
Proceedings of the
2nd International Workshop on

Scripting for the
Semantic Web
(SFSW 2006)

Co-located with 3rd European Semantic Web Conference

June 11-14, 2006

Workshop Co-Chairs’ Message
SFSW 2006 - Workshop on Scripting for the Semantic Web

Scripting languages such as Python, PHP, Perl, JavaScript, Ruby, ASP,
JSP and ActionScript are playing a central role in current development
towards flexible, lightweight web applications following the AJAX and
REST design paradigms. These languages are the tools of a generation of
web programmers who use them to quickly create server and client-side
web applications. Scripting languages are lightweight and easy to learn,
but on the other hand mature enough to be used within complex
applications. Many deployed Semantic Web applications from the wiki,
blog, FOAF and RSS communities, as well as many innovative mashups
from the Web 2.0 and Open Data movements are using scripting
languages and it is likely that the process of RDF-izing existing database-
backed websites, wikis, blogs and content management systems will
largely rely on scripting languages.

The workshop brings together developers of the RDF base infrastructure
for scripting languages with practitioners building applications using
these languages. Last year's workshop in Hersonissos/Crete focused on
giving an overview about the support for Semantic Web technologies
within scripting languages. The special focus of this year's workshop is to
showcase innovative Semantic Web applications relying on script
languages and to give an overview about currently emerging Web 2.0
mashups and their interrelations with the Semantic Web. Hence, this
year’s workshop includes a scripting challenge, awarding a price to the
most innovative scripting application.

We would like to thank the organizers of ESWC conference for
supporting the workshop. We especially thank all members of the SFSW
program committee for providing their expertise and giving elaborate
feedback to the authors. Last but not least, we hope that you will enjoy the
workshop and the whole conference.

Sören Auer, Universität Leipzig, Germany
Chris Bizer, Freie Universität Berlin, Germany

Libby Miller, @Semantics, Italy

SFSW 2006 Program Committee

• Danny Ayers, Independent Author, Italy
• Dave Beckett, Yahoo!, USA
• Matt Biddulph, Independent Developer, United Kingdom
• Dan Brickley, Semantic Web Vapourware, United Kingdom
• Stefan Decker, DERI, Ireland
• Edd Dumbill, Useful Information Company, United Kingdom
• Leigh Dodds, Ingenta, United Kingdom
• Klaus-Peter Fähnrich, Universität Leipzig, Germany
• Morten Frederiksen, MFD Consult, Denmark
• Chris Goad, Map Bureau, United States
• Gunnar AA. Grimnes, DFKI, Germany
• Frank Fuchs-Kittowski, FhG - ISST, Germany
• Daniel Krech, University of Maryland, United States
• Jim Ley, Independent Developer, United Kingdom
• Lutz Maicher, Universität Leipzig, Germany
• Benjamin Nowack, appmosphere web applications, Germany
• Uche Ogbuji, Fourthought, United States
• Sean Palmer, Independent Developer, United Kingdom
• Alberto Reggiori, @Semantics, Italy
• Guus Schreiber, Free University Amsterdam, Netherlands
• Robert Tolksdorf, Freie Universität Berlin, Germany
• Giovanni Tummarello, Universita' Politenica delle Marche, Italy

Table of Contents

Deep Integration of Python with Web Ontology Language
Marian Babik, Ladislav Hluchy

ActiveRDF: object-oriented RDF in Ruby
Eyal Oren, Renaud Delbru

Access Control on RDF Triple Stores from a Semantic Wiki
Perspective
Sebastian Dietzold and Sören Auer

RDFHomepage or “Finally, a use for your FOAF file”
Gunnar AAstrand Grimnes, Sven Schwarz, Leo Sauermann

Brainlets: "instant" Semantic Web applications
Giovanni Tummarello, Christian Morbidoni, Michele Nucci, Onofrio
Panzarino

The Semantics of Collaborative Tagging System
Milorad Tošić, Valentina Milićević

Semantic Scripting Challenge Submissions

RDFHomepage
Gunnar AAstrand Grimnes, Sven Schwarz, Leo Sauermann

RDFRoom – In an Angular Place
Gunnar AAstrand Grimne

A prototype for faceted browsing of RDF data
Eyal Oren, Renaud Delbru

FOAFMap: Web2.0 meets the Semantic Web
Alexandre Passant

A Semantic GIS Emergency Planning Interface Based on Google Maps
Vlad Tanasescu, John Domingue

Lego-Note: To Generate Semantic Web Content by Graphic Tagging
Jie Yang, Mitsuru Ishizuka

Deep Integration of Python with Web Ontology

Language

Marian Babik, Ladislav Hluchy ?

Intelligent and Knowledge-based Technologies Group,
Department of Parallel and Distributed Computing, Institute of Informatics,

Slovak Academy of Sciences
Marian.Babik@saske.sk, Ladislav.Hluchy@savba.sk

Abstract. The Semantic Web is a vision for the future of the Web in
which information is given explicit meaning, making it easier for ma-
chines to automatically process and integrate information available on
the Web. Semantic Web will build on the well known Semantic Web
language stack, part of which is the Web Ontology Language (OWL).
Python is an interpreted, object-oriented, extensible programming lan-
guage, which provides an excellent combination of clarity and versatility.
The deep integration of both languages is one of the novel approaches
for enabling free and interoperable data [1].
In this article we present a metaclass-based implementation of the deep
integration ideas. The implementation is an early Python prototype sup-
porting in-line class and properties declaration, instance creation and
simple triple-based queries. The implementation is backed up by a well
known OWL-DL reasoner Pellet [3]. The integration of the Python and
OWL-DL through meta-class programming provides a unique approach,
which can be implemented with any metaclass enabled scripting lan-
guage.

1 Introduction

The deep integration of scripting languages and Semantic Web has introduced
an idea of importing the ontologies directly into the programming context so
that its classes are usable alongside classes defined normally. This can provide a
more natural mapping of OWL-DL than classic APIs, reflecting the set-theoretic
semantics of OWL-DL, while preserving the access to the classic Python objects.
Such integration also encourages separation of concerns among declarative and
procedural and encourages a new wave of programming, where problems can be

? Acknowledgments: The research reported in this paper has been partially financed by
the EU within the project IST-2004-511385 K-WfGrid and Slovak national projects,
Research and development of a knowledge based system to support workflow man-
agement in organizations with administrative processes, APVT-51-024604; Tools for
acquisition, organization and maintenance of knowledge in an environment of het-
erogeneous information resources, SPVV 1025/04; Efficient tools and mechanisms
for grid computing (2006-2008) VEGA 2/6103/6.

2

defined by using description logics [10] and manipulated by dynamic scripting
languages [1]. The approach represents a unification, that allows both languages
to be conveniently used for different subproblems in the software-engineering
environment.

In this article we would like to introduce an early prototype, which imple-
ments some of the ideas of the deep integration in Python language [8]. It sup-
ports in-line declaration of OWL classes and properties, instance creation and
simple triple-based queries [2]. We will emphasize the notion of modeling in-
tensional sets (i-sets) through metaclasses. We will also discuss the possible
drawbacks of the approach and the current implementation.

2 Intensional Sets and Metaclasses

Intensional sets as introduced in [1] are sets that are described with OWL DL’s
construct and according to this description, encompass all fitting instances. A
sample intensional set can be defined by using Notation3 (N3) [12] as, e.g. ”:Per-
son a owl:Class; rdfs:subClassOf :Mortal”. This simply states that Person is also
a Mortal. Assuming we introduce two instances, e.g. ”:John a :Person and :Jane
a :Mortal”, the instances of Mortal are both John and Jane. Please note, that
N3 is used only for demonstration purposes, the current implementation can also
support NTriples and RDF/XML.

Terminology-wise, a metaclass is simply ”the class of a class”. Any class
whose instances are themselves classes, is a metaclass. A metaclass-based imple-
mentation of the intensional sets is based on the core metaclass Thing, whose
constructor accepts two main attributes, i.e. default namespace and N3 descrip-
tion of the i-set. The instance of the metaclass is then a mapping of the OWL
class to the intensional set. Following the above example class Person can be
created with a Python construct:

Person = Thing(’Person’, (),

{defined_by: ’a owl:Class; rdfs:subClassOf :Mortal’,\

namespace: ’http://samplens.org/test#’})

This creates a Python class representing the intensional set for Person and its
namespace. In the background it also updates the knowledge base with the new
assertion. The individual John can then be instantiated simply by calling John =
Person(). This statement calls the default constructor of the class Person, which
provides support for asserting new OWL individual into the knowledge base.
A similar metaclass is used for the OWL property except that it can not be
instantiated. The constructor is used here for different purpose, i.e. to create a
relation between classes or individuals. The notion of importing the ontology into
the Python’s namespace is then a matter of decomposing the ontology into the
groups of intensional sets, generating Python classes for these sets and creating
the instances.

This kind of programming is also called metaclass programming and can pro-
vide a transparent way how to generate new OWL classes and properties. Since

3

metaclasses act like regular classes it is possible to extend their functionality by
inheriting from the base metaclass. It is also simple to hide the complex tasks
needed for accessing the knowledge base, reasoner and processing the mappings
between OWL-DL’s concepts and their respective Python counterparts.

3 Sample session

A sample session shows an in-line declaration of a class Person. This is imple-
mented by calling a static method new of the metaclass Thing (the static method
new is used to hide the complex call introduced in Sec. 2). An instance is created
by calling the Person’s constructor, which in fact creates an in-line declaration
of the OWL individual (John). The print statements show the Python’s view of
the respective objects, i.e. Person as a class and John as an instance of the class
Person. We also show a more complex definition of the PersonWithSingleSon,
which we will later use to demonstrate the reasoning about property assertions.

>>> from Thing import Thing

>>> Person = Thing.new(’Person’,’ a owl:Class .’)

>>> John = Person()

>>> print Person

<class ’Thing.Person’>

>>> print John

<Thing.Person object at 0xb7d0b50c>

>>> PersonWithSingleSon = Thing.new(’PersonWithSingleSon’, \

""" a owl:Class ; rdfs:subClassOf [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2001/XMLSchema#int> ;

owl:onProperty :hasSon

] ;

rdfs:subClassOf [a owl:Restriction ;

owl:cardinality "1"^^<http://www.w3.org/2001/XMLSchema#int> ;

owl:onProperty :hasChild] .""")

A similar way can be used for in-line declarations of OWL properties. Com-
pared to a class declaration the returned Python class can not be instantiated
(i.e. returns None).

>>> from PropertyThing import Property

>>> hasChild = Property.new(’hasChild’,’ a owl:ObjectProperty .’)

>>> print hasChild

<class ’PropertyThing.hasChild’>

>>> hasSon = Property.new(’hasSon’, ’ a owl:ObjectProperty ;

rdfs:subPropertyOf :hasChild .’)

Properties are naturally used to assign relationships between OWL classes
or individuals, which can be as simple as calling:

>>> Bob = PersonWithSingleSon()

>>> hasChild(Bob, John)

4

Assuming we have declared several instances of the class Person we can
find them by iterating over the class list. It is also possible to ask any triple
like queries (the query shown also demonstrates reasoning about the property
assertions).

>>> for individual in Person.findInstances():

... print individual, individual.name

<Thing.Man object at 0xb7d0b64c> Peter

<Thing.Person object at 0xb7d0b50c> John

<Thing.Person object at 0xb7d0b6ec> Jane

>>> for who in hasSon.query(Bob):

... who.name

’John’

>>> print hasSon.query(Bob, John)

1

4 Implementation and Drawbacks

Apart from the metaclass-based implementation of the i-sets, it is necessary to
support query answering, i.e. provide an interface to the OWL-DL reasoner.
There are several choices for the OWL-DL reasoners including Racer, Pellet and
Kaon2 [4, 3, 19]. Although these reasoners provide sufficient support for OWL-
DL their integration with Python is not trivial since they are mostly based on
Java (except Racer) and although they can work in server-like mode Python’s
support for standard protocols (like DIG) is missing. Other possibilities are to use
Python-based inference engines like CWM, Pychinko or Euler [13–15]. However,
due to the performance reasons, lack of documentation or too early prototypes we
have decided to use Java-based reasoners. We have managed to successfully use
JPype [16], which interfaces Java and Python at native level of virtual machines
(using JNI). This enables the possibility to access Java libraries from within
CPython. Having the ability to call Java and use all the capabilities of the
current version of CPython (e.g. metaclasses) is a big advantage over the other
approaches such as Jython or JPE [11, 9]. We have developed a wrapper class,
which can call Jena and Pellet APIs and perform the needed reasoning [5, 3].
The wrapper class is implemented as a singleton and interfaces the Python calls
to the reasoner and RDF/OWL API and forwards it to the JVM with the help
of the JPype.

One of the main drawbacks of the current implementation is the fact, that
it doesn’t support open world semantics (OWA). Although the reasoner in the
current implementation can perform OWA reasoning and thus it is possible to
correctly answer queries, the Python’s semantics are based on the boolean values.
One of the possibilities is to use epistemic operator as suggested in [1], however
this is yet to be implemented. Another problem when dealing with ontologies
are namespaces. In the current prototype we have added a set of namespaces

5

that constitute the corresponding OWL class or property description as an at-
tribute of the Python’s class. This attribute can then be used to generate the
headers for the N3 description. This approach needs further extension to support
management of different ontologies. One of the possibilities would be to re-use
Python’s module namespace by introducing a core ontology class. This ontology
class would serve as a default namespace handler as well as a common importing
point for the ontology classes.

The other drawback of the approach is the performance of the reasoner, which
is due to the nature of the JPype implementation (the conversions between
virtual machines imposes rather large performance bottlenecks). This can be
solved by extending the support for other Python to Java APIs and possible
implementation of specialized client-server protocols.

5 Related Work

To our best knowledge there is currently no Python implementation of the deep
integration ideas. There is a Ruby implementation done by Obie Fernandez,
however it is not known what is the current status of the project [20].

The most popular existing OWL APIs, that provide programmatic access
to the OWL structures are based on Java [5, 7]. Since Java is a frame language
its notion of polymorphism is very different than in RDF/OWL. This is usually
solved by incorporating design patterns, which make the APIs quite complex
and sometimes difficult to use. The dynamic nature of the scripting languages
can support OWL/RDF level of polymorphism and thus it is possible to directly
expose the OWL structures as Python classes without any API interfaces. One of
the interesting Java projects, which tries to automatically map OWL ontologies
into Java through Java Beans is based on the ideas shown in [17]. This approach
tries to find a way how to directly map the ontologies to the hierarchy of the
Java classes and interfaces.

Among the existing Python libraries, which support RDF and OWL, the
most interesting in terms of partial integration are Sparta and Tramp, which
bind RDF graph nodes to Python objects and RDF arcs to attributes of such
objects [21, 6]. The projects however doesn’t clearly address the OWL and are
mainly considered with RDF. It is thus difficult to evaluate what is the level of
support for the inferred OWL models.

6 Conclusion

We have described a metaclass-based prototype implementation of the deep inte-
gration ideas. We have discussed the advantages and shortcomings of the current
implementation. We would like to note, that this a work in progress, which is
constantly changing and this is just a report of the current status. At the time
of writing authors are setting up an open source project, which will host the
implementation of the ideas presented. There are many other open questions,

6

that we haven’t covered here including integration of query languages (possi-
bility to re-use ideas from native queries [18]); serialization of the ontologies;
representation of rules, concrete domains, etc. We hope that having an initial
implementation is a good start and that its continuation will contribute to the
success of the deep integration of the scripting and Semantic Web.

References

1. Vrandecic, D., Deep Integration of Scripting Languages and Semantic Web Tech-
nologies, In Soren Auer, Chris Bizer, Libby Miller, 1st International Workshop on
Scripting for the Semantic Web SFSW 2005 , volume 135 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, Herakleion, Greece, May 2005. ISSN: 1613-0073

2. Web Ontology Language (OWL), see http://www.w3.org/TR/owl-features/
3. Pellet OWL Reasoner, see http://www.mindswap.org/2003/pellet/index.shtml
4. RacerPro Reasoner, see http://www.racer-systems.com
5. Jena: A Semantic Web Framework for Java, see

http://www.hpl.hp.com/semweb/jena2.htm.
6. TRAMP: Makes RDF look like Python data structures

http://www.aaronsw.com/2002/tramp, http://www.amk.ca/conceit/rdf-
interface.html

7. Bechhofer, S., Lord, P., Volz,R.:Cooking the Semantic Web with the OWL API. 2nd
International Semantic Web Conference, ISWC, Sanibel Island, Florida, October
2003

8. G. van Rossum, Computer programming for everybody. Technical report, Corpora-
tion for National Research Initiatives, 1999

9. Java-Python Extension, http://sourceforge.net/projects/jpe
10. Baader, F., Calvanese, D., McGuinness, D.,L., Nardi, D. and Patel-Schneider,P., F.

editors. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA, 2003.

11. Jython, Java implementation of the Python, http://www.jython.org/
12. Notation 3, see http://www.w3.org/DesignIssues/Notation3.html
13. Closed World Machine, see http://www.w3.org/2000/10/swap/doc/cwm.html
14. Katz, Y., Clark, K. and Parsia, B., Pychinko: A native python rule engine. In

International Python Conference 05, 2005.
15. Euler proof mechanism, see http://www.agfa.com/w3c/euler/
16. JPype, Java to Python integration, see http://jpype.sourceforge.net/
17. Kalyanpur, A., Pastor, D., Battle, S. and Padget, J., Automatic mapping of owl

ontologies into java. In Proceedings of Software Engg. - Knowledge Engg. (SEKE)
2004, Banff, Canada, June 2004.

18. Cook, W. R. and Rosenberger, C., Native Queries for Persistent Objects, Dr.
Dobb’s Journal, February 2006

19. Hustadt, U., Motik, B., Sattler, U.. Reducing SHIQ Description Logic to Disjunc-
tive Datalog Programs. Proc. of the 9th International Conference on Knowledge
Representation and Reasoning (KR2004), June 2004, Whistler, Canada, pp. 152-16

20. Fernandez, O., Deep Integration of Ruby with Semantic Web Ontologies, see giga-
ton.thoughtworks.net/ ofernand1/DeepIntegration.pdf

21. Sparta, Python API for RDF, see http://www.mnot.net/sw/sparta/

ActiveRDF: object-oriented RDF in Ruby?

Eyal Oren and Renaud Delbru

DERI Galway
firstname.lastname@deri.org

Abstract. Although most developers are object-oriented, programming
RDF is triple-oriented. Bridging this gap, by developing a truly object-
oriented API that uses domain terminology, is not straightforward, be-
cause of the dynamic and semi-structured nature of RDF and the open-
world semantics of RDF Schema.
We present ActiveRDF, our object-oriented library for accessing RDF
data. ActiveRDF is completely dynamic, offers full manipulation and
querying of RDF data, does not rely on a schema and can be used against
different data-stores. In addition, the integration with the popular Rails
framework enables very easy development of Semantic Web applications.

