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ABSTRACT
The proliferation of business intelligence applications moves
most organizations into an era where data becomes an es-
sential part of the success factors. More and more busi-
ness focus has thus been added to the integration and pro-
cessing of data in the enterprise environment. Develop-
ing and maintaining Extraction-Transform-Load (ETL) pro-
cesses becomes critical in most data-driven organizations.
External Data Sources (EDSs) often change their schema
which potentially leaves the ETL processes that extract data
from those EDSs invalid. Repairing these ETL processes
is time-consuming and tedious. As a remedy, we propose
MAIME as a tool to (semi-)automatically maintain ETL
processes. MAIME works with SQL Server Integration Ser-
vices (SSIS) and uses a graph model as a layer of abstraction
on top of SSIS Data Flow tasks (ETL processes). We intro-
duce a graph alteration algorithm which propagates detected
EDS schema changes through the graph. Modifications done
to a graph are directly applied to the underlying ETL pro-
cess. It can be configured how MAIME handles EDS schema
changes for different SSIS transformations. For the con-
sidered set of transformations, MAIME can maintain SSIS
Data Flow tasks (semi-)automatically. Compared to doing
this manually, the amount of user inputs is decreased by a
factor of 9.5 and the spent time is reduced by a factor of 9.8
in an evaluation.

Categories and Subject Descriptors
Information systems [Information integration]: Extrac-
tion, transformation and loading

1. INTRODUCTION
Business Intelligence (BI) is an essential set of techniques

and tools for a business to provide analytics and reporting in
order to give decision support. The BI techniques and tools
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use a Data Warehouse (DW) containing the data for the
decision making of a business. A DW contains transformed
data from one or more External Data Sources (EDSs) [4]. In
order to populate a DW, an Extract-Transform-Load (ETL)
process is used. An ETL process extracts data from one or
more EDSs, transforms the data into the desired format by
cleansing it (i.e., correcting or removing corrupt/inaccurate
data), conforming from multiple sources, deriving new val-
ues, etc., and finally loads it into the target DW.

Construction of an ETL process is very time-consuming [4].
Maintaining ETL processes after deployment is, however,
also very time-consuming. The challenges in the mainte-
nance of ETL process are very well demonstrated by the
following examples which we have obtained from Danish
organizations. The data warehouse solution at a pension
and insurance firm needs to cope with unknown changes in
the main pension system when weekly hotfixes are deployed.
The database administrator at a facility management com-
pany has to manage more than 10,000 ETL jobs that execute
daily. The ETL team at an online gaming-engine vendor has
to manage the daily format changes in the web services deliv-
ering sales and marketing data. The data warehouse team
at a financial institution strives between the challenges of
variances of source data formats and a fixed monthly release
window for ETL programs. To summarize, when the number
of ETL programs becomes overwhelming for the IT team,
management of these programs becomes time-consuming.
In such a situation, unexpected changes in source system
databases or source system deliveries add more complexity
and risk in the maintenance of the ETL programs.

The impact of an EDS schema change depends on both
the type of the EDS schema change and how ETL processes
use the changed EDSs. Maintenance of ETL processes thus
requires manual work, is very time-consuming, and is quite
error-prone. To remedy these problems, we propose the tool
MAIME which can (1) detect schema changes in EDSs and
(2) semi-automatically repair the affected ETL processes.
MAIME works with SQL Server Integration Services (SSIS)
[5] and supports Microsoft SQL Server. SSIS is chosen as the
ETL platform since it is in the top three of the most used
tools by businesses for data integration [12], has an easy to
use graphical tool (SSIS Designer [2]), and includes an API,
which allows access to modify ETL processes through third
party programs like MAIME. To maintain ETL processes,
we formalize and implement a graph model as a layer of
abstraction on top of SSIS Data Flow tasks. By doing so,
we only have to modify the graph which then automatically
modifies the corresponding SSIS Data Flow task. Running



ETL processes is often an extensive and time-consuming
task, and a single ETL process not being able to execute
could cause a considerable amount of time wasted since the
administrator would have to repair the ETL process and run
the ETL processes once again. Based on this observation,
MAIME can be configured to repair ETL processes even if
this requires deletion of parts/transformations of the ETL
processes.

In an evaluation MAIME is shown to be able to suc-
cessfully repair ETL processes in response to EDS schema
changes. For the implemented set of transformations, a com-
parison between resolving EDS schema changes in MAIME
and doing it manually in the SSIS Designer tool shows that
MAIME is on average 9.8 times faster and required 9.5 times
less input from the user to maintain.

The rest of the paper is organized as follows. Section 2
provides an overview of MAIME and how it detects EDS
schema changes. Section 3 formalizes the graph model and
describes its usage. Section 4 describes how graph alter-
ations are done. Section 5 describes the implementation.
Section 6 shows how MAIME compares to doing the main-
tenance manually. Section 7 covers related work. Section 8
concludes and provides directions for future work.

2. OVERVIEW OF MAIME
In this section, we give an overview of the SSIS com-

ponents covered by our solution. Then, we explain how
MAIME detects EDS schema changes. Finally, we give a
description of the architecture of MAIME.

Knight et al. [5] provide an overview of the SSIS architec-
ture. To briefly summarize, a package is a core component of
SSIS which connects all of its tasks together. The package is
stored in a file which the SSIS engine can load to execute the
contained control flows. A control flow of a package controls
the order and execution of its contained tasks. This work
focuses on Data Flow tasks. A Data Flow task can extract
data from one or more sources, transform the data, and load
it into one or more destinations. It can be observed that the
actions performed in a Data Flow task thus resemble those
of the general notion of an ETL process. We therefore re-
gard a Data Flow task as an ETL process. A Data Flow task
can make use of several types of transformations referred to
as Data Flow components in SSIS. The current prototype of
MAIME covers the following subset of common transforma-
tions: Aggregate, Conditional Split, Data Conversion, De-
rived Column, Lookup, Sort, and Union All. To extract and
load data, we use OLE DB Source and OLE DB Destina-
tion. For convenience, we extend the term“transformations”
to also cover OLE DB Source and OLE DB Destination even
though they do not transform data.

