
Access Control on RDF Triple Stores from a
Semantic Wiki Perspective

Sebastian Dietzold1 and Sören Auer1,2

1Universität Leipzig
Department of Computer Science

{dietzold|auer}@informatik.uni-leipzig.de

2University of Pennsylvania
Department of Computer and Information Science

auer@seas.upenn.edu

Abstract. RDF triple stores are used to store and query large RDF
models. Semantic Web applications built on top of such triple stores re-
quire methods allowing high-performance access control not restricted
to per model directives. For the growing number of lightweight, scripted
Semantic Web applications it is crucial to rely on access control methods
which maintain a balance between expressiveness, simplicity and scal-
ability. Starting from a Semantic Wiki application scenario we collect
requirements for useful access control methods provided by the triple
store. We derive a basic model for triple store access according to these
requirements and review existing approaches in the field of policy man-
agement with regard to the requirements. Finally, a lightweight access
control framework based on rule-controlled query filters is described.

Introduction

The efficient implementation of a Semantic Web application particularly de-
pends on the underlying RDF API and triple store. Today’s RDF triple stores
are mostly build upon relational database management systems with dedicated
database schemata and corresponding API methods which rewrite knowledge
base queries into database queries (e.g. [1] and [2]). However, access control at
the level of the underlying relational database lacks granularity if based on the
entities table, row and database. There exist APIs which do not depend on a
relational database (e.g. Redland [3] and Sesame [4]) but also when basing on
them, the Semantic Web application has to establish access control mechanisms
on their own.

We are convinced, that future RDF triple stores will be used as backends for
application systems in analogy to existing relational databases. Assuming this,
it is important to develop access control methods which do rely on the RDF
data model and enable access controll with respect to metamodels based on the
RDF data model, such as RDF-Schema and the different OWL flavors. A longer
term aim is to make such methods integral part of future triple stores.

To have a more solid starting point for the formulation of requirements we
selected the application scenario of Semantic Wikis. We define a Semantic Wiki
as a collaborative software for modifying a shared knowledge base. Further, we
assume this knowledge base to be an RDF graph which consists of RDF triples.
A Semantic Wiki supports the collaborative process of instance acquisition and
curation with respect to an often fuzzy and not well defined goal. This definition
does not make any assumptions about the user frontend, because these wiki
design principles are defined in [5] and are independent of the prefix ”semantic”.

1 Requirements on Access Control for a Semantic Wiki
RDF Triple Store

In a ‘classic’ wiki we are used to think in access categories like account and page:
an account has certain rights with respect to a page1. The specific rights which
can be granted or revoked are typically the rights to read, modify, delete and
annotate the page and to grant such rights for this page to some other account.
Further, pages can be arranged in a page tree, which makes the application of
access control rules on a page subtree necessary.

For a Semantic Wiki, the base entities we have to consider are not accounts
and pages but sets of triples. Also, accounts and annotations can be identified
using URI references and information about them represented as triples. Hence,
access control should work on the granularity level of triples as well as on higher
levels, such as the description of a resource (i.e. all triples having the same
subject) or instances of a certain class.

Based upon our Semantic Wiki definition and the work with our prototype
3ba.se [6] we identified the following requirements for access control on the un-
derlying RDF triple store:

– Efficiency and scalability should have precedence over expressive power. In
modern web applications with complex and dynamic user frontends, query
processing has to be as fast as possible. This requirement is more important
than expressive power of the access control language since there are usually
hundreds of queries to the store triggered by a single web request.

– As a minimal requirement we need context- and content-sensitive triple fil-
tering in a declarative way. This means the access to a tiple set depends on
the accounts metadata (e.g. membership information) as well as on the con-
tent of the wanted triple set itself (e.g. enforce to give all needed attributes
to some resource).

– Access control declaration should be able to use organisational information
like command structure and group membership information from inside the
controlled or another RDF model. For the most common architectures used
for the storage of organisational data inside a company etc., methods exist
to migrate or RDF-ify such organizational memory (e.g. [7] for relational

1 It is important to distinguish between an idealistic wiki with absolutely no access
control and realistic wikis, where access control and wiki are not mutually exclusive.

databases and [8] for LDAP directories). It should be possible to use this
data to express access control declarations.

In the next section we survey shortly existing research projects which are
related to the topic of access control on RDF triple stores.