1 Introduction

The Semantic Web is a web of data that can be processed by machines, enabling
them to interpret, combine and use Web data [1, p. 191]. RDF1 is one of the
foundations of the Semantic Web. A statement in RDF is a triple stating that a
subject has a property with some value.

Programming in the Semantic Web means programming against RDF data.
And although most current developers have an object-oriented attitude, pro-
gramming in RDF is currently triple-based, and getting from the one to the
other is cumbersome.

The development of an object-oriented RDF API has been suggested sev-
eral times [2,7,8], but developing such an API faces several challenges. Using a
statically typed and compiled language like Java does not address the challenges
correctly (as explained next). A scripting language such as Ruby on the other
hand, allows us to fully address these challenges and develop ActiveRDF2, our
“deeply integrated” [8] object-oriented RDF API.

1.1 Overview

The following example summarises ActiveRDF and its features. The example
program connects to a YARS3 RDF database, creates a person and saves that
person into the database:
? This material is based upon works supported by the Science Foundation Ireland

under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694.
1 http://w3.org/RDF/
2 See http://activerdf.m3pe.org for download and documentation (open source).
3 http://sw.deri.org/2004/06/yars/

http://w3.org/RDF/
http://activerdf.m3pe.org
http://sw.deri.org/2004/06/yars/

� �
1 c l a s s Person < I d e n t i f i e d R e s o u r c e
2 s e t c l a s s u r i ’ h t tp : // xmlns . com/ f o a f /0 .1/ Person ’
3 end
4

5 NodeFactory . c onne c t i on (: adap t e r => : ya r s , : ho s t => ’m3pe . org ’)
6

7 renaud = Person . c r e a t e ’ h t tp : // a c t i v e r d f . m3pe . org / renaud ’
8 e y a l = Person . f i n d b y f i r s tN ame ’ eya l ’
9 renaud . f i r s tName = ’ Renaud ’

10 renaud . lastName = ’ Delbru ’
11 renaud . knows = e y a l
12 renaud . save� �

The main features of ActiveRDF are the following (Tramp4 is a comparable
dynamic API, but has only the two first features):

1. An RDF manipulation language (domain-specific language) using the termi-
nology from the dataset, e.g. offering renaud.firstName in line 9 instead of
Resource.getProperty.

2. Read and write access to arbitrary RDF data, exposing data as objects,
and translating all method invocations on those objects as RDF queries, e.g.
renaud.firstName and renaud.save in line 12.

3. Usage of various data-stores through adapter system, indicated in line 5 with
:adapter => :yars.

4. Dynamic query methods based on the data properties, for example the
find by firstName in line 8.

5. Data-schema independence: classes, objects, and methods are created on-
the-fly from the apparent structure in the data (currently using the URI
definition given in class Person on line 1–3).

6. Object caching that optimises performance and preserves memory through
lazy data fetching.

7. Integration with Rails5, a popular web application framework for Ruby,
putting the Semantic Web on Rails.

1.2 Outline

The rest of the paper proceeds as follows: in Sect. 2 we discuss the challenges
in designing an object-oriented RDF API and argue that a dynamic scripting
language (as opposed to a static language) is very suitable for such an API. We
demonstrate the usage of ActiveRDF in more detail in Sect. 3 and describe the
internal architecture in Sect. 4. In Sect. 5 we describe how we used ActiveRDF
to create a Web application for browsing arbitrary RDF data with little effort,
and we conclude in Sect. 6.

4 http://www.aaronsw.com/2002/tramp
5 http://rubyonrails.org

http://www.aaronsw.com/2002/tramp
http://rubyonrails.org

2 Background

In this section, we introduce scripting languages, describe the challenges that
need to be addressed to develop an object-oriented RDF API, and explain why
a scripting language such as Ruby is well suited for such an API.

2.1 Scripting languages

There is no exact definition of “scripting languages”, but we can generally charac-
terise them as high-level programming languages, less efficient but more flexible
than compiled languages [6]:

Interpreted Scripting languages are usually interpreted instead of compiled,
allowing quick turnaround development and making applications more flex-
ible through runtime programming.

Dynamic typing Scripting languages are usually weakly typed, without prior
restrictions on how a piece of data can be used. Ruby for example has the
“duck-typing” mechanism in which object types are determined by their
runtime capabilities instead6 of by their class definition.

Meta-Programming Scripting languages usually do not strongly separate data
and code, and allow code to be created, changed, and added during runtime.
In Ruby, it is possible to change the behaviour of all objects during runtime
and for example add code to a single object (without changing its class).

Reflection Scripting languages are usually suited for flexible integration tasks
and are supposed to be used in dynamic environments. Scripting languages
usually allow strong reflection (the possibility to easily investigate data and
code during runtime) and runtime interrogation of objects instead of relying
on their class definitions.

The flexibility of scripting languages (as opposed to statically-typed and
compiled languages) allows us to develop a truly object-oriented RDF API.

2.2 Challenges in object-oriented RDF

There are many RDF APIs available in various different programming lan-
guages7, most of them for accessing one specific RDF data-store. Most RDF
APIs, such as in Sesame8, Jena9 or Redland10 offer only generic methods such
as getStatement, getResource, getProperty, getObject.

Using these generic APIs is quite cumbersome, and a more usable API has
been advocated several times [2,7,8]. Such an API would map RDF resources to

6 Ruby also has the strong object-oriented notion of (defined) classes, but the more
dynamic notion of duck-typing is preferred.

7 http://www.wiwiss.fu-berlin.de/suhl/bizer/toolkits
8 http://openrdf.org
9 http://jena.sourceforge.net

10 http://librdf.org

http://www.wiwiss.fu-berlin.de/suhl/bizer/toolkits
http://openrdf.org
http://jena.sourceforge.net
http://librdf.org

programming objects, RDF predicates to methods on those objects, and possibly
RDF Schema11 classes to programming classes. This API would for example not
contain Resource.getProperty but Person.getFirstName.

However, providing such an object-oriented API for RDF data is not straight-
forward, given the following issues:

Type system The semantics of classes and instances in (description-logic based)
RDF Schema and the semantics of (constraint-based) object-oriented type
systems differ fundamentally [4].

Semi-structured data RDF data are semi-structured, may appear without
any schema information and may be untyped. In object-oriented type sys-
tems, all objects must have a type and the type defines their properties.

Inheritance RDF Schema allows instances to inherit from multiple classes
(multi-inheritance), but many object-oriented type systems only allow single
inheritance.

Flexibility RDF is designed for integration of heterogeneous data with varying
structure. Even if RDF schemas (or richer ontologies) are used to describe
the data, these schemas may well evolve and should not be expected to be
stable. An application that uses RDF data should be flexible and not depend
on a static RDF Schema.

Given these issues, we investigate the suitability of scripting languages for
RDF data.

2.3 Addressing these challenges with a dynamic language

The development of an object-oriented API has been attempted using a statically-
typed language (Java) in RdfReactor12, Elmo13 and Jastor14. These approaches
ignore the flexible and semi-structured nature of RDF data and instead:

1. assume the existence of a schema, because they rely on the RDF Schema to
generate corresponding classes,

2. assume the stability of the schema, because they require manual regeneration
and recompilation if the schema changes and

3. assume the conformance of RDF data to such a schema, because they do not
allow objects with different structure than their class definition.

Unfortunately, these three assumptions are generally wrong, and severely
restrict the usage of RDF. A dynamic scripting language on the other hand
is very well suited for exposing RDF data and allows us to address the above
issues15:
11 http://www.w3.org/TR/rdf-schema/
12 http://rdfreactor.ontoware.org/
13 http://www.openrdf.org/doc/elmo/users/index.html
14 http://jastor.sourceforge.net/
15 We do not claim that compiled languages cannot address these challenges (they are

after all Turing complete), but that scripting languages are especially suited and
address all these issues very easily.

http://www.w3.org/TR/rdf-schema/
http://rdfreactor.ontoware.org/
http://www.openrdf.org/doc/elmo/users/index.html
http://jastor.sourceforge.net/

Type system Scripting languages have a dynamic type system in which objects
can have no type or multiple types (although not necessarily at one-time).
Types are not defined prior but determined at runtime by the capabilities
of an object.

Semi-Structured data Again, the dynamic type system in scripting languages
does not require objects to have exactly one type during their lifetime and
does not limit object functionality to their defined type. For example, the
Ruby “mixin” mechanism allows us to extend or override objects and classes
with specific functionality and data at runtime.

Inheritance Most scripting languages only allow single inheritance, but their
meta-programming capabilities allow us to either i) override their internal
type system, or ii) generate a compatible single-inheritance class hierarchy
on-the-fly during runtime.

Flexibility Scripting languages are interpreted and thus do not require compi-
lation. This allows us to generate a virtual API on the fly, during runtime.
Changes in the data schema do not require regeneration and recompilation
of the API, but are immediately accounted for. To use such a flexible virtual
API the application needs to employ reflection (or introspection) at runtime
to discover the currently available classes and their functionality.

In summary, dynamic scripting languages offer us exactly those properties
to offer a virtual and flexible API for RDF data. Our arguments apply equally
well to any dynamic language with these capabilities. We have chosen Ruby as
a simple yet powerful scripting language, which in addition allows us to leverage
the popular Rails framework for easy development of complete Semantic Web
applications.

3 Usage

We now show the most salient ActiveRDF features with two examples. Please
refer to the manual16 for more information on the usage of ActiveRDF. Sect. 4
and will explain how the features are implemented.

3.1 Create, read, update and delete

ActiveRDF maps RDF resources to Ruby objects and RDF properties to meth-
ods (attributes) on these objects. If a schema is defined, we also map RDF
Schema classes to Ruby classes and map predicates to class methods. The de-
fault mapping uses the local part of the schema classes to construct the Ruby
classes; the defaults can be overridden to prevent naming clashes (e.g. foaf:name
could be mapped to FoafName and doap:name to DoapName).

If no schema is defined, we inspect the data and map resource predicates to
object properties directly, e.g. if only the triple :eyal :eats "food" is available,

16 http://activerdf.org/manual/

http://activerdf.org/manual/

we create a Ruby object for eyal and add the method eats to this object (not
to its class).

For objects with cardinality larger than one, we automatically construct an
array with the constituent values; we do not (yet) support RDF lists and collec-
tions.

Creating objects either loads an existing resource or creates a new resource.
The following example shows how to load an existing resource, interrogate its
capabilities, read and change one of its properties, and save the changes back.
The last part shows how to use standard Ruby closure to print the name of each
of Renaud’s friends.� �
renaud = Person . c r e a t e (’ h t tp : // a c t i v e r d f . m3pe . org / renaud ’)
renaud . methods . . . [’ f i r s tName ’ , ’ lastName ’ , ’ knows ’ , . . .]
renaud . f i r s tName . . . ’ renaud ’
renaud . f i r s tName = ’ Renaud ’
renaud . save

renaud . knows . each do | f r i e n d |
put s f r i e n d . f i r s tName

end� �
3.2 Dynamic finders

ActiveRDF provides dynamic search methods based on the runtime capabili-
ties of objects. We can use these dynamic search methods to find particular
RDF data; the search methods are automatically translated into queries on the
dataset.

The following example shows how to use Person.find by firstName and
Person.find by knows to find some resources. Finders are available for all com-
binations of object predicates, and can either search for exact matches or for
keyword matches (if the underlying data-store supports keyword search).� �
e y a l = Person . f i n d b y f i r s tN ame ’ Eyal ’
renaud = Person . f i n d by knows e y a l
a l l j o h n s = Person . f i nd by keyword name ’ john ’
o t h e r = Person . f i nd by keywo rd name and age ’ j ack ’ , ’ 30 ’� �
4 Architecture

In this section, we give a brief overview of the architecture of ActiveRDF. Ac-
tiveRDF follows ActiveRecord pattern [3, p. 160] which abstracts the database,
simplifies data access and ensures data consistency, but adjusted for RDF data.

4.1 Overview

ActiveRDF is composed in four layers, shown in Fig. 1:

Virtual API
Cache

Mapping
Adapter

RDF Database

Application

accessing
database

exposing
database

Fig. 1. Overview of the ActiveRDF architecture

Virtual API The virtual API is the application entry point and provides all
the ActiveRDF functionality: it provides the domain model with all its ma-
nipulation methods and generic search methods. It is not a generated API
(hence the name virtual) but uses Ruby meta-programming to catch unhan-
dled method calls (such as renaud.firstName) and respond to them.

Cache A caching mechanism can be used to reduce access to the database and
improve time performance (in exchange for memory).

Mapping Maps RDF data to Ruby objects and data manipulation to Ruby
methods. For example, when the application calls a find method or when
we create a new person, the mapping layer translates this operation (using
an adapter) into a specific query on the data-store. The mapping layer also
creates Ruby classes from RDF Schema classes (with methods), or adds
Ruby objects (with their own methods) if no schema is available.

Adapter Provides access to a specific RDF data-store by translating generic
RDF operations to a store-specific API17. The adapter layer enables com-
munication with a specific RDF data-store. Each adapter offers a simple
low-level API (consisting of query, add, remove and save) which is used by
the mapping layer. The low-level API is purposely kept simple, so that new
adapters can be easily added. The real mapping logic is provided by the
generic mapping layer.

4.2 Feature implementation

We now briefly explain how the features mentioned in Sect. 1.1 are implemented
in the architecture:

1. The virtual API offers a RDF manipulation language (using Ruby meta-
programming) which uses the mapping layer to create classes, objects, and
methods which respect the terminology of the RDF data.

17 in absence of general standardised query language that provides create, read, update,
and delete access to RDF data-stores.

2. The virtual API offers read and write access and uses the mapping layer to
translate operations into RDF queries.

3. Adapters provide access to various data-stores and new adapters can easily
be added since they require only little code.

4. The virtual API offers dynamic search methods (using Ruby reflection) and
uses the mapping layer to translate searches into RDF queries.

5. The mapping layer is completely dynamic and maps RDF Schema classes
and properties to Ruby classes and methods. In the absence of a schema the
mapping layer infers properties of instances and adds it to the corresponding
objects directly achieving data-schema independence.

6. The caching layer (if enabled) minimises database communication by keeping
loaded RDF resources in memory and ensures data consistency by making
sure not more than one copy of an RDF resource is created.

7. The implementation design ensures integration with Rails: we have created
ActiveRDF to be API-compatible with the Rails framework.

The functionality of ActiveRDF (especially if combined with Rails) allows
rapid development of Semantic Web applications that fully respect the principles
of RDF.

5 Case Study

We have not yet performed an extensive evaluation of the usability and improved
productivity of ActiveRDF (compared to common RDF APIs). Instead we report
some anecdotal evidence in our own development of a Web applications that uses
ActiveRDF in combination with Rails.

5.1 Semantic Web with Ruby on Rails

Rails is a RAD (rapid application development) framework for web applications.
It follows the model-view-controller paradigm. The basic framework of Rails
allows programmers to quickly populate this paradigm with their domain: the
model is (usually) provided by an existing database, the view consists of HTML
pages with embedded Ruby code, and the controller is some simple Ruby code.

Rails assumes that most web applications are built on databases (the web
application offers a view on the database and operations on that view) and makes
that relation as easy as possible. Using ActiveRecord, Rails uses database tables
as models, offering database tuples as instances in the Ruby environment.

ActiveRDF can serve as data layer in Rails. Two data layers currently exist
for Rails: ActiveRecord provides a mapping from relational databases to Ruby
objects and ActiveLDAP provides a mapping from LDAP resources to Ruby
objects. ActiveRDF can serve as an alternative data layer in Rails, allowing
rapid development of semantic web applications using the Rails framework.

5.2 Building a faceted RDF browser

We have used ActiveRDF in the development of our prototype faceted browser,
available on http://browserdf.org and shown in Fig. 2. We have improved
faceted browsing, a navigation technique for structured data, with automatic
facet construction to enable browsing of semi-structured data [5].

Fig. 2. Faceted browsing prototype

The prototype is implemented in Ruby, using ActiveRDF and Rails. After
finishing the theoretical work on the automated facet construction, the appli-
cation was developed in only several days. In total, there are around 385 lines
of code: 250 lines for the controller (consisting mostly of the facet computation
algorithm), 35 lines for the data model and 100 lines for the interface which
includes all RDF manipulations for display.

6 Conclusion

ActiveRDF is an object-oriented library for RDF data. It can be used with arbi-
trary data-stores and offers full manipulation of RDF through a virtual API that
respects the data terminology. ActiveRDF is completely dynamic and can work
without any schema information. Additionally, the integration with the popular
Rails framework enables very easy development of Semantic Web applications.

We have analysed the problems of object-oriented access to RDF data and
shown that a scripting language is well suited for such a task. In ActiveRDF, we
address the challenges as follows:

1. the mapping layer does not rely on the existence of a schema, but can also
infer properties from the instance data (as shown in Sect. 1.1),

http://browserdf.org

2. the virtual API is provided dynamically and automatically modified during
runtime to stay consistent with a dynamic schema.

3. the mapping layer does not assume the conformance of RDF data to a
schema, but instead allows objects with other capabilities than their class
definition.

6.1 Discussion

ActiveRDF is by design restricted to direct data manipulation; we do not perform
any reasoning, validation, or constraint maintenance. In our opinion, those are
tasks for the RDF store, similar to consistency maintenance in databases.

One could argue that statically generated classes have one advantage: they
result in readable APIs, that people can program against. In our opinion, that
is not a viable philosophy on the Semantic Web. Instead of expecting a static
API one should anticipate various data and introspect it at runtime. On the
other hand, static APIs allow code-completion, but that could technically be
done with virtual APIs as well (using introspection during programming).

6.2 Future work

We have currently released the first version of ActiveRDF and are continuing
to improve it. We outline some important issues and how we intend to resolve
them. First, multiple inheritance is not yet implemented in the first release, but
we are already working on a technique that overrides the internal Ruby type-
system, manages our own types and allows multiple inheritance. Secondly, we
are removing the cumbersome and technically unnecessary need to pre-define all
classes (as shown in the first example in Sect. 1.1). And finally, we plan to do
an usage evaluation of ActiveRDF versus other RDF APIs, on (data querying)
perfomance and on programmer productivity; we reserve such an evaluation for
future work.