We now consider how to maintain ETL processes using
these transformations. The first problem is to detect EDS
schema changes. We do not want MAIME to rely on third
party tools for this. One possibility is then to use triggers.
They would, however, need to be created first and for many
source systems, there would be many of them to handle both
deletions, renames, and additions for hundreds of tables.
Further, they would fire for each individual modification and
not only after all modifications are done. Instead, we there-
fore just extract metadata from SQL Server’s Information
Schema Views with plain SQL statements (other DBMSs
typically offer something similar such that support for them
also could be added). We thus store a snapshot of how the
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Figure 1: Architecture of MAIME.

source databases look and when MAIME is run, it creates a
new snapshot and compares that to the previous snapshot
to detect which changes have occurred.

Figure 1 shows the architecture of MAIME. We first pro-
vide short descriptions for MAIME’s surrounding elements
that are used by the core MAIME components. EDSs corre-
spond to the external data sources of which schema changes
are detected. In Figure 1, the Metadata Store corresponds
to a local directory. Each captured EDS metadata snapshot
is stored as a JSON file in the Metadata Store. The Log
is a collection files that log every change done by MAIME
so that an administrator can analyze the maintenance. The
Configuration is a JSON file which stores the user-defined
configurations.

The EDS Change Manager (ECM) captures metadata
from the EDSs by using the Information Schema Views.
The metadata snapshots are stored in the Metadata Store.
Before repairing an ETL process, the current snapshot is
compared with the previous snapshot. As a result, a list
of EDS schema changes is produced which is accessible to
the Maintenance Manager (MM). The core logic of MAIME
resides in the MM. The MM loads specifications of ETL pro-
cesses (i.e., SSIS Data Flow tasks) and creates corresponding
graphs. One graph is responsible for updating one underly-
ing ETL process. The MM contains multiple graphs and
operates on them when the graph alteration algorithm (ex-
plained in Section 4.2) is called for the found EDS schema
changes. Modifications made by the graph alteration algo-
rithm to the graphs are done semi-automatically since the
user can be prompted. How exactly this is done depends
on the configurations described in Section 4.1. The GUI is
accessed by an administrator to maintain ETL processes. It
involves: (1) Selecting ETL processes to maintain, (2) ad-
justing administrator configurations, (3) confirming or deny-
ing changes by answering to prompts, (4) visualizing applied
changes to the ETL processes, and (5) displaying log entries
for the applied changes.

3. GRAPH MODEL
To analyze ETL processes and the effects of EDS schema

changes, the ETL processes are modeled using graphs which
provide a level of abstraction over the SSIS packages. When
we make a change in our graph, corresponding changes are
also applied to the underlying SSIS package. Afterwards,
we save the SSIS package which is now in an executable
state. An advantage of using graphs for modeling an ETL



process lies in the capability of easily representing dependen-
cies between columns for all transformations and handling
cascading changes using graph traversal. In this section, we
describe our graph model in details.

Each ETL process is represented as an acyclic property
graph G = (V,E) where a vertex v ∈ V represents a trans-
formation and an edge e ∈ E represents that columns are
transferred from one transformation to another. A property
graph is a labeled, attributed, and directed multi-graph [10].
Each vertex and edge can have multiple properties. A prop-
erty is a key-value pair. To refer to the property name of
vertex v1, we use the notation v1.name. The set C rep-
resents all columns used in an ETL process (i.e., columns
from an EDS and columns created during the ETL process).
Each column c ∈ C is a 3-tuple (id, name, type) where id is
a unique number, name is the name of the column, and type
holds the data type of the column. id was included because
name and type are not enough to uniquely identify a col-
umn. Each edge e ∈ E is a 3-tuple (v1, v2, columns) where
v1, v2 ∈ V and columns ⊆ C is the set of the columns be-
ing transferred from v1 to v2. Putting columns on the edge
is particularly advantageous for transformations which can
have multiple outgoing edges where each edge can transfer
a different set of columns, such as Aggregate in SSIS.

A vertex v representing a transformation has a set of
properties depending on the type of transformation. The
properties all vertices have in common are: name, type,
and dependencies. The only exception is a vertex for an
OLE DB Destination which does not have the dependencies
property. name is a unique name used to identify vertex
v. type denotes which kind of transformation v represents
(e.g., Conditional Split or Aggregate). dependencies shows
how columns depend on each other. If, for example, we
extract the column c from an EDS and use an Aggregate
transformation that takes the average of c and outputs c′,
we say that c′ 7→ {c}. In the case of the Aggregate trans-
formation, c′ originates from c and is therefore dependent
on c. Any modifications such as deletion of c or a modi-
fication of its data type can result in a similar change to
c′. Formally, dependencies is a mapping from an output
column o ∈ C to a set of input columns {c1, . . . , cn} ⊆ C.
We say that o is dependent on {c1, . . . , cn} and denote this
as: o 7→ {c1, . . . , cn}. The output columns are defined as
the columns that a vertex sends to another vertex through
an outgoing edge, such as an OLE DB Source transferring
columns to an Aggregate. The input columns are defined
as the columns that a vertex receives from another vertex
through an incoming edge. The main purpose of dependen-
cies is to detect whether an EDS schema change has any cas-
cading effects. Due to this, the graph contains some trivial
dependencies if a transformation does not affect a column,
e.g., a dependency such as: c 7→ {c} where c is dependent
on itself. One example of an output column depending on
multiple input columns is a Derived Column transformation
where a derived output column o is dependent on the input
columns i1 and i2 if they were used to derive the value of
o. Thus o 7→ {i1, i2} showing that if an EDS schema change
affects i1 or i2 then it may also affect o.

