programmer productivity; we reserve such an evaluation for
future work.

References

1. T. Berners-Lee. Weaving the Web – The Past, Present and Future of the World
Wide Web by its Inventor. Texere, 2000.

2. O. Fernandez. Deep integration of ruby with semantic web ontologies. http://

gigaton.thoughtworks.net/∼ofernand1/DeepIntegration.pdf.
3. M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
4. A. Kalyanpur, D. Pastor, S. Battle, and J. Padget. Automatic mapping of owl

ontologies into java. In SEKE. 2004.
5. E. Oren, et al. Annotation and navigation in semantic wikis. In SemWiki in ESWC.

2006.
6. J. K. Ousterhout. Scripting: Higher-level programming for the 21st century. IEEE

Computer, 31(3):23–30, 1998.
7. D. Schwabe, D. Brauner, D. A. Nunes, and G. Mamede. Hypersd: a semantic desktop

as a semantic web application. In SemDesk in ISWC. 2005.
8. D. Vrandečić. Deep integration of scripting language and semantic web technologies.

In Scripting for the Semantic Web. 2005.

http://gigaton.thoughtworks.net/~ofernand1/DeepIntegration.pdf
http://gigaton.thoughtworks.net/~ofernand1/DeepIntegration.pdf

	ActiveRDF: object-oriented RDF in Ruby
	Eyal Oren and Renaud Delbru