References

1. T. Berners-Lee. Weaving the Web – The Past, Present and Future of the World
Wide Web by its Inventor. Texere, 2000.

2. O. Fernandez. Deep integration of ruby with semantic web ontologies. http://

gigaton.thoughtworks.net/∼ofernand1/DeepIntegration.pdf.
3. M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
4. A. Kalyanpur, D. Pastor, S. Battle, and J. Padget. Automatic mapping of owl

ontologies into java. In SEKE. 2004.
5. E. Oren, et al. Annotation and navigation in semantic wikis. In SemWiki in ESWC.

2006.
6. J. K. Ousterhout. Scripting: Higher-level programming for the 21st century. IEEE

Computer, 31(3):23–30, 1998.
7. D. Schwabe, D. Brauner, D. A. Nunes, and G. Mamede. Hypersd: a semantic desktop

as a semantic web application. In SemDesk in ISWC. 2005.
8. D. Vrandečić. Deep integration of scripting language and semantic web technologies.

In Scripting for the Semantic Web. 2005.

http://gigaton.thoughtworks.net/~ofernand1/DeepIntegration.pdf
http://gigaton.thoughtworks.net/~ofernand1/DeepIntegration.pdf

Access Control on RDF Triple Stores from a
Semantic Wiki Perspective

Sebastian Dietzold1 and Sören Auer1,2

1Universität Leipzig
Department of Computer Science

{dietzold|auer}@informatik.uni-leipzig.de

2University of Pennsylvania
Department of Computer and Information Science

auer@seas.upenn.edu

Abstract. RDF triple stores are used to store and query large RDF
models. Semantic Web applications built on top of such triple stores re-
quire methods allowing high-performance access control not restricted
to per model directives. For the growing number of lightweight, scripted
Semantic Web applications it is crucial to rely on access control methods
which maintain a balance between expressiveness, simplicity and scal-
ability. Starting from a Semantic Wiki application scenario we collect
requirements for useful access control methods provided by the triple
store. We derive a basic model for triple store access according to these
requirements and review existing approaches in the field of policy man-
agement with regard to the requirements. Finally, a lightweight access
control framework based on rule-controlled query filters is described.

Introduction

The efficient implementation of a Semantic Web application particularly de-
pends on the underlying RDF API and triple store. Today’s RDF triple stores
are mostly build upon relational database management systems with dedicated
database schemata and corresponding API methods which rewrite knowledge
base queries into database queries (e.g. [1] and [2]). However, access control at
the level of the underlying relational database lacks granularity if based on the
entities table, row and database. There exist APIs which do not depend on a
relational database (e.g. Redland [3] and Sesame [4]) but also when basing on
them, the Semantic Web application has to establish access control mechanisms
on their own.

We are convinced, that future RDF triple stores will be used as backends for
application systems in analogy to existing relational databases. Assuming this,
it is important to develop access control methods which do rely on the RDF
data model and enable access controll with respect to metamodels based on the
RDF data model, such as RDF-Schema and the different OWL flavors. A longer
term aim is to make such methods integral part of future triple stores.

To have a more solid starting point for the formulation of requirements we
selected the application scenario of Semantic Wikis. We define a Semantic Wiki
as a collaborative software for modifying a shared knowledge base. Further, we
assume this knowledge base to be an RDF graph which consists of RDF triples.
A Semantic Wiki supports the collaborative process of instance acquisition and
curation with respect to an often fuzzy and not well defined goal. This definition
does not make any assumptions about the user frontend, because these wiki
design principles are defined in [5] and are independent of the prefix ”semantic”.

1 Requirements on Access Control for a Semantic Wiki
RDF Triple Store

In a ‘classic’ wiki we are used to think in access categories like account and page:
an account has certain rights with respect to a page1. The specific rights which
can be granted or revoked are typically the rights to read, modify, delete and
annotate the page and to grant such rights for this page to some other account.
Further, pages can be arranged in a page tree, which makes the application of
access control rules on a page subtree necessary.

For a Semantic Wiki, the base entities we have to consider are not accounts
and pages but sets of triples. Also, accounts and annotations can be identified
using URI references and information about them represented as triples. Hence,
access control should work on the granularity level of triples as well as on higher
levels, such as the description of a resource (i.e. all triples having the same
subject) or instances of a certain class.

Based upon our Semantic Wiki definition and the work with our prototype
3ba.se [6] we identified the following requirements for access control on the un-
derlying RDF triple store:

– Efficiency and scalability should have precedence over expressive power. In
modern web applications with complex and dynamic user frontends, query
processing has to be as fast as possible. This requirement is more important
than expressive power of the access control language since there are usually
hundreds of queries to the store triggered by a single web request.

– As a minimal requirement we need context- and content-sensitive triple fil-
tering in a declarative way. This means the access to a tiple set depends on
the accounts metadata (e.g. membership information) as well as on the con-
tent of the wanted triple set itself (e.g. enforce to give all needed attributes
to some resource).

– Access control declaration should be able to use organisational information
like command structure and group membership information from inside the
controlled or another RDF model. For the most common architectures used
for the storage of organisational data inside a company etc., methods exist
to migrate or RDF-ify such organizational memory (e.g. [7] for relational

1 It is important to distinguish between an idealistic wiki with absolutely no access
control and realistic wikis, where access control and wiki are not mutually exclusive.

databases and [8] for LDAP directories). It should be possible to use this
data to express access control declarations.

In the next section we survey shortly existing research projects which are
related to the topic of access control on RDF triple stores.

2 Related work

The research field policy management for the Semantic Web addresses machine
interpretable policies to control programs, services and agents on the Web. It is
not restricted to security and privacy but also tackles problems related to trust
(e.g. trust in resource quality or agents), information filtering, accountability
and others. An overview of the current projects is available in the workshop
proceedings [9] and [10]).

However, most projects have a different intentions than this work. A policy-
based management framework in the sense of [11] aims at an open semantic
network environment. In this network the behavior of agents and services is
controlled by reasoned decisions over policies. This is necessary due to the com-
plexity of the global approach of controlling all possible agents and services with
all possible actions. An example for such a system is Rei [12] which supports
specification of policies, analysis and reasoning in pervasive computing applica-
tions.

Due to the fact that reasoning procedures are still not scalable to scope with
larger knowledge bases, such capabilities can not applied in RDF triple stores
today. Another objection to reasoning is the open world assumption, because no
external sources are used and access control answers in a closed triple store are
limited to yes and no.

Policy management is not only access control but also information filtering
based on quality and trust properties. This is necessary whilst operating in a
network of distributed resources which are not trustworthy per default. The
TriQL.P [13] browser uses queries for filtering information from different sources
and qualities. This filter approach is also part of the framework described here.

Another possible approach is the usage of explicit rules (which our approach
also makes use of). An example for such a system is [14]. Again, the scope of
this system is not an RDF triple store but distributed resources on a network
and the access to these resources.

Summarizing we can state that all these systems operate with a different
communication model. However, an RDF triple store can be seen as an agent in
these frameworks, while the access control layer for the RDF triple store itself
operates on a more basic and lightweight model.

3 A Basic Model for Access on RDF Triple Stores

In order that we can develop an access control framework which solves the given
requirements, we have to specify a clear communication model for the target

environment. In this basic model for access on RDF triple stores, we define
three atomic actions:

– Reading a set of triples from a stored model: The account queries the triple
store with a formal query language (e.g. [15], [16] and [17]) or selects some
triples with a more simple method (e.g. a triple pattern). The answer of the
triple store is a set of triples which constitutes the intersection of the wanted
and the allowed triple set. Most of todays query languages can query not
only for submodels. A common result value is a set of variable bindings.
Nevertheless there was a requested set of triple which was necessary for the
computation of the result set.

– Adding a set of triples to a stored model: The account sends the dedicated
triple set to the triple store. The store removes all the triples which are not
allowed to be written and adds each of the remaining triples, if they are not
already contained in the model.

– Removing a set of triples from a stored model: The account sends the ded-
icated triple set to the triple store. The store removes all the triples which
are not allowed to be deleted and deletes each of the remaining triples, if
they exist in the stored model.

The approach presented in [18] adds more atomic actions here to the above
listed ones. They distinguish between one-triple actions, triple-set actions and
reasoned-set actions. In this basic model neither one-triple actions nor reasoned-
set actions need to be considered because:

– A one-triple action can be seen as a specialization of a triple-set action.
– We define a reasoner application as an agent which holds a specific account

with certain rights to a triple store. Following this, reasoned-set actions are
combinations of normal triple-set actions which are performed by the rea-
soner agent.

In the next section, we describe an access control framework which is based
on this communication model.

4 Lightweight Framework for Access Control on RDF
Triple Stores

As denoted in section 2, we use explicit rules and query filters as the primarily
parts of our framework. The whole framework consists of four parts:

– A query engine which can apply subset selection query filters to a given
model. In this paper we assume that this is a query engine for the SPARQL
query language [15] but generally the approach is not limited to a specific
query language.

– A rule processor which decides whether a query filter is fired for a given
action or not. We assume that the used decision rules are described by using
the Semantic Web Rule Language (SWRL, [19]) but also, this part can be
replaced by an equivalent one.

– A minimalistic RDF schema called Lightweight Access Control Schema (LACS,
[20]), which describes a basic vocabulary to store rules and query filters.

– The access control processor, which starts the query engine and rule processor
as needed and maintains some session data.

A fundamental concept of the framework is the presentation of a virtual
model to the account instead of the real one. This virtual model is created
from the real model and modified through the query filters selected by the rule
processor. Thereby, the decision rules can reference to and use resources from
the following three different models:

– Session Model: This model holds information about the active session (which
account is doing what). The triple of this model are dynamically created for
every new action on the triple store.

– User model: This is the data which the account wants to get access to but
it can used by the decision rules too.

– Maintenance Model: This model consists of decision rules and filters as well
as all other maintenance data like group or account information. The vocab-
ulary for the filter and rule description comes from the lightweight access
control schema and from the SWRL specification. The maintenance data
which is used by the rules to decide the application of a query filter is not
fixed, so rules can be created for every available environment, e.g. a FOAF
database or an LDAP backend.

The following example maintenance model consists of two filters and rules.
They are created for the following two reading conditions:

– All admins can read every triple.
– All accounts which are from type foaf:Person2 may read only triples where

the subject is of type foaf:Person.

The rules to effect this behavior are:

rdf:type(lacs:CurrentAction, lacs:Read)
∧ rdf:sameAs(lacs:CurrentAccount, ?a)
∧ foaf:member(:Admins, ?a)
→ lacs:addAndStop(:currentAction, :AllFilter)

rdf:type(lacs:CurrentAction, lacs:Read)
∧ rdf:sameAs(lacs:CurrentAccount, ?a)
∧ rdf:type(foaf:Person, ?a)
→ lacs:add(:currentAction, :FoafOnlyFilter)

They reference triples in the maintenance model, which describe a group and
a member of this groups with the commonly used FOAF vocabulary:
2 We assume, that the namespaces rdf, rdfs, foaf and ruleml are predefined for all

examples. The namespace lacs is used for the vocabulary described in [20]. All RDF
examples are given in Notation 3 (N3, [21]).

:Admins a foaf:Group;

foaf:member :UserSD.

:UserSD a foaf:Person;

foaf:name "Sebastian Dietzold ".

These rules reference two query filters. These query filters are given in a
specific query syntax and are represented in the RDF with the LACS vocabulary:

:AllFilter a lacs:Filter;

rdfs:label "no restriction filter ";

lacs:sparql "CONSTRUCT { ?s ?p ?o } WHERE { ?s ?p ?o }".

:FoafOnlyFilter a lacs:Filter;

rdfs:label "read only FOAF address book";

lacs:sparql """ CONSTRUCT { ?s ?p ?o }

WHERE {?s rdf:type foaf:Person . ?s ?p ?o }""".

To give explicit instructions for the access control processor, the rules are
represented in RDF and enriched with metadata. The first one is annotated by
using the SWRL vocabulary referenced by the namespace ruleml, the latter by
using the LACS vocabulary.

The next part defines two lacs:rule entities which references to SWRL
implication rules (not displayed here). Important for the access control processor
is the priority of the rules, since the rule selection (see figure 1) is ordered by
this property.

_:123 a lacs:Rule;

rdfs:label "Admins can read everything ";

lacs:priority 10;

lacs:swrlImp [

a ruleml:imp;

... rule definition ...

].

_:321 a lacs:Rule;

rdfs:label "User can read only foaf:Persons ";

lacs:priority 100;

lacs:swrlImp [

a ruleml:imp;

... rule definition ...

].

Based on this example maintenance model, a sample reading action is pro-
cessed according figure 1.

First of all, the Session Model is modified by the access control processor to
represent the current session. Again, the LACS vocabulary is used:

lacs:currentUser = :User2.

lacs:currentAction a lacs:Read.

Fig. 1. Rule Processing Flowchart

After that, the first rule is selected and evaluated by the rule engine. In
the example maintenance model, this is the ”Admins can read everything” rule.
Due to this rule, no filter is fired because the user is not member of the admin
group. The next rule will be selected and due to this rule, the filter ”read only
FOAF address book” is fired. So the query process creates the virtual model as
it applies filters to the user model. Because there is no other rule, the processor
leaves this cycle and presents the virtual model to the user.

This was an example for a reading action. For this type of action, the user
query is processed against the virtual model. For writing actions, the filters are
not processed against the user model but rather against the model which is
supplied by the user (i.e. the triples, he wants to add or delete). After modifying
this model according the rules, the add or delete action is processed.

5 Conclusion

We have presented a lightweight access control framework for RDF triple stores
based on requirements derived from usage scenarios within a Semantic Wiki
application. The basic idea of this framework is the presentation of a virtual
model instead of the real one. This model is generated by filtering the original
model. Filter are selected by rules. In the examples, we use SPARQL for filtering
and SWRL as rule language.

The presented framework strongly depends on the lightweight communication
model given in section 3. So it is not intended to be a general access control
framework for the Semantic Web. Instead it is designed to be a fast, reliable and
easy to implement as part of an RDF triple store. In order to achieve this, we
focused on a clear execution algorithm with explicit rules, but do not use any
reasoning capabilities.

One important advantage when compared to other approaches is the possibil-
ity to create both simple and complex access control environments as necessary.
Also, the minimal requirements to the underlying maintenance model are small,
so that administrators can maximally reuse existing models within their rules.

References

1. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and
Retrieval in Jena2. In: Proceedings of First International Workshop on Semantic

Web and Databases 2003. (2003) 131–150
2. Bizer, C.: RAP (RDF API for PHP). Website (2004) http://www.wiwiss.fu-

berlin.de/suhl/bizer/rdfapi/.
3. Beckett, D.: The design and implementation of the Redland RDF application

framework. Computer Networks 39 (2002) 577–588
4. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. In Horrocks, I., Hendler, J., eds.:
The Semantic Web - ISWC 2002. First International Semantic Web Conference,
Sardinia, Italy, June 9-12, 2002, Proceedings. Volume 2342 of Lecture Notes in
Computer Science., Springer (2002) 54–68

5. Leuf, B., Cunningham, W.: The Wiki Way. Addison-Wesley Longman, Amsterdam
(2001)

6. Auer, S., Dietzold, S., Riechert, T.: 3ba.se Semantic Wiki. Prototype (2006)
http://3ba.se.

7. Bizer, C., Seaborne, A.: D2RQ -Treating Non-RDF Databases as Virtual RDF
Graphs. Poster (2004) 3rd International Semantic Web Conference (ISWC2004),
Hiroshima, Japan.

8. Dietzold, S.: Generating RDF Models from LDAP Directories. In Auer, S., Bizer,
C., Miller, L., eds.: Proceedings of the SFSW 05 Workshop on Scripting for the
Semantic Web , Hersonissos, Crete, Greece, May 30, 2005. Volume 135 of CEUR
Workshop Proceedings., CEUR-WS (2005)

9. Kagal, L., Finin, T., Hendler, J., eds.: Policy Management for the Web. (2005)
10. Kagal, L., Finin, T., Hendler, J., eds.: Proceedings of the Semantic Web and

Policy Workshop, held in conjunction with the 4th International Semantic Web
Conference, 7 November, 2005, Galway Ireland. (2005)

11. Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic
Web Languages for Policy Representation and Reasoning: A Comparison of KAoS,
Rei, and Ponder. In Fensel, D., Sycara, K.P., Mylopoulos, J., eds.: The Semantic
Web - ISWC 2003, Second International Semantic Web Conference, Sanibel Island,
FL, USA, October 20-23, 2003, Proceedings. Volume 2870 of Lecture Notes in
Computer Science., Springer (2003) 419–437

12. Kagal, L.: Rei: A Policy Language for the Me-Centric Project. Technical report,
HP Labs (2002)

13. Bizer, C., Cyganiak, R., Gauss, T., Maresch, O.: The TriQL.P Browser: Filtering
Information using Context-, Content- and Rating-Based Trust Policies. In Kagal,
L., Finin, T., Hendler, J., eds.: Proceedings of the Semantic Web and Policy Work-
shop, held in conjunction with the 4th International Semantic Web Conference, 7
November, 2005, Galway Ireland. (2005) 12–20

14. Li, H., Zhang, X., Wu, H., Qu, Y.: Design and Application of Rule Based Access
Control Policies. In Kagal, L., Finin, T., Hendler, J., eds.: Proceedings of the
Semantic Web and Policy Workshop, held in conjunction with the 4th International
Semantic Web Conference, 7 November, 2005, Galway Ireland. (2005) 34–41

15. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (Working
Draft). W3c working draft, World Wide Web Consortium (W3C) (2006)

16. Seaborne, A.: RDQL - A Query Language for RDF. W3c
member submission, World Wide Web Consortium (W3C) (2004)
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

17. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: Proceedings of the eleventh
international conference on World Wide Web, ACM Press (2002) 592–603

18. Reddivari, P., Finin, T., Joshi, A.: Policy based access control for an RDF store.
In Kagal, L., Finin, T., Hendler, J., eds.: Policy Management for the Web. (2005)
78–81

19. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean,
M.: SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3c member submission, World Wide Web Consortium (W3C) (2004)
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

20. Dietzold, S.: LACS: Lightweight Access Control Schema. OWL ontology (2006)
http://purl.org/net/lacs.

21. Berners-Lee, T.: Notation 3 - An readable language for data on the Web. Website
(1998) http://www.w3.org/DesignIssues/Notation3.html.