Additional properties of a vertex are defined by the type
of the vertex. For instance, v.aggregations is a necessary
property for Aggregate, whereas OLE DB Source does not
use aggregations and does not have this property. Table 1
shows all properties specific to each transformation, and the

Table 1: Transformations, their properties, and
number of allowed incoming and outgoing edges.

Transformation Specific properties In Out
OLE DB Source database, table,

and columns
0 1

OLE DB Destin. database, table,
and columns

1 0

Aggregate aggregations 1 many
Conditional split conditions 1 many
Data conversion conversions 1 1
Derived column derivations 1 1
Lookup database, table,

joins, columns, and
outputcolumns

1 2

Sort sortings and
passthrough

1 1

Union all inputedges and
unions

many 1

number of incoming and outgoing edges. The following de-
scribes the definitions of properties in more detail and how
dependencies is specified for each type of transformation.

An OLE DB Source is used to extract data from a table
or view of an EDS. It provides data for upcoming transfor-
mations and is thus represented by a vertex with no in-
coming edges. An OLE DB Source has some additional
properties. database is the name of the database data is
extracted from. table is the name of the table data is ex-
tracted from. columns is the list of columns extracted from
the table. dependencies for OLE DB Source is trivial as for
each column c ∈ columns, c 7→ ∅. Each column is dependent
on nothing in the OLE DB Source, as this is the first time
the columns appear in the graph.

An OLE DB Destination represents an ending point in
the graph and is responsible for loading data into a DW.
OLE DB Destination has the same properties as OLE DB
Source, here representing where columns are loaded to. Since
OLE DB Destination does not have any outgoing edges,
dependencies does not exist for OLE DB Destination.

An Aggregate applies aggregate functions such as SUM
to values of columns which results in new outputs with
the aggregated values. Formally, the only property spe-
cific to an Aggregate vertex is defined as aggregations =
{(f1, input1, output1, dest1),..., (fn, inputn, outputn, destn)}
where fi ∈ {COUNT,COUNT DISTINCT,GROUP BY,
SUM,AV G,MIN,MAX} is the aggregate function, inputi
∈ C is the input column that the ith output column is com-
puted from, and outputi ∈ C is the result of the ith aggrega-
tion and output of aggregate i, respectively. desti ∈ V is the
vertex receiving the output column outputi. A given desti-
nation dest can appear in multiple tuples of aggregations,
which shows that the dest receives multiple columns through
a single edge. For each tuple i in aggregations, we have the
dependency outputi 7→ {inputi}.

A Conditional Split applies expressions to rows and
can thereby route them to different destinations based on
which conditions they satisfy. Expressions are for example
SUBSTRING(title, 1, 3) == ”Mr.” or salary > 30000.
Formally, the only property specific to the Conditional Split
vertex is defined as conditions = {(expr1, p1, dest1), . . . ,
(exprn, pn, destn)} where expri is a predicate that speci-
fies which rows are routed to desti, pi ∈ N+ is a priority
which indicates in which order the conditions are evaluated



in (where 1 is the highest priority). The set of priorities
{p1, . . . , pn} is a gap-free series of numbers that range from
1 to n, where n is the number of conditions. desti ∈ V is
the vertex that receives rows (that have not been taken by
a higher priority condition) for which expri holds. In Con-
ditional Split the set of output columns on each outgoing
edge is equal to the set of input columns. This is because a
Conditional Split transformation is not able to add, delete,
or otherwise change columns, but is only able to filter rows.
Thus, each column depends on itself.

A Data Conversion casts the value of a column into a
new column with the new data type. Formally, the only
specific property of the data conversion vertex is defined as
conversions = {(input1, output1), . . . , (inputn, outputn)}
where inputi ∈ C is the input column of the vertex and
outputi ∈ C is a new column that has been created through
the Data Conversion from inputi. The specific conversions
of data types are present in the type of outputi. A Data
Conversion creates a new column rather than replacing the
existing column and thus both inputi and outputi are out-
put columns. dependencies is simple for Data Conversion,
as a dependency is made for each new outputi such that
outputi 7→ {inputi} for all tuples in conversions and since
all input columns are sent to next vertex, each depends on
itself.

A Derived Column creates new columns based on input
columns and expressions applied to those inputs. Formally,
the only property specific to the Derived Column vertex
is defined as derivations = {(expr1, output1), . . . , (exprn,
outputn)} where expri is an expression used for computing
the new values of outputi, and outputi ∈ C is a newly cre-
ated column. dependencies for Derived Column is similar to
Data Conversion in that each input column is dependent on
itself. For all output columns in derivations we define the
dependency outputi 7→ {ci,1, . . . , ci,j} where {ci,1, . . . , ci,j}
is the set of all columns used in expri.