2 Related work

The research field policy management for the Semantic Web addresses machine
interpretable policies to control programs, services and agents on the Web. It is
not restricted to security and privacy but also tackles problems related to trust
(e.g. trust in resource quality or agents), information filtering, accountability
and others. An overview of the current projects is available in the workshop
proceedings [9] and [10]).

However, most projects have a different intentions than this work. A policy-
based management framework in the sense of [11] aims at an open semantic
network environment. In this network the behavior of agents and services is
controlled by reasoned decisions over policies. This is necessary due to the com-
plexity of the global approach of controlling all possible agents and services with
all possible actions. An example for such a system is Rei [12] which supports
specification of policies, analysis and reasoning in pervasive computing applica-
tions.

Due to the fact that reasoning procedures are still not scalable to scope with
larger knowledge bases, such capabilities can not applied in RDF triple stores
today. Another objection to reasoning is the open world assumption, because no
external sources are used and access control answers in a closed triple store are
limited to yes and no.

Policy management is not only access control but also information filtering
based on quality and trust properties. This is necessary whilst operating in a
network of distributed resources which are not trustworthy per default. The
TriQL.P [13] browser uses queries for filtering information from different sources
and qualities. This filter approach is also part of the framework described here.

Another possible approach is the usage of explicit rules (which our approach
also makes use of). An example for such a system is [14]. Again, the scope of
this system is not an RDF triple store but distributed resources on a network
and the access to these resources.

Summarizing we can state that all these systems operate with a different
communication model. However, an RDF triple store can be seen as an agent in
these frameworks, while the access control layer for the RDF triple store itself
operates on a more basic and lightweight model.

3 A Basic Model for Access on RDF Triple Stores

In order that we can develop an access control framework which solves the given
requirements, we have to specify a clear communication model for the target

environment. In this basic model for access on RDF triple stores, we define
three atomic actions:

– Reading a set of triples from a stored model: The account queries the triple
store with a formal query language (e.g. [15], [16] and [17]) or selects some
triples with a more simple method (e.g. a triple pattern). The answer of the
triple store is a set of triples which constitutes the intersection of the wanted
and the allowed triple set. Most of todays query languages can query not
only for submodels. A common result value is a set of variable bindings.
Nevertheless there was a requested set of triple which was necessary for the
computation of the result set.

– Adding a set of triples to a stored model: The account sends the dedicated
triple set to the triple store. The store removes all the triples which are not
allowed to be written and adds each of the remaining triples, if they are not
already contained in the model.

– Removing a set of triples from a stored model: The account sends the ded-
icated triple set to the triple store. The store removes all the triples which
are not allowed to be deleted and deletes each of the remaining triples, if
they exist in the stored model.

The approach presented in [18] adds more atomic actions here to the above
listed ones. They distinguish between one-triple actions, triple-set actions and
reasoned-set actions. In this basic model neither one-triple actions nor reasoned-
set actions need to be considered because:

– A one-triple action can be seen as a specialization of a triple-set action.
– We define a reasoner application as an agent which holds a specific account

with certain rights to a triple store. Following this, reasoned-set actions are
combinations of normal triple-set actions which are performed by the rea-
soner agent.

In the next section, we describe an access control framework which is based
on this communication model.

4 Lightweight Framework for Access Control on RDF
Triple Stores

As denoted in section 2, we use explicit rules and query filters as the primarily
parts of our framework. The whole framework consists of four parts:

– A query engine which can apply subset selection query filters to a given
model. In this paper we assume that this is a query engine for the SPARQL
query language [15] but generally the approach is not limited to a specific
query language.

– A rule processor which decides whether a query filter is fired for a given
action or not. We assume that the used decision rules are described by using
the Semantic Web Rule Language (SWRL, [19]) but also, this part can be
replaced by an equivalent one.

– A minimalistic RDF schema called Lightweight Access Control Schema (LACS,
[20]), which describes a basic vocabulary to store rules and query filters.

– The access control processor, which starts the query engine and rule processor
as needed and maintains some session data.

A fundamental concept of the framework is the presentation of a virtual
model to the account instead of the real one. This virtual model is created
from the real model and modified through the query filters selected by the rule
processor. Thereby, the decision rules can reference to and use resources from
the following three different models:

– Session Model: This model holds information about the active session (which
account is doing what). The triple of this model are dynamically created for
every new action on the triple store.

– User model: This is the data which the account wants to get access to but
it can used by the decision rules too.