RDFHomepage
or

“Finally, a use for your FOAF file”

Gunnar AAstrand Grimnes, Sven Schwarz, and Leo Sauermann

Knowledge Management
DFKI GmbH

Kaiserslautern, Germany
http://www.dfki.uni-kl.de/∼{grimnes,schwarz,sauermann}

{grimnes,schwarz,sauermann}@dfki.uni-kl.de

Abstract. This paper presents the RDFHomepage project, a frame-
work for using a person’s structured data sources to auto-generate an
HTML homepage. RDFHomepage uses RDF files as input, and currently
supports several well-known RDF schemas, such as FOAF. In addition
to these we have RDF converters for other structured file-formats, like
Bibtex. RDFHomepage produces valid HTML 4.01 Transitional pages,
and makes it easy to roll-out functional homepages for a group of peo-
ple. The generated HTML code is very general, allowing quick and easy
page-redesigning using CSS. RDFHomepage is written in PHP and uses
our system for generating PHP classes based on RDF class definitions,
enabling quick and easy development of RDF handling PHP code.

1 Introduction

RDFHomepage is a tool for automatic generation of HTML homepages based
on RDF files and other structured information sources which a user might al-
ready create and maintain. Figure 1 shows an overview screenshot of the default
homepage created based on a user’s RDF data. This page contains all things
one expects on a typical homepage: the top shows the person’s name, email,
telephone number etc., this is taken from his FOAF profile; further down there
is a short bibliography, this taken from a file using the homepage-schema we
created for this task; the next section lists the projects this user is involved in,
taken from the DFKI Organisational Repository (OrgRep); finally the page has
a list of people he knows, based on the friends he specified in his FOAF profile.
RDFHomepage has the following attractive features:

– Generated pages are valid HTML 4.01 Transitional.
– Generates well structured HTML code that can easily be styled with Cas-

cading Stylesheets (CSS).
– Enables complete separation of content and appearance.
– An RDF Template engine for generating PHP classes for each RDF Schema

is used to make the PHP code easy to write and maintain.

II

– Enables easy rollout of many identical websites across an organisation.

Section 2 outlines the architecture of RDFHomepage. Section 3 discussed
the different datasources used by RDFHomepage and Section 4 presents our
template engine for generating PHP Classes based on RDF Schemas. Section 5
outlines some future plans and makes concluding remarks.

2 Architecture

For RDFHomepage we chose to use the web-scripting language PHP. We chose
PHP because it is free and open-source, and is a powerful and feature complete
language, with good support for RDF through the RDF API for PHP (RAP) [1].
PHP is also very often provided by cheap hosting providers, unlike more heavy-
weight solutions such as Java, making the potential userbase of RDFHomepage
much larger. In addition, PHP was also initially known as the Personal Home
Page tools, (although later renamed to PHP Hypertext Preprocessor) and we feel
RDFHomepage now brings PHP back to its roots. Alternative techniques that
were evaluated include: Treehugger by Damian Steer[2] and Masahide Kanzaki’s
various XSLT tools[3]. These XSLT tools were not chosen because of the steep
learning curve, the (often) silent failures which makes debugging very hard in
comparison to PHP scripts. RDFHomepage uses RDF data from several stan-
dard sources, detailed in the next section, and in addition to these we created a
homepage schema, providing the semantic glue between the other sources, and
allowing the user to specify additional personal details in a structured form, for
example his interests or personal views on projects. Having explicit representa-
tions of these items, rather than HTML pages, enables machine processing of
the content, such as automatic aggregation of colleagues with similar interest.

The RDFHomepage distribution comes with a standard set of pages, includ-
ing “About me”, “Projects”, “Interests” and “Publications”. The side-bar menu
can be easily customised to include other static or dynamic pages, enabling
RDFHomepage to integrate well with exisiting homepage components. There is
also a selection of side-bar boxes available, showing elements like links to the
raw RDF sources of the page, or links to companies, projects, etc.

Generation of each page compromising the RDFHomepage can take several
seconds, depending on the size of the user’s data and of course on the web-server
being used. A caching mechanism is therefore a part of RDFHomepage, which
will only regenerate pages if the underlying RDF data has changed. Unfortu-
nately normal HTTP/1.1 caching mechanisms could not be used for this, as a
single page might be dependent on a number of RDF files, both local and re-
mote, so the caching layer was implemented as an additional PHP layer around
the page-generating code.

III

Fig. 1. Overview Screenshot of an RDFHomepage Installation

IV

3 RDF Data

3.1 FOAF

The Friend-of-a-Friend ontology [4] was the main point of inspiration for
RDFHomepage. A huge number of people in the semantic web community have
created their own FOAF profile and published it1, and there are millions more
generated by LiveJournal2, Ecademy3 and other social sites producing FOAF.
However, there are very few consumers of FOAF files, there have been a range
of visualisers and explorers[5], and some proof-of-concepts on using FOAF for
distributed authentication4 and trust [6], but no application that really makes
it worth your while to create a FOAF profile. In RDFHomepage the FOAF data
is used to create the personalia “About me” page, as well as links to people
known by the user, and links to the co-authors of papers on the “Publications”
page. Extending and enriching your FOAF file now makes sense: A link to a
colleague is missing, just add him to your foaf.rdf and all parts of your page are
automatically updated.

3.2 Bibtex

BibTeX is a format for managing citations when using TeX or LaTeX. BibTex
defines different classes of publications, such as articles, books, theses, etc., and
associated optional and required properties of these. Most computer scientists
will keep a BibTeX file of their own publications up to date, for use when self-
citing or when publishing their papers on their website. There are many tools for
helping this process (for example JabRef5 and BibDesk6). Since people already
maintain this information in a structured format it makes sense to reuse this
information, and to this end we used BibTeX2RDF, written by Wolf Siberski[7].
A sample BibTeX entry converted to RDF is shown as N3 in Figure 2. The
output uses largely standard schemas, such as Dublin Core and VCARD, but
does also declare its own namespace for BibTeX specific items. (BibTeX2RDF
is configurable to output RDF confirming to any ontology, and unfortunately
the actual schema for our version not available). As can be seen from the ex-
ample the authors of a paper are represented as RDF instances of a Person
class. Each person gets a URI generated from their name and the ID of a paper
they authored, this ensures there are no collisions. BibTeX2RDF will also merge
people with exactly the same name (i.e. smushing), so there will only be one
node for each person. RDFHomepage uses the BibTeX information to create
the “Publications” page, merging the BibTeX person nodes with FOAF people,
and uses the info from the FOAF file to generate links to co-author’s webpages.
1 http://rdfweb.org/topic/FOAFBulletinBoard
2 http://www.livejournal.com
3 http://www.ecademy.com/
4 http://rdflib.net/doc/user managenemt/
5 http://jabref.sourceforge.net/
6 http://bibdesk.sourceforge.net/

V

This means users have an interest in keeping the names aligned, and may edit
their BibTeX accordingly. We note however, that this is not really a technically
satisfying solution. In addition to the author links, RDFHomepage will also link
to the PDFs of any papers available for download, as well as generating links to
the homepages of the venues where papers are published. The PDF downloads
links are taken from BibTeX directly, URL being one of the optional fields of
all BibTeX types, and most BibTeX tools make is easy to attach PDFs to cita-
tions this way. These links are retrieved from an internal DFKI wiki page listing
conference abbreviations and corresponding web-links. To generate links to the
corresponding conferences, a social approach was taken. This gathering of rele-
vant conferences and their URLs was already being done in our research-group
and the existing Wiki page is now simply parsed looking for HTML links tags
with abbreviations as link texts. The conference names and URLs are extracted
and matched to the names user in the BibTeX data. This motivated people to
keep the Wiki page updated, having a similar effect as seen with the FOAF files.

@prefix : <http://www.w3.org/2001/vcard-rdf/3.0#> .
@prefix bibtex: <http://www.edutella.org/bibtex#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<aberer2003chatty:ACM Press> a bibtex:Organization;
:ADR [

:Country “USA”;
:Locality “New York”];

:FN “ACM Press” .

<aberer2003chatty:Aberer Karl> a bibtex:Person;
:FN “Karl Aberer”;
:N [

:Family “Aberer”;
:Given “Karl”] .

(...)

<aberer2003chatty> a bibtex:InProceedings;
dc:creator [

a rdf:Seq;
rdf: 1 <aberer2003chatty:Aberer Karl>;
rdf: 2 <aberer2003chatty:Cudre-Mauroux Philippe>;
rdf: 3 <aberer2003chatty:Hauswirth Manfred>];

dc:date “2003-05”;
dc:identifier “http://www2003.org/cdrom/papers/refereed/p471/471-aberer.html”;
dc:publisher <aberer2003chatty:ACM Press>;
dc:title “The Chatty Web: Emergent Semantics Through Gossiping”;
dcterms:isPartOf [

a bibtex:Proceedings;
dc:date “2003-05”;
dc:publisher <aberer2003chatty:ACM Press>;
dc:title “Proceedings of the 12th Intl. WWW Conference” ;
:ADR [

:Country “Hungary”;
:Locality “Budapest”]];

bibtex:pages “197-206” .

Fig. 2. A BibTeX entry as converted to RDF.

VI

3.3 Projects

At the DFKI information about all projects and the people working in them is
centrally maintained in a Organisational Repository (OrgRep)7 [8]. OrgRep was
originally created for use in the FRODO project, but has been maintained and
used in many DFKI projects since, for example EPOS, SmartFlow, and MyMory.
The organisation ontology is used in EPOS to infer relevant contextual infor-
mation, i.e. given a person as input the system can look up relevant projects,
and vice versa. An example project entry from OrgRep is shown in Figure 3. In
addition to the fields shown here OrgRep also contains a longer general descrip-
tion of a project as HTML data, this is used on the “Project” page, unless the
user choses to override this with his own personal view on the project. Again
the heavy reuse of the data in several contexts increased the motivation to keep
your data up-to-date.

@prefix : <http://km.dfki.de/model/org#> .
@prefix a: <http://dfki.rdf.util.rdf2java/default#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:rdfhomepage a :Project;
:belongsTo :OrganisationalModel 00095;
:containsMember a:id 20040921 120247 156f920,

:GuentherNoack,
:MalteKiesel,
:OrganisationalModel 00077,
:OrganisationalModel 00102;

:homepage “http://rdfhomepage.opendfki.de/”;
:logo “http://www.dfki.uni-kl.de/∼schwarz/rdfhomepage/images/rdfhomepage06-180.png”;
:managedBy :OrganisationalModel 00077;
:name “rdfhomepage”;
rdfs:label “rdfhomepage” .

Fig. 3. Example OrgRep Project Entry.

4 RDF Class Templates

Working with RDF on the triple level can be very difficult and time consuming
for developers and it introduces lots of scope for errors. To facilitate this process
we created an RDF Template Generator for PHP, this takes one or more RDF
Schema documents and produces a PHP class definition based on a selected
RDF Class. This means that programmers no longer have to deal directly with
the RDF API, but can continue work on the level of PHP objects which they
are more used to. An example PHP Class outline generated from the OrgRep
ontology is shown in Figure 4. Note how the properties of the OrgRep have
7 The OrgRep ontology can be downloaded from http://www.dfki.uni-

kl.de/∼grimnes/2006/03/orgrep/orgrep.rdfs

VII

been mapped to getter-methods of the form get namespace localname, where
the namespace is abbreviated. Each getter method takes a boolean argument
specifying whether an array or a single value should be returned. Arrays are
useful when a property is either multi-valued or the value is an RDF list or
collection, if multiple values are present but only a single value requested a ran-
dom one is returned. The values returned from these getters are either instances
of other generated template classes, depending on the value being a typed re-
source and the appropriate class existing, or the raw RDF nodes otherwise. Note
also that since RDFHomepage only does processing of RDF data, there are no
setter-methods generated, however, these could easily be added following the
same pattern. The template generator allows loading of multiple schemas before
creating the classes, as is illustrated by the rdfhome htmltext property shown
in the example, which originates from the homepage schema, but still has an
rdf:domain of an OrgRep project. The template generator also supports infer-
ence, so for example: in the case of FOAF, one can generate a Person class
which includes the properties from Agent (a super class of Person in the FOAF
schema). The generates templates build on top of RAP and can seamlessly fit
into a project already using the RAP API.

The approach of mapping RDF objects to a the Object Orientation frame-
work of a programming language is not new and is similar to many other projects,
for example: Tramp [9] by Aaron Swartz (the original as far as we are aware) did
this for Python; Sparta [10], a more up-to-date Python solution; ActiveRDF [11],
a Ruby version; and several Java variants, for example RDFReactor [12] and
rdf2java [13]. Outside the RDF community this approach was also used for map-
ping relational databases to objects, as done with for example Enterprise Java
Beans, or the SQLObject in Python8. There also exists a library that provides
this functionality for PHP, called RDF World [14], but it is different from our
approach in that all the RDF processing is done at runtime, whereas we pre-
generate the class-templates. This means our solution is much faster when run-
ning, and also removes the need to have the triples of the RDF schemas in
memory during runtime.

4.1 Evaluation

As shown by the large number of projects offering different solutions for mapping
RDF data to classes in object-orientation frameworks, this is a very natural idea.
As we see it there are two main reasons to use this approach:

1. Hiding the complexities of RDF – most programmers are comfortable with
thinking in terms of objects and classes, whereas working with RDF graphs
can be very complicated.

2. Enabling code-autocompletion – modern integrated development environ-
ments can be a tremendous help when writing object oriented code, and
removes the need to know the ins and outs of the APIs one is using. With

8 http://www.sqlobject.org/

VIII

<?
class org Project {
function org Project($uri,$model)

function get rdfhomepage htmlText($a=false)
function get org eMail($a=false)
function get org homepage($a=false)
function get org projectFlyer($a=false)
function get org startYear($a=false)
function get org endYear($a=false)
function get org logo($a=false)
function get org containsMember($a=false)
function get org hasProfile($a=false)
function get org informalDescription($a=false)
function get org managedBy($a=false)
function get org name($a=false)

function getProperty($s,$p,$m=False)
}
?>

Fig. 4. Example of Generated PHP Class Outline.

pre-generated code for RDF classes this convenience can also be used with
RDF.

3. Adding custom code to wrapper – by creating classes that inherit from the
generated classes one can embed functionality specific to particular classes
in the most natural place. For example, foaf:Person could have an added
function for automatically generating sha1 checksums of the email address.

With regard to the first point our RDF Templates were only partly successful,
the users still have to understand how multiple values for a single property work
in RDF, and still have to understand the difference between resources, literals
and anonymous nodes. With regard to the second point, full code-completion
is possible with our solution, and was used by several of the coders during
devlopment. Code-completion being possible is another positive effect of pre-
generating the classes, a downside of this pre-generation is that we are tied to
a static schema, and cannot directly deal with properties that do not conform.
For instance, if an instance of foaf:Person has a middleName property (which
doesn’t appear in the FOAF specification), it cannot be accessed using a get
method. However, a general getProperty method is generated to work around
this.

5 Conclusion & Future Work

RDFHomepage provides a quick and easy to way to create attractive and infor-
mative homepages, with all the content typically found on a research active user’s
homepage. The pages are generated from RDF files allowing complete separation
of content and appearance, as well as making the homepage machine process-
able by semantic web agents. Editing of a few simple configuration files makes

IX

customising the generated pages trivial, and if the customisation offered is not
sufficient the use of auto-generated PHP classes makes writing additional PHP
code to handle RDF very easy. The scenario of “creating a homepage” proved
to be a good playground for Semantic Web technologies and as the commercial
success of facebook.com and myspace.com show, it is a very active area. De-
ploying RDFHomepage at our department triggered users to keep their FOAF
files, BibTeX files, the organisational repository and internal Wiki pages up-
dated, and this in turn leads to more accurate date in other projects. We have
several plans for further developments of RDFHomepage, primarily we continue
to add sources of structured information that user’s may want to add to their
homepage. Things we planning to add very soon include:

– Flickr9 photo streams – for example, a side-bar box showing thumbnails of
the user’s last photos.

– RSS/Atom support – listing the last entries in the user’s blog.
– Calendar support – where is the user today? What are his plans this week?

This could for instance make use of the RDF Calendaring efforts10, which
include converters between iCal and RDF.

There is also scope for improving our template system: to make it a more
general solution for RDF based software engineering we need to generate “set-
ters” as well as “getters” for the properties. Another important addition is to
add support for data-types that exist in PHP, and automatically convert fields
that represent for example dates to a standard format.

RDFHomepage is open source, release under a GNU Public License (GPL)
and can be downloaded from http://rdfhomepage.opendfki.de. To get a better
impression of what RDFHomepage can do, consider visiting any of the author’s
homepages, they are all automatically-generated!11

References

1. Radoslaw Oldakowski, Christian Bizer, D.W.: RAP: RDF API for PHP. In: Work-
shop on Scripting for the Semantic Web (SFSW 2005) at 2nd European Semantic
Web Conference (ESWC 2005). (2005)

2. Steer, D.: TreeHugger. (http://rdfweb.org/people/damian/treehugger/)
3. Kanzaki, M.: XSLT Tools. (http://www.kanzaki.com/info/who.html.en)
4. Brickley, D., Miller, L.: FOAF Vocabulary Specification (2006)

http://xmlns.com/foaf/0.1/.
5. Fredriksen, M.: FOAF Explorer. (http://xml.mfd-consult.dk/foaf/explorer/)
6. Golbeck, J., Parsia, B., Hendler, J.: Trust Networks on the Semantic Web. In:

Seventh International Workshop on Cooperative Information Agents (CIA-03),
Helsinki, Finland (2003) 238–249

7. Siberski, W.: BibTeX2RDF. (http://www.l3s.de/∼siberski/bibtex2rdf/)

9 http://flickr.com
10 http://www.w3.org/2002/12/cal/
11 See also http://rdfhomepage.opendfki.de/cgi-bin/trac.cgi/wiki/WorkingInstallations

X

8. van Elst, L., Abecker, A., Bernardi, A., Lauer, A., Maus, H., Schwarz, S.: An Agent-
based Framework for Distributed Organizational Memories. In Bichler, M., Holt-
mann, C., Kirn, S., Mller, J.P., Weinhardt, C., eds.: Coordination and Agent Tech-
nology in Value Networks, Multikonferenz Wirtschaftsinformatik (MKWI-2004),
9.-11.3.2004, Essen, GITO-Verlag, Berlin (2004) 181–196

9. Swartz, A.: (TRAMP: Makes RDF look like Python data structures.)
http://www.aaronsw.com/2002/tramp.

10. Nottingham, M.: (Sparta: a Simple API for RDF)
http://www.mnot.net/sw/sparta/.

11. Oren, E.: (ActiveRDF - putting the semantic web on rails)
http://activerdf.m3pe.org/.

12. Völkel, M., Sure, Y.: RDFReactor – From Ontologies to Programmatic Data Ac-
cess. In: Poster Proceedings of the Fourth International Semantic Web Conference.
(2005) http://rdfreactor.ontoware.org/.