A Lookup extracts additional data from a database by
equi-joining with given input columns. Formally, the prop-
erties of a Lookup vertex are defined as follows: database
is the name of the database to lookup additional columns
from. table is the name of the table used. columns ⊆
C represents all columns in the table. outputcolumns ⊆
columns is the columns extracted from the table. joins =
{(input1, lookup1), . . . , (inputn, lookupn)} where joins rep-
resents the equi-join of the Lookup. inputi is a column from
the preceding vertex used for the join condition and lookupi
is a column from columns. The equi-join is used to extract
the columns in outputcolumns. Each input column has a
dependency to itself. Each new column in outputcolumns is
dependent on all the input columns used in the join con-
ditions of the Lookup. In other words, for each output
column output ∈ outputcolumns, we have that output 7→
{input1, . . . , inputn} where inputi is the input column of
the ith tuple in joins.

A Sort sorts the input rows in either ascending or de-
scending order and creates new output columns for the sorted
rows. It is possible to sort on multiple columns where a cer-
tain priority has to be given. Formally, the properties of
a Sort vertex are defined as follows. sortings = {(input1,
output1, sorttype1, order1), . . . , (inputn, outputn, sorttypen,
ordern)} where inputi, outputi ∈ C, sorttypei ∈ {ascending,
descending}, and orderi ∈ N+ indicates in which order the
columns are sorted (where 1 is the highest priority). The set

Store

ID: int (PK)
Address: nvarchar(60)

Sale

ID: int (PK)
CustomerID: int (FK)
StoreID: int (FK)
TotalAmount: money

Person

ID: int (PK)
Name: nvarchar(30)
Age: int

Figure 2: Example of an EDS schema.

of orders {order1, . . . , ordern} is a gap-free series of num-
bers from 1 to n. passthrough = {c1, . . . , cj} is the set of
columns passed through the transformation. This does not
include columns that are used for sorting. For dependencies,
every output column is dependent on itself.

A Union All combines rows from multiple vertices. For-
mally, the properties of a Union All vertex are defined as
follows. inputedges = (e1, . . . , ej) where ei is the ith incom-
ing edge of the Union All and j is the amount of incoming
edges. unions = {(output1, input1), . . . , (outputn, inputn)}
where inputi = (c1, . . . , cj). Each element in unions shows
how multiple input columns are combined into a single out-
put column. ci ∈ C ∪ ε where ε is a convention used to
indicate that for a given union, no input is taken from the
corresponding edge. For example, the tuple (outputi, inputi)
where inputi = (c1, ε, c3) indicates that the unioned outputi
uses c1 from e1, c3 from e3, but no column is used from e2.
outputi is the column generated by unioning the columns
in the ith input tuple. A column from a table can only
be part of a single union. For the ith tuple of unions,
outputi 7→ {c1, . . . , cn} such that the new column, which
is a result of the union, is dependent on all columns that
were used for the union. This dependency is derived for all
tuples in unions.

Example 1. Figure 2 shows the schema of an EDS called
SourceDB. Now consider the SSIS Data Flow task shown in
Figure 3 where
– OLE DB Source extracts the columns ID, Name, and
Age from the Person table.
– Lookup extracts the TotalAmount from the Sale table by
joining Sale.CustomerID with Person.ID.
– Derived Column derives the new column AmountTimes10
which is derived from the derivation (TotalAmount * 10,
AmountTimes10).
– Conditional Split splits the rows into two directions based
on {(Age > 40, 1, Aggregate),(TotalAmount > 10000, 2,
OLE DB Destination)}.
– Aggregate computes into AvgAmount the average of Amount-
Times10 when grouping by Age.
– OLE DB Destination loads ID, Age, and AmountTimes10
into the DW table PersonSalesData.

Figure 3: An ETL process.



Columns = 
{(1, ID, int),
(2, Name, string),
(3, Age, int),
(4, TotalAmount, 
currency),
(5, AmountTimes10, 
currency)} 

Name    OLE DB Source 
Database =  SourceDB 
Table =  Person 
Columns = { ID, Name, Age}
Dependencies = {
ID  Ø
Name  Ø
Age  Ø }

Columns = 
{(1, ID, int),
(2, Name, string),
(3, Age, int)} 

1 2 3

Name    Lookup 
Database =  SourceDB 
Table =  Sale 
Columns = { 
ID, CustomerID, StoreID, 
TotalAmount}
OutputColumns =  
{TotalAmount}
Joins = 
{(ID, CustomerID)}
Dependencies = {
ID  {ID}
Name  {Name}
Age  {Age}
TotalAmount {ID}}

Name =  Derived 
Column 
Derivations = { 
  TotalAmount * 10", 
AmountTimes10)}
Dependencies = {
ID  {ID}
Name  {Name}
Age  {Age}
TotalAmount 
{TotalAmount}
AmountTimes10  
{TotalAmount}}

Columns = 
{(1, ID, int),
(2, Name, string),
(3, Age, int),
(4, TotalAmount, 
currency)} 

4

Name =  Conditional 
Split 
Conditions = { 
  Age > 40", 1, 
Aggregate),
  TotalAmount > 
10000", 2, OLE DB 
Destination)}
Dependencies = {
ID  {ID}
Name  {Name}
Age  {Age}
TotalAmount 
{TotalAmount}
AmountTimes10  
{AmountTimes10}}

Columns = 
{(1, ID, int),
(2, Name, string),
(3, Age, int),
(4, TotalAmount, 
currency),
(5, AmountTimes10, 
currency)} 

5

Name =  OLE DB 
Destination 
Database = 
 TargetDW 
Table = 
 PersonSalesData 
Columns = { ID, Age, 
AmountTimes10 }

67

Name =  Aggregate 
Aggregations = { 
(AVERAGE, 
AmountTimes10, 
AvgAmount, OLE DB 
Destination 1),
(GROUP BY, Age, Age, 
OLE DB Destination 1)}
Dependencies = {
Age  {Age}
AvgAmount  
{AmountTimes10}}

Columns = 
{(1, Age, int),
(2, AvgAmount, 
currency)} 

Name =  OLE DB 
Destination 1 
Database =  TargetDW 
Table =  SalesData 
Columns = {
Age, AvgAmount }

Columns = 
{(1, ID, int),
(2, Name, string),
(3, Age, int),
(4, TotalAmount, 
currency),
(5, AmountTimes10, 
currency)} 

Figure 4: A MAIME graph for the Data Flow task in Figure 3.