– Maintenance Model: This model consists of decision rules and filters as well
as all other maintenance data like group or account information. The vocab-
ulary for the filter and rule description comes from the lightweight access
control schema and from the SWRL specification. The maintenance data
which is used by the rules to decide the application of a query filter is not
fixed, so rules can be created for every available environment, e.g. a FOAF
database or an LDAP backend.

The following example maintenance model consists of two filters and rules.
They are created for the following two reading conditions:

– All admins can read every triple.
– All accounts which are from type foaf:Person2 may read only triples where

the subject is of type foaf:Person.

The rules to effect this behavior are:

rdf:type(lacs:CurrentAction, lacs:Read)
∧ rdf:sameAs(lacs:CurrentAccount, ?a)
∧ foaf:member(:Admins, ?a)
→ lacs:addAndStop(:currentAction, :AllFilter)

rdf:type(lacs:CurrentAction, lacs:Read)
∧ rdf:sameAs(lacs:CurrentAccount, ?a)
∧ rdf:type(foaf:Person, ?a)
→ lacs:add(:currentAction, :FoafOnlyFilter)

They reference triples in the maintenance model, which describe a group and
a member of this groups with the commonly used FOAF vocabulary:
2 We assume, that the namespaces rdf, rdfs, foaf and ruleml are predefined for all

examples. The namespace lacs is used for the vocabulary described in [20]. All RDF
examples are given in Notation 3 (N3, [21]).

:Admins a foaf:Group;

foaf:member :UserSD.

:UserSD a foaf:Person;

foaf:name "Sebastian Dietzold ".

These rules reference two query filters. These query filters are given in a
specific query syntax and are represented in the RDF with the LACS vocabulary:

:AllFilter a lacs:Filter;

rdfs:label "no restriction filter ";

lacs:sparql "CONSTRUCT { ?s ?p ?o } WHERE { ?s ?p ?o }".

:FoafOnlyFilter a lacs:Filter;

rdfs:label "read only FOAF address book";

lacs:sparql """ CONSTRUCT { ?s ?p ?o }

WHERE {?s rdf:type foaf:Person . ?s ?p ?o }""".

To give explicit instructions for the access control processor, the rules are
represented in RDF and enriched with metadata. The first one is annotated by
using the SWRL vocabulary referenced by the namespace ruleml, the latter by
using the LACS vocabulary.

The next part defines two lacs:rule entities which references to SWRL
implication rules (not displayed here). Important for the access control processor
is the priority of the rules, since the rule selection (see figure 1) is ordered by
this property.

_:123 a lacs:Rule;

rdfs:label "Admins can read everything ";

lacs:priority 10;

lacs:swrlImp [

a ruleml:imp;

... rule definition ...

].

_:321 a lacs:Rule;

rdfs:label "User can read only foaf:Persons ";

lacs:priority 100;

lacs:swrlImp [

a ruleml:imp;

... rule definition ...

].

Based on this example maintenance model, a sample reading action is pro-
cessed according figure 1.

First of all, the Session Model is modified by the access control processor to
represent the current session. Again, the LACS vocabulary is used:

lacs:currentUser = :User2.

lacs:currentAction a lacs:Read.

Fig. 1. Rule Processing Flowchart

After that, the first rule is selected and evaluated by the rule engine. In
the example maintenance model, this is the ”Admins can read everything” rule.
Due to this rule, no filter is fired because the user is not member of the admin
group. The next rule will be selected and due to this rule, the filter ”read only
FOAF address book” is fired. So the query process creates the virtual model as
it applies filters to the user model. Because there is no other rule, the processor
leaves this cycle and presents the virtual model to the user.

This was an example for a reading action. For this type of action, the user
query is processed against the virtual model. For writing actions, the filters are
not processed against the user model but rather against the model which is
supplied by the user (i.e. the triples, he wants to add or delete). After modifying
this model according the rules, the add or delete action is processed.

5 Conclusion

We have presented a lightweight access control framework for RDF triple stores
based on requirements derived from usage scenarios within a Semantic Wiki
application. The basic idea of this framework is the presentation of a virtual
model instead of the real one. This model is generated by filtering the original
model. Filter are selected by rules. In the examples, we use SPARQL for filtering
and SWRL as rule language.

The presented framework strongly depends on the lightweight communication
model given in section 3. So it is not intended to be a general access control
framework for the Semantic Web. Instead it is designed to be a fast, reliable and
easy to implement as part of an RDF triple store. In order to achieve this, we
focused on a clear execution algorithm with explicit rules, but do not use any
reasoning capabilities.