13. Sven Schwarz, M.K., Sintek, M.: (RDF2Java) http://rdf2java.opendfki.de.
14. Snyder, C.: (Rdfworld.php) http://chxo.com/rdfworld/index.htm.

Brainlets: "instant" Semantic Web applications

Giovanni Tummarello, Christian Morbidoni, Michele Nucci, Onofrio Panzarino

SeMedia group, Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni,
Università Politecnica delle Marche, via Breccie Bianche, 60100 Ancona

g.tummrello@gmail.com, c.morbidoni@deit.univpm.it, mik.nuc-
ci@gmail.com

Abstract
In this paper we present the "Brainlet" paradigm, a way to create rich
Semantic Web user interfaces and interaction environments. Brainlets
are half way between configuration files and light scripts and are "exe-
cuted" by the DBin rich Semantic Web Platform. The main motivation
behind Brainlets is enabling domain experts, rather than programmers,
to create rich Semantic Web environments and communities. Brainlets
can in fact be created simply by XML configuration files and XML
based scripts along with the proper ontologies. Advanced Brainlets can
be created based on the internal DBin API and/or the Eclipse Rich
Client platform API. Brainlets are distributed as plug-ins and enable
user communities, providing a common 'vision' of the domain and tools,
to collectively create and exploit rich Semantic Web datasets.

1. Introduction
A fundamental design goal of the DBin rich Semantic Web platform [1] has been the
ability to enable domain experts, rather than Semantic Web programmers and hackers,
to independently start user communities about any topic of choice. We obtain this re-
sult with the definition of a scripting/configuration framework which enables the cre-
ation of rich Semantic Web interaction environments using tools such as XML and
OWL editors. Such environments, which an end user might even perceive as a full fea-
tured domain specific applications, are named Brainlet. This paper illustrates their cre-
ation process and features.

Brainlet are distributed to the users as plug-ins (e.g. posted on a web page), thus en-
abling communities to share a common vision of the domain and a set of tools to col-
lectively create and exploit rich Semantic Web datasets. In order to understand the
need for the features offered by the Brainlet paradigm, lets first address the question:
in which way one can create a 'community' of 'Semantic Web users' ?

Traditional Internet user aggregation channels such as IRC, newsgroups and web
forums make it rather straightforward to create user communities but interactions
among users are limited to textual messages. Finding information on such channels is,
in the best scenario, only possible trough textual search, structured data is not
tractable.

On the other hand, the goal of Semantic Web based user communities - supported
by the DBin platform - is to enable the cooperative creation and exploitation of se-

mailto:g.tummrello@gmail.com
mailto:mik.nucci@gmail.com
mailto:mik.nucci@gmail.com
mailto:c.morbidoni@deit.univpm.it

mantically structured knowledge bases. It is clear how a standard message board is a
very simple subset of the possibilities enabled by such Semantic Web communities.

In this paper we assume that issues such as metadata exchange algorithm and trust
based filtering are, among others, solved by the facilities which the DBin platform in-
cludes. These are the RDFGrowth [2] P2P algorithm, providing topic based metadata
exchange channels, and the RDF Digital Signature methodology [3].

In this condition, Semantic Web communities startup basically boils down to create
domain specific user interfaces which shields the users of the communities from com-
plexities and at the same time provides domain specific browsing, editing and query-
ing tools.

Providing a generic semantic web GUI is all but a trivial task; a lot of approaches
have been proposed recently, among which [4], [5], [6], [7], [8]. While pro and cons
can be argued for each specific solution, it is clear that user interface issues are com-
plex ones and that it will be very difficult to think about a single solution that can be
as usable as ad hoc ones for each specific domain. Aware of this, we propose an ap-
proach based on the aggregation of simple, generic components coordinated in a do-
main specific way by a mix of XML/OWL and scripting technologies.

2. DBin and background scenario

A typical use of DBin might be similar to that of popular file sharing programs, the
purpose however being completely different. While usual P2P applications “grow” the
local availability of data, DBin grows RDF knowledge. Once a user enters a metadata
exchange channel, RDF annotations just start flowing in and out “piece by piece”.

For example, a user who expresses interest in a particular topic (say “Beers” as in
DBin demo group) will keep a DBin open, possibly minimized, connected with a re-
lated P2P knowledge exchange channel where relevant information bits will be col-
lected from and exchanged with other participants. Such information bits might be
pure metadata annotations (e.g. “the alcoholic content of beer X is Y”) but also ad-
vanced annotations containing pointers to rich media (e.g. a picture of the glass, a
PDF document, a Wikipedia page etc..).

With the support of the proper Brainlet, the user could then browse, reply or further
annotate such information bits either for personal use or to contribute to the group
knowledge. If such replies include attachment data (e.g. a picture), DBin automatically
takes care of the needed web publishing using services such as that offered at
http://public.dbin.org . At database level, the information is stored in DBin as RDF;
At the user level, however, the common operations and views are grouped in domain
specific user interfaces, the Brainlets. The installation of a specific Brainlet (e.g. tar-
geted to the Beer domain), is not necessary to connect to the group and receive infor-
mation but it enables users to visualize and edit such domain specific annotations,
which, without proper domain knowledge and settings, are only 'row' triples in the DB.

3. Brainlets: creation, configuration and scripting

Brainlets are plug-ins (technically Eclipse Rich Client Platform [9] compliant plug-
ins) that can be installed into the DBin platform simply copying a file in a proper di-

rectory. When a user selects a metadata exchange channel the remote server might
suggest the use of a specific Brainlet to best experience the information contained in
the group and participate in the annotation. Such suggestion is made by whoever creat-
ed the group, very likely but not necessarily, the same person who created the Brain-
let. Figure 1 shows an actual runtime screen-shot.

Brainlets are composed of XML, OWL ontologies and scripts. As an overview,
they contain:
• The ontologies to be used for annotations in the domain (e.g. The beer ontology);
• A general GUI layout: which components to visualize (e.g. A message board, an

ontology browser, a “detail” view) and how they are cascaded in terms of selec-
tion/reaction;

• Templates for domain specific “annotations”, e.g. a “Movie” Brainlet might have
a “review” template that users fill. This allow a “reviews” view to have useful or-
derings based on the known fields in the review. The GUI for the templates is gen-
erated automatically;

• Templates for readily available, “pre-cooked” domain queries, which are struc-
turally complex domain queries with only a few simple free parameters, e.g. “give
me the name of the cinema where the best movie of genre X is being shown
tonight”;

• A suggested trust model and information filtering rules for the domain. e.g. public
keys of well known “founding members” or authorities, preset “browsing levels”;

• A script for guiding the user in creating new URIs for domain resources, e.g. in-
serting a new "beer" in the DB.

• Scripts connected to Brainlet specific menus or buttons and that implement domain
specific functions;

• Support material, customized icons, help files etc..
• Supporting Java code and libraries;
• A basic RDF knowledge package, conforming to the information shared in a spe-

cific group.

Figure 1: Joining a metadata exchange channel (right window) offered by a RDF-
Growth server (left window) in the DBin platform. In this case the server suggests the
user to download a specific Brainlet to better interact with the knowledge exchanged.

Almost all of these elements are optional in a Brainlet. Figure 2 shows a typical
runtime view of the Beer2Beer Brainlet (http://www.dbin.org/brainlets/beer2beer). A
Semantic Web Research Brainlet, which demonstrates how the DBin platform can nat-
urally handle completely different domains of interest, is available at http://www.d-
bin.org/brainlets/swbrainlet. The following sections are concerned with how the spe-
cific features and aspects listed above can be configured.

3.1. From Eclipse plug-in to Brainlet
To create a Brainlet, it is necessary to fill a given empty template which configures an
eclipse plug-in. To append a new "Brainlet" to the list of those known by DBin, one
have to add the following XML in the standard eclipse plugin.xml file:
<extension point="org.dbin.gui.brainlet.core.xmlbrainlet">

<brainlet perspectiveID="org.dbin.gui.brainlet.beer" file="brainlet/beer.xml"/>
</extension>

Other configuration options in the plugin.xml will include the invocation and posi-
tioning of any desired DBin predefined basic views such as the Navigator (section
3.2), annotations, gallery etc..

3.2. Brainlet configuration in detail
Let's now see the content of the beer.xml file, the main Brainlet configuration which
has been specified in the previous section as an attribute of the org.dbin.gui.brain-
let.core.xmlbrainlet entry point.

A Brainlet has a name, a version, a URI identifying it, usually pointing at the Brain-
let download location (to be used in the dialog show in Figure 1), and other basic in-
formation, specified as attributes of the XML corresponding element. The following is
the declaration for the Beer-to-Beer Brainlet:

<Brainlet name="Beer2Beer" author="Onofrio Panzarino" version="1.0"
 uri="http://dbin.org/brainlets/beer2beer#" banner="Targeted to beer's fans.

Figure 2 A screen shot of the Beer2Beer Brainlet running. The principal “views”
are: an ontology (and instances) browsing Navigator, the Knowledge Agents view,
showing statistics about the currently running knowledge agents, and a set of “An-
notation” views.

Join to learn and share your knowledge about your favorite beers.">

Ontologies and base domain knowledge
First step in creating a new Brainlet is the choice of appropriate ontologies to capture
the concepts of the target domain. Once existing ontologies have been identified and,
if needed, new ones have been developed, the corresponding OWL files are usually in-
cluded and shipped in the Brainlet itself, although they could be placed on the Web.
Each of them will be declared in the XML file, specifying the location of the OWL
file, a unique name for the ontology and it's base namespace:
<Ontology file="brainlet/ontologies/beer.owl" name="beer"

base="http://www.purl.org/net/ontology/beer#"/>
<Ontology file="brainlet/ontologies/BeerAnnotations.owl"

name="beer_annotations" base="http://dbin.org/beer#"/>
A Brainlet might need some background RDF data, a starting knowledge base

shared by every client using the same Brainlet. The following line cause an RDF file
to be installed into DBin:
<Data file="brainlet/rdfdata/beer.rdf" base=""/>

Tree based navigation of domain resources: the main Navigator
The way concepts and instances are presented and browsed is crucial to the usability
of the interface and the effectiveness in finding relevant information. Graph based vi-
sualizers are notably problematic when dealing with a relevant number of resources.
For this reason, the solution that the main DBin Navigator provides is based on flexi-
ble and dynamic tree structures. Such approach can be seen to scale very well with re-
spect to the number of resources, e.g. in Brainlets such as the SW Research one
(http://www.dbin.org/brainlets/swbrainlet/).

The peculiarity of the approach is that every Brainlet creator can decide which is
the 'relation' between each tree item and its children by the use of scripts or semantic
web queries (in DBin these are currently expressed in SeRQL syntax [10], but support
for other query languages is likely to be provided in future versions). The basic use of
such facility is to provide an ontology based navigation. Creating a tree branch by
which a class hierarchy based navigation of Beers is as simple as:
<Topic name="Beers by Type" uri="http://www.purl.org/net/ontology/beer#Beer">

<Child query="SELECT X FROM {X} serql:directSubClassOf {$parent}
 WHERE X != $parent">

 <Child subjectBy="serql:directType” icon="/icons/beer.gif"/>
</Child>

 <Child subjectBy="serql:directType" icon="/icons/beer.gif"/>
</Topic>
Each Topic has an associated URI (in this case that of the base class "Beer"), that is
every tree conceptually starts from an RDF resource. Topic children are then recur-
sively defined by the results of queries involving the parent resource. In the case of a
first level Child, the parent resource will be the resource associated to the entailing
Topic. There can be multiple topic branches configured in the Navigator. For example
a "Beers by Brewery" branch is configured as follows:
<Topic name="Beers by Brewery" uri="http://www.purl.org/.../beer#Region">

<Child query="SELECT X FROM {X} rdf:type {$parent} WHERE X != $parent">
 <Child subjectBy="http://www.purl.org/net/ontology/beer#brewedBy"/>
</Child>

</Topic>

Note that, of course, different conceptual paths can lead to the very same resource.
Figure 3a shows a run time screen-shot of a Brainlet configured with the Navigator
Topics that have been just illustrated.

Selection flow across Brainlets parts
At user interface level, as shown in Figure 2, a Brainlet is composed by a set of 'view
parts' (as they're called in Eclipse parlor). Usually, each part takes a resource as a main
"focus" and shows distinct aspects of the same RDF knowledge 'around' this resource.
The Simple Annotations view, for example (Figure 3b), shows the outgoing and in-
coming RDF statements surrounding the selected RDF node.

As mentioned, the Brainlet creator decides the configurations of the standard view
so to have a personalized title, icon, position and so on. Selection flows are also
scripted at this point; it is possible to establish the precise cause effect chain by which
selecting an icon on a view will cause other views to change. This is a powerful way to
customize the flow of information within the user interface. Let's consider the follow-
ing XML code:
<View id="GUEDNavigator" title="Beers Navigator"

icon="icons/nav.gif" selectorFor="main" listenTo="main" />
<View id="Annotations" listenTo="main" selectorFor="annotation" />
<View id="Content" title="Details"

listenTo="annotation" selectorFor="annotationContent,main" />
<View id="SimpleAnnotationsView"

listenTo="main" selectorFor="annotationContent" />
Using the attributes 'listenTo' and 'selectorFor', views act both as listeners or as no-

tifiers of "Selection Managers". A view is listener of a selection manager when it will
change its content when the manager notifies the change of URI and is a "selector" for
a manager when some user action within the view itself will cause the manager to
change its selected URI. Many "selection manager" can be created to support the in-
formation flow logic within the Brainlet.

Assisted querying tools
Within a specific domain there are often some queries that are frequently used to ful-
fill relevant use cases. Continuing our "Beer" example, such a query could be “find
beers [stronger|lighter] than X degrees”. The "precooked queries" facility gives the
Brainlet creators the ability to provide such "fill in the blanks" queries to end users.

Figure 3: a) The simple annotation view shows the properties of the selected re-
source (left figure). b) A navigator view generated by the configuration shown above.
The instance of a beer can be reached following different paths, by type or by brew-
ery(right figure).

Precooked queries can also be scripts stored in Java classes methods or executed via
an interpreter. Here is an example of a Precooked Query:
<PrecookedQuery label="Beer Strength"

 message="All beer with alcoholic content greater or lesser than $degree"
 query="SELECT * FROM {X} rdf:type {beer:Beer}; beer:hasAlcoholicStrength {Y}

 WHERE Y $operator $degree" USING NAMESPACES
 beer = http://www.purl.org/net/ontology/beer#
 clipboardQuery="CONSTRUCT {X} rdf:type {dbin:SemClipBoardUri}
 FROM {X} rdf:type {beer:Beer}; beer:hasAlcoholicStrength {Y}

 WHERE Y $operator $degree USING NAMESPACS
 dbin = http://dbin.org/dbinont.owl#,

 beer = http://www.purl.org/net/ontology/beer#" >
<Variable name="$operator" legalValues="<,>" defaultValue=">" />
<Variable name="$degree" />

</PrecookedQuery>
In this configuration fragment, a precooked query named "Beer Strength" will show

the user a human readable query and allow to chose the operator (< or > , default val-
ue >) and a variable value. Such inputs will be used both in a select query, used to find
the elements and display them as a table, and in a construct query, used to construct a
Semantic Clipboard content.

The Semantic Clipboard is another element that a Brainlet creator might chose to
make visible and serves as a temporary graph where the user can put content which
can be then passed to other visualizers (e.g. the map viewer as shown below) or exter-
nal applications by serializing its content to the system clipboard.

Note that a precooked query might link concepts from different domains, and dif-
ferent Brainlets. Suppose to have a Beer Brainlet and a Pub Brainlet. A precooked
query as 'Find all the pubs serving beer X which does not contain ingredient Y' is a
cross domain query and obviously would only work once sufficient knowledge has
been extracted from the two groups.

Domain specific annotations
Brainlets assist the users in creating simple annotations, that is in linking resources
with properties. Ontology based wizards suggest both the properties that are applica-
ble to the given resource and instances that are currently known to the database and
that are of a kind appropriate for a selected property.

A Brainlet creator can however also chose to create "complex annotation types" us-
ing a specially defined OWL ontology. An example of such complex annotations is
the "Beer Comparison" annotations, which directly compare beers stating which one is
better or worse and why. Upon selecting "Add advanced annotation" in DBin the sys-

Figure 4: Advanced annotations are defined in OWL and auto generate property
visualization and editing interfaces.

tem determines which advanced annotations can be applied to the specified resource
and provides a wizard as shown in Figure 4.

Identifier assignment facilities
In our scenario each user is entitled to add new concepts into a knowledge base that is
shared within a P2P group. A methodology is needed to make so that different per-
sons, independently adding the same concept (e.g. a particular beer: Peroni Light) into
the system, will choose, with a reasonable probability, the same URI to identify it. It is
evident that this is necessary for the annotations about Peroni Light to be exchanged
among peers, as well as to avoid duplication of concepts. A possible solution might be
that of suggesting the user to visit a web site (e.g. RateBeer.com), chosen from the
Brainlet creator, where a web page referring to Peroni Light can be found, and to use
the relative URL to identify the concept.

Depending on the type of instance one is adding (a beer, a book, a movie...), differ-
ent methodologies could be thought to create (or find) a proper URI. In the case of a
well known concept in a particular domain, for example, we can assume that every-
body would reasonably refer to it using the same word, and we can build a new URI
with this word as fragment identifier. Note that such procedures does not ensure that
different users will end up with the same URI, but still can work in a lot of cases.
Within a Brainlet it is possible to define a set of URIWizards, basically scripts that im-
plement a given procedure and guide the user in creating a URI, and to assign them to
a class. Once instance of this class is being inserted these scripts are activated provid-
ing the user with a graphic wizard, as shown in Figure 5 .

An XML example configuration is given:
<Class uri="http://www.purl.org/net/ontology/beer#Beer">

<FromUrlWizard label="Create a new beer from RateBeer.com (recommended)">
 <Message content="Click below, search for your beer

Then copy its URL in the URL field."/>
 <Website>http://www.ratebeer.com/Search.asp</Website>
 <UrlPrefix>http://www.ratebeer.com/Beer/</UrlPrefix>
</FromUrlWizard>

 <FromPropertiesWizard label="Create a new homemade beer instance">
<Property label="Label" prefix="$useruri:HomemadeBeer:"

uri="http://www.w3.org/2000/01/rdf-schema#label"/>
 </FromPropertiesWizard>
</Class>

Domain specific script inclusion
In developing DBin we encountered the need to implement some actions which, in a
sense, are outside of the scope of the platform itself but yet are needed in order to pro-

Figure 5: Choosing to insert a new instance of beer the user is prompted with a
wizard and can choose different procedures to create a URI.

vide functionalities for the user to experience the power of underlaying semantic
knowledge.