– OLE DB Destination 1 loads AvgAmount and Age into
the DW table SalesData.

Figure 4 shows the corresponding MAIME graph where
there are seven vertices, i.e., one for each transformation
(the types are not shown since they are obvious from the
names of the vertices). As an example of a dependency, we
have AmountTimes10 7→ {TotalAmount} in Derived Col-
umn. This comes from the derivation TotalAmount * 10.
This shows that any change to TotalAmount can affect Am-
ountTimes10, and if TotalAmount is deleted, AmountTimes-
10 can no longer be derived and therefore also needs to be
deleted.

4. GRAPH ALTERATION
In this section, we describe how the MAIME graph is up-

dated when changes happen at the EDSs. First, we describe
MAIME’s user-configurable settings. Then we describe the
algorithm that updates the graph (which in turn updates
the underlying SSIS Data Flow task).

4.1 Administrator Configurations
This section describes how an administrator can configure

which modifications MAIME is allowed to perform in case of
EDS schema changes. As an example, an administrator can
define that only renames in the EDS should be propagated
to the SSIS Data Flow tasks automatically, and MAIME

should block (i.e., not propagate) any other changes in the
EDS which then have to be handled manually. If MAIME is
given free reign, it can, however, make any number of mod-
ifications to ensure that ETL processes execute successfully.
In the following, we describe the configurations that an ad-
ministrator can specify before executing MAIME. There are
two types of configurations: (1) EDS schema change con-
figurations, and (2) Advanced configurations. To properly
understand the configurations, we first explain the different
kinds of EDS schema changes. The schema changes that
we consider are the following. Addition which represents
a new column in a schema; Deletion which represents a
deleted column in a schema; Rename which represents a
renamed column in a schema; Data Type Change which
represents a column where the data type has changed (incl.
properties such as length).

For an EDS schema change ch ∈ {Addition, Deletion, Re-
name, Data Type Change} and vertex type t, a policy
p(t, ch) ∈ {Propagate, Block, Prompt} can be specified by
the administrator. The Propagate policy defines that when
p(t, ch) = Propagate, reparation of vertices of type t is al-
lowed for EDS schema changes of type ch. The Block pol-
icy says that when p(t, ch) = Block then for every vertex v
where v.type = t, the alteration algorithm (explained in Sec-
tion 4.2) is not allowed to make modifications to v or to any
successor vsucc of v, even if p(vsucc.type, ch) = Propagate.
The Prompt policy defines that the choice of whether to



block or propagate the change is deferred to runtime where
the user is prompted to make the choice. Figure 5 shows
how the administrator can set a policy for a type of an EDS
schema change, or be more specific and choose a policy for
each type of vertex for a given EDS change. For example, she
can configure that for all Conditional Split vertices, deletion
of columns should be propagated, but all other EDS changes
should be blocked.

AdditionProp.

AggregateProp.

RenameProp.

Data typeBlock

Cond. SplitBlock

SortProp.

DeletionBlock

AggregateBlock

Cond. SplitProp.

SortBlock

EDS Schema Change 
Configurations

Advanced  Configurations

Allow deletion of transformations

Allow modification of expressions

Use global blocking semantics

Figure 5: Configuration of MAIME.

As can be seen in Figure 5, advanced configurations can
also be specified. MAIME is based on the idea that ETL
processes should be repaired such that all of them can exe-
cute afterwards. We now explain some more difficult cases
of maintaining ETL processes and which configurations the
administrator can use for such cases. Considering the case
of a deletion of a column, we need to take into account that
both columns and vertices can be dependent on the deleted
column. Columns such as a derived column is dependent on
the columns that it was derived from. Vertices are depen-
dent on columns if the columns are a part of that vertex’s
input, expression, condition, or used in some other way by
the vertex.

The Use global blocking semantics option dictates
whether the alteration algorithm should terminate if the pol-
icy for any vertex is Block. If Use global blocking semantics
is enabled and p(t, ch) = Block then an ETL process contain-
ing a vertex of type t will not be considered for reparation
whenever the EDS schema change is of type ch.

The Allow deletion of transformations option allows
deletion of vertices in a graph (and thus transformations in
a SSIS Data Flow task). With this option enabled, MAIME
can modify graphs to such an extent that large portions of a
graph are removed, but the corresponding updated ETL pro-
cess can execute. Consider, for example, if a Sort vertex uses
column a for sorting. If a is deleted from the EDS, it would
render the vertex invalid. With Allow deletion of transfor-
mations option enabled, the alteration algorithm attempts
to repair the process by deleting the Sort vertex and any
successive vertices, thereby making the process executable.
The algorithm described in Section 4.2 further explains this
principle.

The Allow modification of expressions option allows
the alteration algorithm to modify expressions in vertices
(such as Conditional Split and Derived Column) in the event
of deletions or data type changes of columns. Consider, for
example, a Conditional Split with input columns a and b
and one condition with the expression a < 20 && b < 40

and assume that an EDS schema change of b being deleted
occurs. If Allow modification of expressions is enabled, the
alteration algorithm attempts to update the expression into
a < 20. This would make the process run successfully with-
out removing the whole expression, but the semantics is
different. If Allow modification of expressions is disabled,
the alteration algorithm would instead remove the expres-
sion. Modification of expressions is always allowed if the
EDS schema change is the renaming of a column. This is
because it is very simple to preserve the original semantics
by replacing the old name of the renamed column with the
new name in the expression.