One important advantage when compared to other approaches is the possibil-
ity to create both simple and complex access control environments as necessary.
Also, the minimal requirements to the underlying maintenance model are small,
so that administrators can maximally reuse existing models within their rules.

References

1. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and
Retrieval in Jena2. In: Proceedings of First International Workshop on Semantic

Web and Databases 2003. (2003) 131–150
2. Bizer, C.: RAP (RDF API for PHP). Website (2004) http://www.wiwiss.fu-

berlin.de/suhl/bizer/rdfapi/.
3. Beckett, D.: The design and implementation of the Redland RDF application

framework. Computer Networks 39 (2002) 577–588
4. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. In Horrocks, I., Hendler, J., eds.:
The Semantic Web - ISWC 2002. First International Semantic Web Conference,
Sardinia, Italy, June 9-12, 2002, Proceedings. Volume 2342 of Lecture Notes in
Computer Science., Springer (2002) 54–68

5. Leuf, B., Cunningham, W.: The Wiki Way. Addison-Wesley Longman, Amsterdam
(2001)

6. Auer, S., Dietzold, S., Riechert, T.: 3ba.se Semantic Wiki. Prototype (2006)
http://3ba.se.

7. Bizer, C., Seaborne, A.: D2RQ -Treating Non-RDF Databases as Virtual RDF
Graphs. Poster (2004) 3rd International Semantic Web Conference (ISWC2004),
Hiroshima, Japan.

8. Dietzold, S.: Generating RDF Models from LDAP Directories. In Auer, S., Bizer,
C., Miller, L., eds.: Proceedings of the SFSW 05 Workshop on Scripting for the
Semantic Web , Hersonissos, Crete, Greece, May 30, 2005. Volume 135 of CEUR
Workshop Proceedings., CEUR-WS (2005)

9. Kagal, L., Finin, T., Hendler, J., eds.: Policy Management for the Web. (2005)
10. Kagal, L., Finin, T., Hendler, J., eds.: Proceedings of the Semantic Web and

Policy Workshop, held in conjunction with the 4th International Semantic Web
Conference, 7 November, 2005, Galway Ireland. (2005)

11. Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic
Web Languages for Policy Representation and Reasoning: A Comparison of KAoS,
Rei, and Ponder. In Fensel, D., Sycara, K.P., Mylopoulos, J., eds.: The Semantic
Web - ISWC 2003, Second International Semantic Web Conference, Sanibel Island,
FL, USA, October 20-23, 2003, Proceedings. Volume 2870 of Lecture Notes in
Computer Science., Springer (2003) 419–437

12. Kagal, L.: Rei: A Policy Language for the Me-Centric Project. Technical report,
HP Labs (2002)

13. Bizer, C., Cyganiak, R., Gauss, T., Maresch, O.: The TriQL.P Browser: Filtering
Information using Context-, Content- and Rating-Based Trust Policies. In Kagal,
L., Finin, T., Hendler, J., eds.: Proceedings of the Semantic Web and Policy Work-
shop, held in conjunction with the 4th International Semantic Web Conference, 7
November, 2005, Galway Ireland. (2005) 12–20

14. Li, H., Zhang, X., Wu, H., Qu, Y.: Design and Application of Rule Based Access
Control Policies. In Kagal, L., Finin, T., Hendler, J., eds.: Proceedings of the
Semantic Web and Policy Workshop, held in conjunction with the 4th International
Semantic Web Conference, 7 November, 2005, Galway Ireland. (2005) 34–41

15. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (Working
Draft). W3c working draft, World Wide Web Consortium (W3C) (2006)

16. Seaborne, A.: RDQL - A Query Language for RDF. W3c
member submission, World Wide Web Consortium (W3C) (2004)
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

17. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: Proceedings of the eleventh
international conference on World Wide Web, ACM Press (2002) 592–603

18. Reddivari, P., Finin, T., Joshi, A.: Policy based access control for an RDF store.
In Kagal, L., Finin, T., Hendler, J., eds.: Policy Management for the Web. (2005)
78–81

19. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean,
M.: SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3c member submission, World Wide Web Consortium (W3C) (2004)
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

20. Dietzold, S.: LACS: Lightweight Access Control Schema. OWL ontology (2006)
http://purl.org/net/lacs.

21. Berners-Lee, T.: Notation 3 - An readable language for data on the Web. Website
(1998) http://www.w3.org/DesignIssues/Notation3.html.