For example we wanted the user to be able to organize a pubs tour, choosing a list
of pubs (e.g. using precooked queries to find the pubs that serve a particular beer) and
automatically calculating the optimal order of pubs to be visited. This is a very specif-
ic task and we didn't want to modify the platform architecture in order to solve this
kind of problems. On the other hand, the solution imply solving a traveling salesman
problem, so a simple graph query it is not enough, a real algorithm is needed. Our
'light' approach is to address these kind of requirements using scripts, the execution of
which, thanks to the flexibility of Eclipse RCP, can be easily integrated into the user
interface, e.g. pressing a button. DBin accommodate a module supporting BeanShell
[11] scripting language. In Figure 6, one sees a button that has been added by a Brain-
let specific configuration of the Map View (a view supporting geo-tagging based on
the Google-Earth [12] service). Such button is connected to a BeanShell script that
performs the evaluation of the optimal pub tour based on an implementation of a (sim-
ple) traveling salesman heuristic.

4. Conclusions

In this paper we introduced the concept of domain specific Semantic Web applications
created using a combination of ontologies, and XML configuration and scripting.
Brainlets are a key concept in enabling the creation of Semantic Web Communities in
DBin, a full round semantic web platform. We think however that the Brainlet
paradigm could be applied to any other semantic web application based on the avail-
ability of an underlying SW Database. This could include, in the future, web based
Brainlets players capable of providing similarly rich user interfaces over the Web.

While starting a "Semantic Web community" by creating a Brainlet is certainly
much more complex than creating a IRC channel or installing a web forum, in our ex-
perience domain experts with knowledge of the OWL language have consistently man-
aged to learn all the basic principles, create and deploy their first Brainlets within
hours or less. To the best of our knowledge there are no projects directly related to the

Figure 6: Optimal pub tour around the WWW2006 conference site. A "precooked
query" is executed so that certain pubs are selected. The Traveling Pubman script is
then invoked to highlight the optimal tour.

ability to create Semantic Web access environments which can be compared to the
Brainlet paradigm. The idea of a rich client for the Semantic Web has been developed
in the Haystack project [13] resulting in a general purpose, monolithic interface.
Differently, Brainlets are intended to be powerful user interfaces which can be script-
ed and 'shaped' on a particular domain. The Piggy Bank project [14] enables light
HTML scraping scripts to be installed with ease, so it has, in some sense, a similar
philosophy. Also from the MIT Simile initiative, the Fresnel [15] ontology can be
used to create "data views" called "lenses" which facilitate the automatic creation of
presentation and editing data forms. As such feature are in fact likely to be beneficial
to better allow customizations of data presentation, a Fresnel aware Brainlet engine is
among the future works.

Brainlets as fostering of social aggregation around Ontologies and data
representation practices
When a Brainlet is plugged into DBin, the ontologies that it requires will be installed
and used. This simple mechanism, seems to induce a pragmatic, socially based model
for ontological agreement, a notably tough problem in Semantic Web research. In
fact, as users gather around popular Brainlets for their topic of choice, the respective
suggested ontologies and data representation practices will form an increasingly im-
portant reality. If someone decided to create a new Brainlet or, in general, a Semantic
Web application targeting the same user group as the said popular Brainlet, it is clear
that there would be incentive in using identical or somehow compatible data structures
and ontologies.

While this is probably the case for the use of ontologies on the Semantic Web in
general, such effect is expected to be easy to spot in the real of Brainlets, given how
such paradigm immensely lower the barrier by which a domain expert can turn an idea
into a full featured domain specific cooperative Semantic Web application.

References
[1] "DBin project" http://www.dbin.org
[2] G. Tummarello, C. Morbidoni, J. Petersson, P. Puliti, F. Piazza , "RDFGrowth, a P2P annotation ex-
change algorithm for scalable Semantic Web applications" 2004 First P2PKM Workshop, Boston
[3] G. Tummarello, C. Morbidoni, P. Puliti, F. Piazza , "Signing individual fragments of an RDF graph"
2005 WWW2005, poster track
[4] R. Albertoni, A. Bertone, M. De Martino , "Semantic Web and Information Visualization" 2004 Pro-
ceedings of the First Italian Workshop on Semantic Web Applications and Perspectives, Ancona (ITALY)
[5] "RDF Gravity - RDF Graph Visualization Tool" Technical Report: HPL-2004-57
[6] E Pietriga , "Isaviz: a visual environment for browsing and authoring rdf models " 2002 11th Interna-
tional World Wide Web Conference
[7] "RDFX" Technical Report: HPL-2004-57
[8] Welkin, a graph-based RDF visualizer, , 2004, http://simile.mit.edu/welkin/
[9] Eclipse Rich Client Platform, , , http://www.eclipse.org/rcp/
[10] Jeen Broekstra, Arjohn Kampman , "SeRQL: An RDF Query and Transformation Language" 2004
ISWC 2004, Hiroshima, Japan
[11] BeanShel: Lightweight Scripting for Java, , , http://www.beanshell.org/
[12] Google Earth, , , http://earth.google.com/
[13] Quan, Dennis and Karger, David R , "How to Make a Semantic Web Browser" 2004 In Proceedings
International WWW Conference, New York, USA
[14] D. Huynh, S. Mazzocchi, D. Karger, "Piggy Bank: Experience the Semantic Web Inside Your Web
Browser" 2005 proceedings of the ISWC 2005
[15] "Fresnel - Display Vocabulary for RDF" 2005

The Semantics of Collaborative Tagging System

Milorad Tošić and Valentina Milićević

University of Niš,
Faculty of Electronic Engineering,

Intelligent Information Systems Lab – InfosysLab,
Ul. Aleksandra Medvedeva 14, PoBox 73, 18000 Nis,

Serbia and Montenegro
mbtosic@yahoo.com , valentina@elfak.ni.ac.yu

Abstract. In this paper, we adopt a system-oriented approach to the collabora-
tive tagging and define it as a set of interactions in the system of Web re-
sources. First, the system of Web resources is modeled as a set of interacting
agents and collaborative tagging is represented as concurrent initiation of inter-
actions between agents in the system. Also, we define concept of knowledge for
individual agents. Later we use concepts of interaction and knowledge to give
definition of a Link. Then, for a given Universal Set of Resources, we introduce
Tag Cloud System (TCS) and definition of (possibly fuzzy) collections of re-
sources. Finally, we introduce concept of Class, based on projection of collec-
tions of resources in the TCS, to lay down some of the groundwork towards
TCS-based type system.

Introduction

In its essence, Web is all about resource locators (URLs), resource identifiers
(URIs) and resource names (URNs) [1] distilling resource as one of the most funda-
mental concepts of the Web. Until recently, Web was considered only within its
original hyper-text framework: web pages are network retrievable text documents,
easy to render for human visual consumption, that may contain hyper-links to other
web pages. However, massive adoption of the Internet and particularly broadband
“last mile”, have changed the very nature of the Web that has now been declared
“Web as platform”. So, Web is not anymore for human eyes only but it is also Web of
data. Two different technological and philosophical methodologies are the most visi-
ble now days: Semantic Web [2] and Web 2.0 [3]. In spite of the impression that
some tension exists between these two communities, we consider Semantic Web and
Web 2.0 as two sides of the same coin addressing the same gap between how current
technology is applied and the new opportunities. The difference is in the philosophy –
general vs. simple: Semantic Web is based on a firm theoretical background and pur-
sues a rigorous, generic top-down approach. In the same time, Web 2.0 is extremely
flexible, based on ultimately simple, easy to use and easy to understand stuff, adopts
bottom-up approach and worships architecture of participation (services get better as
the number of users increases), collective intelligence and long tail model [4].

mailto:mbtosic@yahoo.com
mailto:valentina@elfak.ni.ac.yu

2 Milorad Tošić and Valentina Milićević

In [5], authors are concerned with knowledge acquisition for software develop-
ment, and accordingly they define tagging as chinking and indexing knowledge ac-
quisition dialogue using structures that are relevant to software development. How-
ever, the collaborative tagging is more traditionally considered within a framework of
strategies that can be used in order to classify and organize content [4,6,7]. The classi-
fication strategies are characterized by several distinguishing attributes: If each item
may be associated to exactly one category then the strategy is exclusive. If each cate-
gory belongs to a more general one until the root of the tree is attained then the strat-
egy is hierarchical. Strategy that is exclusive and hierarchical is called taxonomy.
One of the typical examples of the taxonomy is the hierarchical directory set up by
Yahoo Inc. as an impressive attempt to grow a kind of universal Web taxonomy. Tag-
ging system is a non-hierarchical and non-exclusive strategy where each item is being
assigned a list of keywords, called tags. All the tags are at the same level. The tagging
systems are further classified by means of who defines the set of words or phrases that
may be used as tags and who assigns tags to items. The set of tags may be defined by
a central authority, such as editor or a librarian, or may include any word composed of
letters. Tags may be assigned to items by the same central authority or by community.
For example, in the ACM Computing Classification System [8], the central authority
defines the set of keywords that may be used to classify a paper while author of the
paper assigns selected keywords to the paper1. Collaborative Tagging (Folksonomy)
is an ad hoc classification scheme that Web users invent as they surf to categorize the
data they find online. Consequently, it is anarchic (the choice for the keywords are
not restrained by any central authority but may be any string of alphanumeric charac-
ters) and democratic (the tagging is performed by a large ensamble of people, and not
by a central one) [7]. Social software – software that enables users to share informa-
tion and collaborate online – makes these tags available to other users, who can than
take advantage of all this tagging to search for the information they need [4]. This ap-
proach has become increasingly popular, and some Web sites (call them Web 2.0 or
not?) maintain tag cloud, a list of all tags used on the domain usually with a visual in-
dication of individual tag’s popularity. The collaborative filtering is a democratic
method of classification that does not require tags to be words only. The collaborative
filtering exploits user access patterns to link items to people who use it [7].

We can identify three orthogonal dimensions of the concept of scripting language:
1) Language characteristics that identify a programming language as a scripting lan-
guage (weak typing or even no typing at all, reflection and introspection, etc.); 2) Sys-
tem that is programmed by the scripting language (in the case of OS shell scripting
languages the system is set of OS commands, while in the case of MSVisualBasic the
system is composed of a set of registered ActiveX and/or COM components); and 3)
Application under development. In this paper, we are focused on theoretical founda-
tions for the second aspect, i.e. we envision Tag Cloud System as a system that will

1 To the best of our knowledge, there is no tagging system like ACM CCS where set of possible
keywords is defined by a central authority while readers assign the list of tags (or at least are
allowed to edit it) to the paper instead of author of the paper.

The Semantics of Collaborative Tagging System 3

be programmed by future semantic scripting languages in order to develop whole new
set of global scalable applications for the “Web as a platform”. Introduction of seman-
tics into the traditional scripting brings in two additional levels of freedom: 1) Using
existing scripting languages to develop semantic applications (e.g. JavaScript pro-
grams a client side while Ruby on Rails, PHP and scripting language for program-
ming plug-ins in Wiki are on a server side), and 2) Using “semantic scripting lan-
guage” to develop not exclusively semantic applications, but also traditional
applications, such as CMS for example.

In this paper, we consider collaborative tagging in a way that addresses the prob-
lem on today’s Web of bridging the gap between wide adoptability, easy to use, and
simplicity from one side, and ability to address problems in a general way by adoption
of the formal foundation. First, the system of Web resources is modeled as a set of in-
teracting agents. We adopt a system-oriented approach to the collaborative tagging
and define it as a set of interactions in the system of Web resources. Also, we define a
concept of knowledge for individual agents based on their local state. Later we use
concepts of interaction and knowledge to give definition of a Link. In the third sec-
tion, for a given Universal Set of Resources, we introduce Tag Cloud System (TCS)
and definition of (possibly fuzzy) collections of resources. In the fourth section, we
introduce concept of Class, based on projection of collections of resources in the TCS.
In this way, we lay down some of the groundwork towards TCS-based type system.
Finally, we discuss a few pointers for future work and give some concluding remarks.

Semantics of the Concept of Resource

Debate over the concept of resource

In the early days of the Web, semantics of the resource concept has been much less
important comparing to application and adoption aspects of the concept. As a natural
consequence, the concept of resource was traditionally comprehended as a network
‘retrievable’ entity. However, mass adoption of the Web has resulted in completely
new understanding of the value of the Web. For example, Semantic Web is one of the
most promising candidate prospects. For the Semantic Web, understanding of the
concept of resource is of the paramount importance because transferring data is not
enough any more: Now, we have the need to communicate knowledge. To do so, we
have to move up the ladders of abstraction, adopt a higher meta level as an opera-
tional level, and manipulate with knowledge and interaction instead of data and com-
munication. Having that in mind, it is somewhat surprising that there is still an ongo-
ing debate over definition of the resource in the literature as well as in the community
[1,7,10,11,12].

Although there is a stated definition of a resource in the URI RFC, it is in many re-
spects vague: “A resource can be anything that has identity. Familiar examples in-
clude an electronic document, an image, a service (e.g., ‘today's weather report for
Los Angeles’), and a collection of other resources. Not all resources are network ‘re-
trievable’; e.g., human beings, corporations, and bound books in a library can also be

4 Milorad Tošić and Valentina Milićević

considered resources. The resource is the conceptual mapping to an entity or set of
entities, not necessarily the entity which corresponds to that mapping at any particular
instance in time. Thus, a resource can remain constant even when its content – the en-
tities to which it currently corresponds – changes over time, provided that the concep-
tual mapping is not changed in the process." [13].

The ongoing debate about the difficult problem of semantics of the concept of re-
source is very important, probably should receive a stronger support from at least one
official standardization organization, and involves very diversified and heterogeneous
scientific disciplines. In this paper, we do not want to get involved into the debate be-
ing aware of possible inconsistency in the rest of the paper. Instead, we give the fol-
lowing statement, based on [13,14], and consider it as correct enough for the purpose
of the paper:

Resource is a generic term for anything in the universe of discourse that has iden-
tity.

Though, having in mind very limited implementation value of the statement
[1,7,10,11,12], we allow further refinements in the rest of the paper on as needed
bases. Comparing our previous statement about resource to the definition given by
WordNet [15] that a resource is “a source of aid or support that may be drawn upon
when needed (the local library is a valuable resource)” we may say that, by our
statement, knowledge about identity of anything in the universe of discourse has a
value on its own.

Multi-agent interpretation

In our system, there are two first-class meta-classes of objects: 1) Resource and 2)
Link. All further constructs are built upon these two meta-classes of objects. As a
modeling foundation for the definitions of the resource and link concepts, we adopt an
approach that follows distributed knowledge theory developed by Joseph Halpern2,
particularly work on knowledge-based protocols [16]. In the following, we introduce
basic system modeling concepts using body of work from [16] as a foundation. How-
ever, we use the concepts introduced that way in substantially new manner such that
they provide foundation for presenting some of our original ideas, particularly ones
related to the concept of interaction.

Let us given set of entities AG={agi| i=1,2,…,n} , called agents, such that each
agent in the set carries certain amount of its own local information. The agent may
change its local information and any change of the local information is observable by
the agent. The local information is also called the agent’s local state, s(agi).

2 See http://www.cs.cornell.edu/Info/People/halpern/abstract.html for the complete list of his
work.

http://www.cs.cornell.edu/Info/People/halpern/abstract.html

The Semantics of Collaborative Tagging System 5

Definition 1: The set of agents, AG={agi| i=1,2,…,n} , that may ever exist in any
system under consideration is called an universal space of resources U, also referred
to as the universe of discourse.

We consider the given set of agents AG={agi| i=1,2,…,n} , to be closed: There is
one agent in the set, called environment, that models state and interactions that are out
of scope of the modeled system. In other words, there is no agent outside the set of
agents that any agent from the set interacts with, ever: (∀agi ∈ AG) agi • agj ⇒ agj ∈
AG .Note that the set of agents is not considered closed on its own sake. Instead, it is
closed with respect to the modeled system. In other words, the set of agents represents
our knowledge about the modeled system. Also, it represents structure that we use to
reason about the system.

If agent agi may change local state of some other agent agj, or if agent agj may ob-
serve a (certain) change in the state of the agent agi, then we say that agents agi and
agj are interacting, and such their setting is called interaction, ρij: agi • agj. Let us de-
note the set of all interactions between agents from the set AG as RAG={ρij| agi , agj.∈
AG}. We also say that an interaction protocol is initiated between two interacting
agents. Any single agent may be involved into zero, one or more interactions. Part of
the local state s(agi) that may be changed by the agent agj or that is observed by the
agent agj within the interaction ρij, is called projection of the local state on the inter-
action, and denoted as s(agi)↓ ρij. Union of projections of local state s(agi) on all ex-
isting interactions, sO(agi) = ∪ s(agi)↓ ρ for all ρ∈ RAG, is called observable part of
the local state. Local state of the interaction ρij , denoted as s(ρij), is defined as a un-
ion of projection of the local state on the interaction for each agent involved into the
interaction, s(ρij)= s(agi)↓ ρij ∪ s(agj)↓ ρij. An agent agi is called passive (active) with
respect to interaction ρij, if it cannot (may) change local state of the interaction. A
passive agent is an agent that is passive with respect to all existing interactions. An
agent that is not passive is called active agent. Observable part of local state of a pas-
sive agent can be changed only as a consequence of interaction with an active agent.
However, we say nothing about non-observable part of the local state – meaning that
an agent may change non-observable part of its state and still be considered as a pas-
sive agent.

For example, intended semantics of the interaction may be illustrated by means of
a shared variable between two concurrent threads, where threads represent agents,
ThrdA and ThrdB, and shared variable represents the interaction. If the shared vari-
able is part of local state of each of the interacting agents then each of the threads is
modeled as an active agent. However, we can consider the shared variable to belong
to the local state of only one agent. In that case, the agent having the shared variable
as part of its local state may be modeled as passive or active, while the other agent
must be active (if the other agent is not active then there would not be any interac-
tion). Note also that the interaction is about change in a state but not about data trans-
fer as is the case with a communication protocol. The important difference between
interaction and communication protocols is in the level of abstraction where the
change happens: In the case of data transfer, the change is always in the value of data.
However, in the case of interaction, the change can be in data, information, knowl-
edge, or some other interpretation. Note that different protocols represent different

6 Milorad Tošić and Valentina Milićević

kinds of possible interactions between agents. Also, different interaction protocols
may be interpreted at different meta levels. Now, let us examine the case where the
two threads communicate some data from ThrdA to ThrdB in a send-receive fashion
such that ThrdA is sending while ThrdB is receiving data. The communication proto-
col may be like this: Initially, value of the shared variable is zero; ThrdA sets new
value in the shared variable; ThrdB probes value in the shared variable permanently,
and when the value is not zero ThrdB copies the value into some other place in its lo-
cal state; After reading the value, ThrdB set value of the shared variable to zero; After
setting new value, ThrdA has started to probe the value; After registering zero value in
the shared variable, ThrdA knows that it is safe to set next value. In this case, at the
interaction level both agents are active because each of them changes value of the
shared variable. However, at the communication level, we say that the sender (ThrdA)
is active while the receiver (ThrdB) is passive.