4.2 The Graph Alteration Algorithm
This section details how our graph model adapts to EDS

schema changes. As described above, the administrator can
choose between the Propagate, Block, and Prompt poli-
cies. Only a propagation (which can also occur through
a prompt) alters the graph. This section goes into depth on
how to propagate an EDS schema change through the graph.
How propagation is handled for a given type of EDS schema
change is specific to each type of transformation. For space
reasons, details about the different actions are not provided
here, but are available elsewhere [3]. However, just apply-
ing actions to each vertex independently is not enough, as a
change in one vertex can also affect successive vertices. The
Alter-graph algorithm takes in a single EDS schema change
ch and our property graph G. To be able to handle multiple
EDS schema changes, the Alter-graph algorithm is called
for each EDS schema change. For simplicity, we only present
the case where Allow deletion of transformations is enabled
and neither Prompt nor data type change is used.

The order in which we traverse the graph matters as vis-
iting a vertex also affects successive vertices. For this, topo-
logical sorting is used on Line 1 such that when a vertex is
visited, it is guaranteed that all its predecessors have been
visited beforehand. The list of topologically sorted vertices
is referred to as L. On Lines 2–6, the algorithm handles the
case where Use global blocking semantics is enabled. This
entails checking if there exists a vertex in L with the Block
policy defined for the EDS change type ch. In case such
a vertex exists, the algorithm returns an unchanged graph.
On Line 7, we start traversing each vertex v of L. On Lines
8–11, we check if the policy for v given ch is Block. If this is
the case, we can disregard this branch of the graph for the
traversal, which is why we remove all successors of v from
the sorted list of vertices. Line 12 updates the dependencies
of a vertex. This is done by going through each dependency
in v.dependencies for a given vertex v and checking that
all of the involved columns are still present in the incom-
ing edges. The reason for this is that some columns might
have been removed from v’s incoming edges when traversing
the preceding vertices, such that v.dependencies refers to
columns that no longer exist in v’s input.

As stated before, it is not sufficient to just look at vertices
independently when going through the output columns of
each vertex. Lines 13–19 show the case for deleting columns
with no dependencies. As an example, consider a vertex v
whose preceding transformation is a Derived Column with
the input column c, which is used to derive a new column
d through the expression d = c + 42. Now, v will receive
c and d as input columns, but if the EDS schema change
(ch) is a deletion of c, not only will c not be available to v



Algorithm 1: Algorithm for propagating EDS
schema changes to the graph

Name: Alter-graph
Input: EDS-Change ch, Graph G
Output: Graph G

1 List L = topological-sort(G)
2 if Use global blocking semantics is enabled then
3 foreach Vertex v ∈ L do
4 Policy p = lookup-policy(v.type, ch.type)
5 if p = Block then
6 return G

7 foreach Vertex v ∈ L (in topological order) do
8 Policy p = lookup-policy(v.type, ch.type)
9 if p = Block then

10 Remove all successors of v from L
11 continue

12 Update v’s dependencies to not include deleted
columns

13 foreach Column c ∈ v’s outgoing edges do
14 if v.dependencies(c) = ∅ AND v.type 6= OLE

DB Source then
15 if v is fully dependent on c then
16 Delete v and v’s incoming and

outgoing edges from G
17 Break inner loop

18 else
19 Delete c from v’s corresponding

outgoing edges and dependencies

20 if v.type is OLE DB Destination AND v has no
incoming edges then

21 Delete v

22 if v was not deleted AND ch affects v then
23 G = alter(G, v, ch)

24 return G

anymore, d will also be deleted, as it is no longer possible to
derive it from the Derived Column without c. The way to
find out that d is no longer computable is by seeing that d is
dependent on ∅ (Line 14). This signifies that d was depen-
dent on column(s) which have been deleted. The exception
is an OLE DB Source, which is the only vertex for which
dependencies maps columns to ∅, as explained in Section
3 (OLE DB Source is the only transformation allowing no
incoming edges). Beginning on Line 15, it is considered if
it is possible to delete only the given column d or if it is
necessary to delete the entire vertex v. This narrows down
to whether v is fully dependent on d or not. We say that a
vertex v is fully dependent on some column c, when v would
be rendered invalid if c was deleted. For instance, if v is
an Aggregation and c is the only remaining column that is
being used for aggregations, then v is fully dependent on c.
The deletion of c would result in v.aggregations = ∅, which
is not a valid transformation. What qualifies a vertex as
being fully dependent on a column is specific for each type
of transformation, for details see [3]. Lines 16–17 show the
case of deleting a whole vertex and all of its incoming and
outgoing edges, if they are no longer used. This iteration of
the loop breaks because it would not make sense to continue

Table 2: Currently supported EDS changes.
Deletion Rename

OLE DB Source 3 3

OLE DB Destination 3 3

Aggregate 3 3

Conditional Split 3 3

Data Conversion 7 7

Derived Column 3 3

Lookup 3 3

Sort 7 7

Union All 7 7

iterating over the output columns of a vertex that has been
deleted. The other case of only deleting the given column
is shown in Lines 18–19. Since a vertex of type OLE DB
Destination does not have any outgoing edges, it is not con-
sidered in the previous loop on Lines 13–19. However, we
still want to delete the vertex if it is invalid, i.e., if it has
no incoming edge. This is performed on Lines 20–21. Af-
terwards on Lines 22–23, if v was not deleted at an earlier
point in the algorithm, then the corresponding propagation
action for the EDS schema change and transformation type
is invoked. Finally, the fully altered graph is returned. Re-
call that the underlying SSIS Data Flow tasks gets updated
automatically when the graph is updated.

5. IMPLEMENTATION
This section describes the implementation of the proto-

type. MAIME was developed in C# for Microsoft SQL
Server 2014 Developer Edition and with the SSIS Designer
as the data integration tool. The SSIS Designer is part of
the SQL Server Data Tools (v. 14.0.60203.0). The code-
base for the implementation includes around 7,700 lines of
code, 85 classes, and 410 members. The implementation
is open source and is available from https://github.com/
sajens/MAIME.

The advanced configurations, Allow deletion of transfor-
mations and Use global blocking semantics are implemented.
We did not implement Allow modification of expressions
yet. We focused our attention primarily on Allow dele-
tion of transformations and Use global blocking semantics,
since they seemed to be the most impactful configurations
for MAIME. Currently, Allow deletion of transformations is
always enabled. The Propagate and Block policies are imple-
mented as described previously. Table 2 shows which trans-
formations have been implemented with respect to deletion
and renaming of EDS columns in the current prototype.

We now consider how the graph is represented internally
in MAIME. Our graph is implemented as a layer on top of
SSIS. Therefore, our graph constructs have references to the
corresponding SSIS constructs. To be more exact, each ver-
tex refers to a SSIS component (transformation), each edge
refers to a SSIS path, and each column has a corresponding
reference to a so-called SSIS IDTS object. The SSIS IDTS
object covers both input and output columns in SSIS. By
having these references, we can easily propagate changes to
the underlying ETL process during execution of the graph
alteration algorithm. For the graph, we have implemented
the classes Graph, Vertex, Edge, Column, and a class ex-
tending Vertex for each supported transformation such that
specific dependencies and properties can be represented.



In order to instantiate the graph, we have to translate the
components from SSIS1. Initially, a SSIS package is loaded
by parsing its .dtsx file conforming to XML specification.
Then, we extract its SSIS Data Flow tasks. Note that every
Data Flow task is stored as a graph in a .dtsx file. Con-
struction of a MAIME graph is done in two iterations. Dur-
ing the first iteration, we extract one Data Flow task and
go through its components to create corresponding vertices
with references to the Data Flow task components. With
the set of vertices V and references to the SSIS components,
we can extract information for each vertex such as v.name
and v.type. Afterwards, every SSIS path is translated into
an edge. This gives us the set of edges E of our graph. It is
important to note that columns are not stored in the edges
in this iteration, since they do not exist on SSIS paths. Af-
ter the first iteration is complete, we have created the basic
structure of the graph of MAIME. In the second iteration,
we deduce dependencies, assign columns to edges, and create
transformation specific properties.

6. EVALUATION
We now evaluate the efficiency of MAIME. In the evalua-

tion, we compare how much time and how many user inputs
are required to resolve a series of EDS schema changes when
using MAIME and when repairing the ETL flow manually.
A user input is defined to be a mouse click or a keystroke
done by the user (both are recorded separately). We dis-
cussed and validated this approach with practitioners in field
of ETL development.

We consider three SSIS packages and each has a single
Data Flow task. For each considered SSIS package, both
MAIME and the manual work end up having the same end
result, i.e. the same state of the maintained SSIS package.
Only the process of achieving that end result differs. The
EDS schema changes used for the evaluation include deletion
and renaming.

For the manual approach, the user performing the evalu-
ation (one of the authors) is given the EDS schema changes
and two versions of the ETL process: One in its initial state,
and another in the desired result state. The user then per-
forms maintenance of each package three times using Visual
Studio 2015 Community edition and SQL Server Data Tools.
The first evaluation gives an indication of how long it takes
to maintain an ETL process without knowing every step to
maintain the ETL process. The second and third attempt
are performed in order to provide a best-case scenario, since
the user learns the quickest way to maintain the ETL pro-
cess through repetition. The time of the evaluation starts
when the user begins repairing the ETL process after having
seen the given information (i.e., EDS schema changes and
the two versions of the ETL process). During the test, the
duration and amount of user inputs used are recorded using
a software tool.

When considering MAIME, the user interacts with MAIME
to (1) accept the configurations, currently loaded ETL pro-
cesses, and connected EDSs, and (2) start the maintenance
process. The EDS schema change configurations of MAIME
for all evaluations are all set to propagate. For the advanced
configurations, Allow deletion of transformations is enabled,
Allow modification of expressions is disabled, and Use global
blocking semantics is disabled. The time of the evaluation

1msdn.microsoft.com/en-us/library/ms403344.aspx

starts when the user begins to use MAIME and ends when
the SSIS package has been repaired. MAIME is also used to
repair the package three times and the duration and amount
of user inputs are again recorded using a software tool.

We acknowledge that the user knows MAIME very well
and thus easily can use it. That is why the user also is given
the desired resulting SSIS package for the manual approach
such that he does not have to think about what needs to be
changed. This is thus an overly optimistic way to measure
the needed time for the manual approach (the amounts of
needed clicks and keystrokes are not affected, though).