Definition 2: Body of Knowledge (BK) of an agent agi is defined as a part of its local
state that is not observable BKi ≡ s(agi)⁄sO(agi).

Definition 3: Link is knowledge that an agent has about identity of some other agent.
The link is knowledge that is sufficient for the agent to initiate an interaction protocol
with the linked agent.

Definition 4: Let us given an interaction protocol, set of agents (called resources)
and an individual agent (called agent) such that the agent can interact with the re-
sources by the given protocol. Addressing (or Code) of the set of resources is a com-
mon service, such that there is guaranty that if an agent encounters the interaction pro-
tocol with different end addresses then it will interact with different agents, i.e. it may
eventually experience different interaction histories.

In order to give an example for the previous definitions, let us consider an agent
agnew that has just been introduced into the universe of discourse. Since agnew doesn’t
have any interaction history, it has empty body of knowledge, BKnew=∅. Because
BKnew=∅, agent agnew doesn’t know about any links and is not able to activate any in-
teraction. It has to wait for some other active agent to initiate interaction with the new
agent. After finishing an interaction, it is expected that agnew may have remembered3
something from the previous interaction such that it may now have BKnew≠∅. If agnew
have learned address of some other agent during its last interaction, then agnew may be
able to initiate interaction with the agent on that address.

3 An agent may or may not remember interaction histories depending on its internal memory re-
sources. However, taking this into consideration is definitely out of scope of the paper.

The Semantics of Collaborative Tagging System 7

Tag Cloud System

In this section, based on the previously defined concepts of resource, link, interaction,
and knowledge, we present our understanding of the collaborative tagging as a set of
concurrent acts of introducing new links into the system.

Definition 5: Tag Cloud (TC) is a tuple TC =(R,L) where R⊂U is a non empty set of
resources contained in an universal space of resources U, also referred to as the uni-
verse of discourse, L = {(r,RID(p)) | r ∈ R, p∈U} is a set of links, RID (p): R→A is a
resource identity function that is mapping from the set of resources to the set of ad-
dresses A.

Note that the previous definition introduces a purely abstract category of resource
as a member of the set of resources R and by means of the resource identity function
RID. We say nothing about what the resource is, what is it’s nature, structure, behav-
ior or else. At this point, there is no semantics assigned to the resource. Instead, the
resource can be anything that participates as a source of a link in the TC. The set of
addresses A may be subset of a language or a subset of an enumerated set. The fact
that set of addresses A is a subset of a language (or enumerated set) should be inter-
preted such that not every correct language construction is an address in the TC.

The TC represents a distributed knowledge system in a sense that we may consider
something as a resource only after we learned about it as a resource. Similarly, we
may consider a correct language construction as an address only after we learn about
it as an address of a resource in the TC. On the other hand, the only way we can learn
about new resources is to interact (inspect) with resources that are participating in our
current knowledge. Further, In other words, we cannot speculate about anything that
is not linked to at least one resource from the TC. In that way, we may say that TC
represents the Resource Universe.

The natural interpretation of the TC is set of agents, as is introduced in Definition
1. We indicate this fact by the requirement that set of resources in the tag cloud is
subset of the universe of discourse. In this way, we apply developed semantics of the
multi-agent system to the tag cloud.

Definition 6: Tag Cloud System (TCS) is a tuple TCS=(R,L,Σ), where TC =(R,L) is a
Tag Cloud, and Σ is a set of collections of resources from U such that each collection
C∈Σ is defined by the associated membership function mC.

The Tag Cloud System is a fine extension of the Tag Cloud structure that allows us
to introduce collections into the Tag Cloud. The collection is defined by means of its
membership function, with no constraints made on the function. The idea here is to
have flexibility to being able to introduce different collections with membership func-
tions of different nature, including fuzzy sets [17,18]. For example, in order to define
set of tags R as a collection in the universe of discourse U, we use the membership
function from the classical set theory: mR: U→{0,1}, where ∀u∈U, mR(u)=1 if u∈R,
and mR(u)=0 otherwise. However, we are not constrained to use such classical (or
crisp) sets only. We can also use fuzzy set, which is a more general concept then the

8 Milorad Tošić and Valentina Milićević

classical set: The membership of an element to a fuzzy set is not described by a Boo-
lean function (as it is the case for a classical set), but by real values between 0 and 1,
in general [18] (note that it can also be any other function, including discrete func-
tions).

As we mentioned before, in the interpretation of the TCS, one cannot reason over
anything else other then agents knowledge BKi. Consequently, the membership func-
tion for an agent agi must be defined over BKi only, for any collection under consid-
eration. Typically, the BKi includes addresses of other agents that are pointed to by
links starting at agent agi.. However, we do not put any restriction on the type of
knowledge that may constitute BKi. Thus, in addition to the “network topology”
knowledge, an agent may have a free form text (for example, comment of the user
who has created the agent while tagging some information on the Web), pictures, and
any other type of structured or un-structured data. Later on, this knowledge is used for
search or information extraction or any other purpose. The important advantage is that
we integrate network topology information and free form information such that it can
be queried in a unified manner.

Now, we introduce projection between two collections as a binary operation ↓ in
the set of collections of a TCS.

Definition 7: Collection C=C1↓C2 is projection of the collection C1 on the collec-

tion C2, defined as C , where ∪ is

(fuzzy) union and ∩ is (fuzzy) intersection operations

() () ()

≡↓=
∈∈
UU I

21
21

CoCo
oChdrnoChdrnCC

The projection of two collections, is defined with an aim to capture semantics of
the TCS in the following way: First, find all tags of all resources from C1. Then find
all tags of all resources from C2. Finally, find the intersection of the two sets of tags.
The resulting set of tags should interpret “similarity” between collections C1 and C2.

Resource Class in the TCS

Traditionally, we define class as a collection of objects featuring some common
(set of) feature(s). Following the previously introduced definitions, we may introduce
class into the TCS in a similar way:

Definition 8: Class C in TCS=(R,L) is tuple (O,T) where O⊆R is a collection of re-
sources, called objects, and T⊆R is a collection of (meta)resources, called tags (or
features), such that every object o∈O has identical projection of the collection of it's
children into the given collection T: ∀o1,o2∈O (Chdrn(o1)↓T)=(Chdrn(o2)↓T).

More informally, the set O is interpreted as a set of objects belonging to the class
C. Set T is a subset of the set of all resources (resource universe) such that it's ele-
ments are identifiable as assigned semantics of being features. In other words, set T is
subset of tags. However, we have to have a method to identify single resource as a

The Semantics of Collaborative Tagging System 9

tag. We implement this identification such that we have defined the page Tag with as-
signed semantics that every resource R that has incoming link from the page Tag is
perceived as being a tag. The page Tag has a link to itself meaning that it is also tag.

Conclusion, Application Aspects and Future Work

To the best of our knowledge, the work presented in this paper introduces a theoreti-
cal model for semantics of the collaborative tagging systems, for the first time. We set
the foundation for further exciting developments, particularly towards overcoming the
gap between tagging as a Web 2.0 and tagging as a Semantic Web. The underlying
model of knowledge-based multi-agent system has proven to be very helpful for us in
solving practical application problems that show up during development of our tag-
ging application prototype. In the prototype4, we adopt and implement Resource and
Link concepts. In that way, we got the unified, technology transparent, Semantic-
Wiki-Tagging system. For example, according to Definition 3, each tagging contains
link to the date when this tagging has been performed. However, we do not need to
create an actual Wiki page for every such a date: agents in the system (‘Wiki pages
containing tagging data’) have knowledge about identity of the date in a form of a
Link. From the other side, the only interaction that may be initiated with the date is
‘create page’ because the date page is not able to engage into ‘view page’ interaction.
Our future research will be to address the theoretical formulation of similar issues of
the working prototype in more details.

The short indication given in the last section is particularly promising for future re-
search. Definition of a tagging framework, similar to Object Oriented Programming,
would definitely empower a whole new application space. One of the future chal-
lenges would be an object behavior within the TCS semantics. It is an open question
whether a collection of resources is a resource itself (has an address or URI) or not.
The similar problem exists with blank nodes in RDF [14,21]. Hence, we expect solu-
tions similar to the one presented in [21] to be effective in the case of TCS too.

In this paper, we introduced the theoretical foundation for addressing different as-
pects of the semantic scripting by considering the collaborative tagging as a low-level
scripting language on the global computational services fabric called “Web as a plat-
form”5. We were focused on the system aspect of the semantic scripting. Depending
on the level of abstraction6, the target application may be traditional (collaborative
bookmarks, annotations, etc.) or semantic (semantic Wiki, semantic web portal, se-
mantic e-mail, etc.) or something completely innovative and new (such as tag cluster-
ing, tag hierarchies, tag cloud management, weighting and sequencing of tags, etc.).

4 Code base of the prototype initially started as a modification of JSPWiki open source Wiki
engine [19]. However, in time they developed into two almost independent applications.

5 Analogous to shell scripting on an OS platform
6 Level at the semantic web stack [20]

10 Milorad Tošić and Valentina Milićević

We are developing several Web applications based on collaborative tagging para-
digm described in this paper. The current tagging application prototype can be ac-
cessed for testing at http://infosys-work.elfak.ni.ac.yu/InfosysWiki-v2-
1/Wiki.jsp?page=TagCloud

References

1 Dan Connolly, Untangle URIs, URLs, and URNs: “Naming and the problem of persistence,”
IBM developerWorks, http://www-128.ibm.com/developerworks/xml/library/x-urlni.html

2 Tim Berners-Lee, James Hendler and Ora Lassila, “Semantic Web”, Scientific American,
May 2001.

3 Tim O'Reilly, “What Is Web 2.0, Design Patterns and Business Models for the Next Genera-
tion of Software,” Sept. 30. 2005, Oreillynet.com,
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

4 McFedries, P., “Folk Wisdom”, IEEE Spectrum, Feb. 2006., pp.80-80.
5 Heather Richter, Chris Miller, Gregory D. Abowd, and Harry Funk. “Tagging Knowledge

Acquisition To Facilitate Knowledge Traceability,” in Proceedings of the Conference on
Software Engineering and Knowledge Engineering (SEKE), July 2003, pp432-439.

6 Golber, S., Huberman, B.A., “The Structure of Collaborative Tagging System”, Information
Dynamics Lab: HP Labs, Palo Alto, USA, available at: http://arxiv.org/abs/cs.DL/0508082

7 Lambiotte, R., Ausloos, M., “Collaborative tagging as a tripartite network”,
arXiv:cs.DS/0512090 v2 29 Dec 2005.

8 ACM Computing Classification System, http://www.acm.org/class/1998/
9 Champin, Pierre-Antoine; Jérôme Euzenat; Alain Mille: "Why URLs are good URIs, and why

they are not", May 2001, http://www710.univ-lyon1.fr/~champin/urls/
10 Adam Mathes, “Source vs. Resource Ontology” http://www.adammathes.com/academic/

krfo/sourceresource.html
11 Clark, Kendall Grant: “Identity Crisis,” XML.com, September 11, 2002,

http://www.xml.com/pub/a/2002/09/11/deviant.html
12 S. Pepper and S. Schwab. “Curing the Web's Identity Crisis,” Technical report, Ontopia

http://www.ontopia.net, 2003.
13 Berners-Lee, T.; R. Fielding; L. Masinter: "Uniform Resource Identifiers (URI): Generic

Syntax and Semantics", RFC 2396, August 1998, http://www.ietf.org/rfc/rfc2396.txt
14 Hayes, P., “RDF Semantics – W3C Recommendation”, http://www.w3.org/TR/rdf-mt/,

2004.
15 Wordnet, http://www.cogsci.princeton.edu/~wn/
16 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi, “Knowledge-based

programs,” Distributed Computing, 10:4, 1997, pp. 199-225., also at
http://www.cs.cornell.edu/Info/People/halpern/abstract.html

17 L.A. Zadeh. Fuzzy Sets. Information and Control, 8:338--353, 1965.
18 Florea, M.C., Jousselme, A-L., Grenier, D., Bossé, É., “Combining belief functions and

fuzzy membership functions,” Multisensor, Multisource Information Fusion: Architectures,
Algorithms, and Applications 2003. Edited by Dasarathy, Belur V. Proceedings of the SPIE,
Volume 5099, pp. 113-122, 2003.

19 http://www.jspwiki.org
20 Tim Berners-Lee. Web for real people, 2005. Available at http://www.w3.org/2005/

Talks/0511-keynote-tbl/.
21 Carroll, Jeremy J.; Bizer, Christian; Hayes, Pat; Stickler, Patrick, “Named Graphs”, Journal

of Web Semantics, Vol. 3, No. 4, 2005, available at http://www.websemanticsjournal.org/
ps/pub/2005-23

http://infosys-work.elfak.ni.ac.yu/InfosysWiki-v2-1/Wiki.jsp?page=TagCloud
http://infosys-work.elfak.ni.ac.yu/InfosysWiki-v2-1/Wiki.jsp?page=TagCloud
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Semantic Scripting
Challenge Submissions

RDFHomepage?

Gunnar AAstrand Grimnes, Sven Schwarz, and Leo Sauermann

Knowledge Management, DFKI GmbH
Kaiserslautern, Germany

http://www.dfki.uni-kl.de/∼{grimnes,schwarz,sauermann}
{grimnes,schwarz,sauermann}@dfki.uni-kl.de

Abstract. This paper presents the RDFHomepage project, a frame-
work for using a person’s structured data sources to auto-generate an
HTML homepage. RDFHomepage uses RDF files as input, and currently
supports several well-known RDF schemas, such as FOAF. In addition
to these we have RDF converters for other structured file-formats, like
Bibtex. RDFHomepage produces valid HTML 4.01 Transitional pages,
and makes it easy to roll-out functional homepages for a group of peo-
ple. The generated HTML code is very general, allowing quick and easy
page-redesigning using CSS. RDFHomepage is written in PHP and uses
our system for generating PHP classes based on RDF class definitions,
enabling quick and easy development of RDF handling PHP code.

1 Introduction

RDFHomepage is a tool for automatic generation of HTML homepages based on
RDF files and other structured information sources which a user might already
create and maintain. The generated page contains all things one expects on a
typical homepage: it shows the person’s name, email, telephone number etc., this
is taken from his FOAF profile; there is a short bibliography, this taken from a file
using the homepage-schema we created for this task; there are sections listing the
projects a user is involved in, taken from the DFKI Organisational Repository
(OrgRep); and section with the user’s research interest. RDFHomepage generates
pages that are valid HTML 4.01 Transitional, with HTML code is well structured
and can easily be styled with CSS. A part of RDFHomepage is an engine for
generating PHP template classes from RDFS Class descriptions. This has two
main advantages, it removes the need to know the details of RDF processing,
and it enables code-completion, removing the need to know the details of the
schema being used.

2 Architecture

For RDFHomepage we chose to use the web-scripting language PHP. We chose
PHP because it is free and open-source, and is a powerful and feature complete
? This is a shorter version of a paper submitted to the Semantic Web Scripting Work-

shop

II

language, with good support for RDF through the RDF API for PHP (RAP) 1.
RDFHomepage uses RDF data from several standard sources, detailed below,
and we also created a homepage schema, providing the semantic glue between
these sources, and allowing the user to specify additional personal details in a
structured form, for example his interests or personal views on projects.

2.1 RDF Data

FOAF The Friend-of-a-Friend ontology 2 was the main point of inspiration for
RDFHomepage. A huge number of people in the semantic web community have
created their own FOAF profile and published it3, and there are millions more
generated by LiveJournal4, Ecademy5 and other social sites producing FOAF.

Bibtex BibTeX is a format for managing citations when using TeX or LaTeX.
BibTex defines different classes of publications, such as articles, books, theses,
etc., and associated optional and required properties of these. Most computer
scientists will keep a BibTeX file of their own publications up to date, for use
when self-citing or when publishing their papers on their website. Since people
already maintain this information in a structured format it makes sense to reuse
it, and to this end we used BibTeX2RDF, written by Wolf Siberski6.

Projects At the DFKI information about all projects and the people working in
them is centrally maintained in a Organisational Repository (OrgRep)7. OrgRep
was originally created for use in the FRODO project, but has been maintained
and used in many DFKI projects since, for example EPOS and MyMory.

3 Conclusion

RDFHomepage provides a quick and easy to way to create attractive and in-
formative homepages, with all the content typically found on a research ac-
tive user’s homepage. The pages are generated from RDF files allowing com-
plete separation of content and appearance, as well as making the homepage
machine processable by semantic web agents. RDFHomepage is open source,
release under a GNU Public License (GPL) and can be downloaded from
http://rdfhomepage.opendfki.de. To get a better impression of what RDFHome-
page can do, consider visiting any of the author’s homepages, they are all
automatically-generated!8

1 http://www.wiwiss.fu-berlin.de/suhl/bizer/rdfapi/
2 http://xmlns.com/foaf/0.1/
3 http://rdfweb.org/topic/FOAFBulletinBoard
4 http://www.livejournal.com
5 http://www.ecademy.com/
6 http://www.l3s.de/∼siberski/bibtex2rdf/
7 The OrgRep ontology: http://www.dfki.uni-kl.de/∼grimnes/2006/03/orgrep/orgrep.rdfs
8 See also http://rdfhomepage.opendfki.de/cgi-bin/trac.cgi/wiki/WorkingInstallations

RDFRoom – In an Angular Place?

Gunnar AAstrand Grimnes

Knowledge Management, DFKI GmbH
Kaiserslautern, Germany

http://www.dfki.uni-kl.de/∼grimnes/2006/03/RDFRoom
grimnes@dfki.uni-kl.de

Abstract. A lone soldier has been stranded in an alien world, filled
with resources, literals and shifty anonymous nodes. Room upon room
are filled with named graphs – can he find a way out?
RDFRoom is an isometric RDF viewer. It gives the user ways to view
and manipulate his RDF data that might make him see the data in a
brand new perspective.

1 Motivation

The ideas for RDFRoom came together from many different sources of inspi-
ration. Most recently was Danny Ayers’ post about the Web of World Craft1,
where he speculated that Web is best suited for displayed document or database
“shaped” data. Since RDF can go beyond that, and describes things, not just
data, the current World-Wide-Web paradigm will always have trouble display-
ing such graph-based information, and games might be a better candidate for
representing such information.

An earlier source of inspiration was a conversation with colleagues in the
DFKI Knowledge Management lab, where it was noted that finding things in
a computer-game is much easier than in the folder-structure on your harddisk.
Personally I reorganise my folders ever so often, but I still lose documents quite
regularly. If I could put my files in a 3D world I know well – I would always
remember that the PDF of my CV goes under the stair by the rocket launcher,
and last year’s tax-returns go with the mega-health.

Two pieces of previous work were also crucial for the ideas of RDFRoom.
Firstly, Dennis Chao’s psdoom [1], a version of Doom where processes running
on a machine appeared as monsters in a doom level and killing them meant
killing the process. His paper also contains several good observations about the
effects of using such a user-interface. Secondly, Liam Quinn wrote an RDF based
adventure game (RDFG)2 where the world and the objects in it are described
in RDF. In Liam’s game the world was carefully scripting beforehand, but in
RDFRoom the world is the web itself, although the game is admittedly more
pointless than RDFG.
? Thanks to Danny Ayers for the title
1 http://dannyayers.com/2006/03/26/web-of-worldcraft
2 http://dirk.holoweb.net/∼liam/rdfg/rdfg.cgi

II

A third source of inspiration was the IRC Client Colloquy3, which plays a
shotgun sound effect when people are kicked from a room. This makes for very
satisfying and immediate feedback and does also highlight the seriousness of the
action. We wanted RDFRoom to mimic this feedback when deleting nodes. Put
together with the recent interest in RDF browsers and browsable data [2], these
things made me spend a few evenings coding RDFRoom.

2 Overview

RDFRoom represents a graph as room in an isometric world. One node of the
graph is used as the starting point - this is either specified by the user, or RDF-
Room will pick the node with the most out-going edges if no node is specified.
Each node is represented by an object in the world, there are default “blobs”
for resources, literals and anonymous node, and to make the world more inter-
esting typed objects have appropriate graphics, for example, mailto: URIs are
shown as e-mails, foaf:Person as characters, etc. Additional types can be added
through RDF style-sheets. The player can walk around in the world, and inspect
and re-arrange the nodes. rdfs:seeAlso links are used to generate door to other
rooms, representing other graphs. Door where the seeAlso link cannot be loaded,
because of HTTP errors, etc. will be shown as closed.

3 Technical Details

RDFRoom was implemented in about 10-15 hours, using Python, PyGame4, the
fantastic RDFLib5, and the isometric engine Isotope6, modified to allow an RDF
based world.

4 But Why?

That is a very good question, and RDFRoom might be a good candidate for the
most useless code I’ve ever written. However, the question could equally well be
“Why not?”, and at least I had fun in writing RDFRoom. I also think there is
at least traces of a serious message here, and maybe it will make people think
of different ways to view data than the document paradigm.

References

1. Chao, D.: Doom as an Interface for Process Management. In: Special Interest Group
on Computer-Human Interaction. (2001)

2. Berners-Lee, T.: Browsable data. Invited Talk (2006)
http://www.w3.org/2006/Talks/0302-browsedata-tbl/.

3 http://colloquy.info
4 http://www.pygame.org
5 http://rdflib.net
6 http://www.webalice.it/simon.gillespie/Isotope.html

A prototype for faceted browsing of RDF data

Eyal Oren and Renaud Delbru
DERI Galway

firstname.lastname@deri.org

May 15, 2006

1 Faceted browsing

Faceted browsing is a superior exploration technique for large structured datasets
[4], useful when users do not know the data that they are looking for. In faceted
browsing, the information space is partitioned using orthogonal conceptual dimen-
sions of the data (called facets). Each facet has multiple restriction values; users
select a restriction value to constrain relevant items in the information space.

Existing approaches such as Flamenco [4] and Ontogator [1], cannot navigate
arbitrary datasets but are limited to manually defined facets over predefined data
structures. We have defined an approach for automatic construction of facets
in semi-structured RDF data [3]. We extend the notion of faceted browsing to
(graph-based) RDF data and define metrics for automatic ranking of facet quality.
Our technique works for arbitrary RDF data, without the need to conform to any
schema.

In this paper we present the accompanying prototype implementation.

2 Prototype

The prototype implementation is available at http://browserdf.org. A screen-
shot, showing an RDF dataset1 representing the FBI most-wanted fugitives, is
shown in Fig. 1. The interface is automatically generated for this data, and works
similarly for arbitrary data.

On left-hand side of Fig. 1 we see the various facets in the dataset, e.g. alias,
eye-color, hair-color, or nationality. The user can select any facet and restrict it,
either by directly choosing restriction values (for literal values) or by indirectly
(for resources which themselves have properties that are facets). At the top the
currently applied constraints are shown, and the main part displays the resources
that conform to the current constraints.

The user is prevented from following dead-ends: at each step, only those facets
and restriction values that have non-empty results are available. Searching with
keywords is also available, either within the current selected resources or in the
whole set.

The screenshot shows a simple restriction-value over the weight of a person. The
prototype offers several other types of constraints, such as arbitrary joins, arbitrary
selection focus, property inversion, and intersection of these.

1http://sp02.stanford.edu/kbs/fbi.zip

1

http://browserdf.org
http://sp02.stanford.edu/kbs/fbi.zip

Figure 1: Faceted browser showing FBI data

3 Implementation

The prototype is implemented using the web application framework Ruby-on-Rails2

and the object-oriented RDF API ActiveRDF3 [2]. It works on arbitrary RDF data
sources through ActiveRDF datastore adapters: the YARS adapter is most suit-
able since it supports aggregation queries and keyword queries; arbitrary SPARQL
datasets can be displayed as well, but are relatively slow due to the lack of aggre-
gation queries.

We are currently performing an comprehensive evaluation, about which we will
report in future work. Preliminary evaluation results look promising: the metrics
give priority to the most important predicates, the automatically constructed in-
terface gives a usable overview of the dataset and users find the interface highly
usable.

Acknowledgements This material is based upon works supported by the Science
Foundation Ireland under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694.

References

[1] E. Hyvönen, S. Saarela, and K. Viljanen. Ontogator: Combining view- and
ontology-based search with semantic browsing. In Proceedings of XML Finland.
2003.

[2] E. Oren and R. Delbru. ActiveRDF: Object-oriented RDF in Ruby. In Scripting
for Semantic Web (ESWC). Jun. 2006.

[3] E. Oren, et al. Annotation and navigation in semantic wikis. In SemWiki in
ESWC. 2006.

[4] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image
search and browsing. In CHI. 2003.

2http://rubyonrails.org
3http://activerdf.org

http://rubyonrails.org
http://activerdf.org

FOAFMap: Web2.0 meets the Semantic Web

Alexandre Passant

Laboratoire LaLICC
Université Paris IV, France

alex@passant.org

Abstract. FOAFMap - http://foafmap.net - is an online service pro-
viding geolocation with a FOAF and Google Maps mashup, as a mix of
both Semantic Web and Web 2.0 technologies.

1 Motivations

Web 2.0 geolocation services such as Frappr!1 allow users to create, or subscribe
to, groups and related maps.

FOAFMap’s idea is to provide an equivalent service using decentralized pro-
file and data management, thanks to Semantic Web principles and FOAF[1] vo-
cabulary. Thus, people manage themselves their data while the tool just reads,
understands and displays it in an appropriate way.

2 Overview and Implementation

FOAFMap users don’t need to register, but just have to provide a FOAF file
URL, which could point to either a personal profile or a group document.

After identifying the document type (personal profile or group), the service
retrieves people referenced in the file. For each people found, the script parses
his personal FOAF file - if any - and extracts geolocation information that he
may have provided with Geo Vocabulary2. Then, it displays these people on a
Google Map, with other personal information: name, weblog or email, and even
a resized picture if available on the profile.

As parsing the profile and retrieving files can be really long when there is a
lot of people referenced in it, FOAFMap allows users to cache the created map
in its filesystem, so that it can then be displayed faster.

Since tagging became a common practice in Web2.0 services, FOAMap also
allows people to tag their maps, but once again, tags are not created locally
but extracted from FOAF files. Actually, the retrieved tags are foaf:interest

properties of the user or group mentioned in the file. Tags are identified with
their URL, and FOAFMap provides a way to see aliases of the same tag, as
anyone can provide the title he wants using dc:title. Like most of the tools
using folksonomies, FOAFMap allows people to see who shares common tags,

1
http://frappr.com

2
http://w3.org/2003/01/geo

so that you can find people with the same interests as you3. It also provides an
RSS 1.0 feed of the latest created and updated maps.

FOAFMap’s source code strongly depends on PHOAF4, a PHP5 API based
on RAP[2] providing a set of classes and methods for easy information extraction
from FOAF files without any knowledge of FOAF and RDF. FOAFMap and
PHOAF handle FOAF and RELATIONSHIP[3] vocabularies to identify relations
between people - RAP inference engine is used so that relations can be retrieved
either they are defined by foaf:knows or rel:xxx. Finally, FOAFMap also uses
MySQL to store some data as users and tags, and runs on LAMP.

3 Conclusion and Future Work

FOAFMap certainly won’t evolve a lot in the future, as the goal was mainly to
develop a basic prototype that could show connections between Semantic Web
and user-oriented model of Web 2.0. Yet, I hope that such services can help
end-users to see what FOAF and Semantic Web can bring us.

Fig. 1. My personal FOAF profile towards FOAFMap

References

1. Brickley, D., Miller, L.: FOAF Vocabulary Specification. Technical report, FOAF

Project, 2003. http://xmlns.com/foaf/0.1
2. Oldakowski, R., Bizer R., Westphal D.: RAP: RDF API for PHP. In Scripting for

the Semantic Web, May 2005.
3. David, I., Vitiello, E.: RELATIONSHIP: A vocabulary for describing relationships

between people http://vocab.org/relationship/

3
http://foafmap.net/tag/3

4
http://gna.org/projects/phoaf

A Semantic GIS Emergency Planning Interface Based
on Google Maps*

Vlad Tanasescu and John Domingue

Knowledge Media Institute, The Open University, Walton Hall, Milton Keynes, UK
{v.tanasescu, j.b.domingue}@open.ac.uk

Abstract. We outline a generic graphical user interface for a Semantic
Geographical Information System handling heterogeneous data sources through
Semantic Web Services. This application aims to provide a goal oriented tool
for emergency planners and decision makers of the Essex County Council. It
uses Google Maps API, Firefox’s implementation of JavaScript with E4X for
XML handling, as well as AJAX techniques to access IRS-III Semantic Web
Services execution platform. It allows access to resources relevant to the
emergency context, as defined in an OCML ontology, and to communicate with
relevant agents through BuddySpace’s Instant Messaging services.

1 Application Description

In an emergency planning situation different agencies have to collaborate by sharing
data as well as information. However, many emergency resources are not available
online and interactions among agencies usually occur on a personal/phone/fax basis.
The resulting system is therefore limited in scope and slow in response-time, contrary
to the nature of the need for information access in an emergency situation.

To help alleviating this problem for the Essex County Council (ECC) emergency
planning officers (EPO), we applied concepts based on the Semantic Geographical
Information System (GIS) framework introduced in [4] to develop a prototype
application. In the resulting system functionalities and relevant data sources are
exposed by means of Web Services (WS), semantically described by OCML
ontologies, and accessible to the user through a web interface using Google Maps. At
the heart of the system stands IRS-III, a Semantic Web Services (SWS) execution
platform described in [2]. For the time being it handles accommodation and presence
related goal invocations, discovers and selects SWS that satisfy these goals, manages
SWS orchestration and mediation, before executing WS provided by British Telecom.
The mediated results are returned in a custom XML format, parsed by Firefox’s
implementation of JavaScript using the E4X idiom, and displayed on Google Maps.

BuddySpace [3] is used as a Jabber Instant Messaging protocol client to handle
spatial presence; each user which specifies in his context a longitude and latitude,

* This work was supported by the DIP (Data, Information and Process Integration with

Semantic Web Services) project. DIP (FP6 - 507483) is an Integrated Project funded under
the European Unions IST programme.

2 Vlad Tanasescu and John Domingue

possibly in a FOAF/RDF file, will appear on the map if relevant to the situation, as
described in the emergency planning ontology.

2 Usage Example

A user defines a snow hazard or a snow storm (each offering different goals), before
trying to contact relevant agents. The procedure is as follows:

1. Based on external emergency information the EPO draws a polygon on the
map, then assigns a type of emergency to the region. Here, a snow storm.

2. Described in an ontology, the new instance has attached features and goals.
Here three goals, one gets shelters at distance from the area, two others connect
to BuddySpace and get relevant presences.

3. First, the user requests all rest centres inside the region, they are retrieved
with their features and attached goals.

4. With that information the EPO logs into BuddySpace, then contacts the
relevant persons to requests action or information.

A video of the interaction is available1 as well as a live website2 for testing with
the last version of the Firefox browser. JavaScript code for the interface is available
online, in ‘*.js’ files.3

3 Conclusion and Future Work

This is work in progress. In the following versions, we plan to add meteorological
information resources, which introduce other GIS concepts such as fields. Eventually
our system should reach a level of functionality satisfying for the EPO as well as a
test bed for further experiments in Semantic GIS.

References

1. Roman, D et al.: WSMO - Standard, WSMO Working Draft D2, 16 August 2004.
2. Domingue, J. et al.: IRS-III: A Platform and Infrastructure for Creating WSMO-based

Semantic Web Services. Workshop on WSMO Implementations (WIW 2004), 2004.
3. Eisenstadt, M., Komzak, J. and Dzbor, M.: Instant messaging + maps = powerful

collaboration tools for distance learning. Proc. TelEduc03, May 19-21, 2003.
4. Tanasescu, V. and Domingue, J., Toward User Oriented Semantic Geographical Information

Systems, 2nd AKT Doctoral Symposium, 2006.

1 http://irs-test.open.ac.uk/sgis-dev/vlad/sgis.htm
2 http://irs-test.open.ac.uk/sgis-dev/
3 e.g. http://irs-test.open.ac.uk/sgis-dev/spatial.js

Lego-Note: To Generate Semantic Web Content

by Graphic Tagging

Jie Yang and Mitsuru Ishizuka

Department of Creative Infomatics
Tokyo University, Tokyo, Japan

yangj@mi.ci.i.u-tokyo.ac.jp, ishizuka@i.u-tokyo.ac.jp

Abstract. Lego-Note is an open source, browser-based semantic appli-
cation inspired by folksonomy. Different from the other keyword-based,
flat tagging systems, Lego-Note is featured by enriched graphic tagging
based on a RDF model. The paper presents the implementation de-
tails of Lego-Note. The demonstration and source code can be found
at https://sourceforge.net/projects/dom-sensus.

1 Introduction

Folksonomy like del.icio.us has proved a great success in recent years and gains
more and more attention as a promising data source of the Semantic Web[1][2][3].
The Lego-Note presented in this paper attempts to extend the expression capa-
bility of folksonomy system, make it easier to obtain the semantic annotations,
and thus to enhance the users experience further. To this end, Lego-Note is
featured by:

– Tagging into the web page instead of the whole only
– Organizing tags in the form of labelled graphs
– Defining a RDF model of the graphic tagging1.

2 Implementation

In this section, we describe the system functions and implementation details in
terms of how a user might experience it.

The user goes to the web site of Lego-Note and starts browsing with the
embedded browser. Right after the ”GO” button is clicked, a piece of AJAX
Extended 2 code is activated and sends the URL to a proxy server. The proxy
server implemented in PHP then initials the request, and sends the returned
page content back in the form of JavaScript Object Notation (JSON) . Here, the
”cross domain” security restriction which prevents the user from tagging into
the web content is evaded with the help of AJAX Extended.

1 http://dom-sensus.sourceforge.net/
2 http://ajaxextended.com/

II

After the returned content is rendered by the embedded browser, the user can
either check the tag graphs made by the other users or add tags of himself. The
tags take the form of the labelled graph. The node of the graph is a tag to the
current page, which either points to the whole page, or to the selected content
inside the page. The named edge which connects two nodes represents the user
defined relation between two tags. An SVG based graphic editor which provides
the basic graph manipulations such as adding, moving and deleting nodes and
edges is implemented. The user can save his tag graph locally or share it publicly
by saving to the Lego-Note server. The communication of saving and fetching
the tag graphs is also implemented with AJAX. The server side functions are
implemented with PHP and MySQL.

Untill now, the user can browse and tag any web page by entering a URL in
the embedded browser. In order to preserve the user’s browsing experience, link-
following surfing is provided. This means when any link is clicked, the request
should be captured and sent to the proxy server so that the next web page get
loaded free of ”the same domain restriction” as well. In Lego-Note this function
is realized with JavaScript Behavior package3.

Besides, to support the tag based browsing, a graph layout algorithm is
provided by two JavaScript packages named graph.js4 and prototype5.

3 Discussion and Future Work

Although Lego-Note tries it best to be hardware and OS independent, the various
web browsers (e.g. Firefox and IE) and SVG viewers make it a time-consuming
work to support all of them. At present, Lego-Note only works with IE (above
version 5.0) and Adobe SVG viewer 3.0.

The project is carried out under our observation and perspective on the
folksonomy and Semantic Web. The target is to lower the barrier for the Semantic
Web content production via the improved tagging system, and to provide us an
infrastructure and data source for further researches like ontology mapping and
negotiation. From the view of an application, Lego-Note is still an on-going
project in its early stage, much more functions should be added.

References

1. Guy, M., and Tonkin, E: Folksonomies: Tidying up Tags? D-Lib Magazine, 12(1),
(2006)

2. Mika, Peter: Ontologies Are Us: A Unified Model of Social Networks and Semantics.
International Semantic Web Conference.(2005) 522–536

3. Tom Gruber: Ontology of Folksonomy:A Mash-up of Apples and Oranges.
http://tomgruber.org/writing/ontology-of-folksonomy.htm

3 http://bennolan.com/behaviour/
4 http://aslakhellesoy.com/articles/2006/02/25/first-release-of-graph-js
5 http://prototype.conio.net/

	Paper2.pdf
	ActiveRDF: object-oriented RDF in Ruby
	Eyal Oren and Renaud Delbru

	Paper5.pdf
	1. Introduction
	2. DBin and background scenario
	3. Brainlets: creation, configuration and scripting
	3.1. From Eclipse plug-in to Brainlet
	3.2. Brainlet configuration in detail

	4. Conclusions

	FacetedBrowsing.pdf
	Faceted browsing
	Prototype
	Implementation