We now elaborate on one of our test cases and a given list
of EDS schema changes. In test case 1, we consider the sce-
nario from Example 1 and assume the following changes to
the EDS: (1) Age is renamed to RenamedAge in the Person
table and (2) TotalAmount is deleted from the Sale table.
The state of the graph after it has been maintained is shown
in Figure 6 in the SSIS designer tool, and with MAIME’s
graph in Figure 7. The latter shows that Age is success-
fully renamed on all edges. The deletion of TotalAmount is
slightly more complicated since the condition TotalAmount
> 10000 in the Conditional Split involves the column. This
condition is no longer valid which results in the removal of
the outgoing edge containing it. We therefore delete OLE
DB Destination, as it no longer has any incoming edges.
Derived Column derives the column AmountTimes10 from
TotalAmount and can therefore no longer be derived. We
delete this derivation but still retain our Derived Column
transformation since it can exist without doing any deriva-
tions. Another possibility would be to let MAIME delete the
Derived Column and connect the Lookup and Conditional
Split transformations. The Aggregate transformation takes
the average of AmountTimes10, which no longer exists and
this aggregation is therefore also deleted. OLE DB Desti-
nation 1 no longer loads the aggregated AvgAmount from
the Aggregate transformation into the DW. Both TotalAm-
ount, AmountTimes10, and AvgAmount are deleted from
the edges.

Figure 6: The Data Flow task of the SSIS package
for test case 1 after the EDS schema changes.

Test cases 2 and 3 are not shown here for space reasons,
but only briefly described. In test case 2, TotalAmount is
deleted, and both Address and Person.ID are renamed. In
test case 3, Name is deleted and Age is renamed.

For each test case, the used time is shown in Table 3 and
the amounts of user inputs are shown in Table 4. For time-
consumption, MAIME took on average 4 seconds across all
3 test cases while manually resolving changes took 39.3 sec-
onds on average across all 3 cases for the third attempt. This
means MAIME was on average of 9.8 times faster for resolv-



Columns = 
{(1, ID, int),
(2, Name, string),
(3, RenamedAge, int)} 

Name    OLE DB Source 
Database =  SourceDB 
Table =  Person 
Columns = { ID, Name, 
RenamedAge}
Dependencies = {
ID  Ø
Name  Ø
RenamedAge  Ø }

Columns = 
{(1, ID, int),
(2, Name, string),
(3, RenamedAge, int)} 

1 2 3

Name    Lookup 
Database =  SourceDB 
Table =  Sale 
Columns = { 
ID, CustomerID, 
StoreID}
OutputColumns =  {}
Joins = 
{(ID, CustomerID)}
Dependencies = {
ID  {ID}
Name  {Name}
RenamedAge  
{RenamedAge}}

Name =  Derived 
Column 
Derivations = {}
Dependencies = {
ID  {ID}
Name  {Name}
RenamedAge  
{RenamedAge}}

Columns = 
{(1, ID, int),
(2, Name, string),
(3, RenamedAge, int)} 

4

Name =  Conditional 
Split 
Conditions = { 
  RenamedAge > 40", 1, 
Aggregate)}
Dependencies = {
ID  {ID}
Name  {Name}
RenamedAge  
{RenamedAge}}

Columns = 
{(1, ID, int),
(2, Name, string),
(3, RenamedAge, int)} 

67

Name =  Aggregate 
Aggregations = { 
(GROUP BY, 
RenamedAge, Age, OLE 
DB Destination 1)}
Dependencies = {
Age  {RenamedAge}}

Columns = 
{(4, Age, int)} 

Name =  OLE DB 
Destination 1 
Database =  TargetDW 
Table =  SalesData 
Columns = {Age}

Figure 7: The MAIME graph for the Data Flow task
in Figure 6.

Table 3: Time needed for handling EDS schema
changes for the three test cases.

Time Elapsed MAIME Manual
Test Case 1 4 sec, 4 sec, 4 sec 187 sec, 159 sec, 59 sec
Test Case 2 4 sec, 4 sec, 4 sec 154 sec, 60 sec, 49 sec
Test Case 3 4 sec, 4 sec, 4 sec 23 sec, 13 sec, 10 sec

ing EDS schema changes. For user input, MAIME required
on average 4 user inputs, while manually resolving changes
required 38 user inputs on average for the third attempt
across all 3 cases. This means MAIME on average required
9.5 times less inputs for resolving EDS schema changes.

For the manual work, it took significantly more time the
first time the user had to maintain the ETL process. The
user did, however, get progressively quicker at maintaining
the ETL processes for the second and third attempt, with
the best result being from the third attempt. The number of
both mouse clicks and keystrokes showed similar results. For
these evaluations MAIME is thus able to significantly reduce
the amount of time and user input needed for maintaining
ETL processes.

In a real life scenario, a company would have to maintain
a multitude of ETL processes, which for each could take
on average 39.3 seconds to repair as our evaluation showed.
However, the timings shown for MAIME in Table 3 (4 sec-
onds) include the time to first load the ETL processes, detect
EDS schema changes, and the time the user spent on click-
ing buttons in the GUI. If there were many ETL processes,
it would still be enough to do this once. The reparation al-
gorithm of MAIME uses less than a second in all the cases,
and we thus argue that the evaluation setup actually gives
the manual process an advantage.

7. RELATED WORK
Related work exists on the topic of maintaining ETL pro-

cesses when the schema of EDSs change. The framework
Hecataeus by Papastefanatos et al. [7, 8, 9] analyzes ETL
processes by detecting changes to the schema of the EDSs

Table 4: User inputs needed for handling EDS
schema changes for the three test cases.
User Inputs MAIME Manual

Test Case 1
Keystrokes: 0, 0, 0
Mouse clicks: 4, 4, 4

Keystrokes: 23, 15, 12
Mouse clicks: 88, 85, 38

Test Case 2
Keystrokes: 0, 0, 0
Mouse clicks: 4, 4, 4

Keystrokes: 9, 9, 8
Mouse clicks: 92, 48, 45

Test Case 3
Keystrokes: 0, 0, 0
Mouse clicks: 4, 4, 4

Keystrokes: 0, 0, 0
Mouse clicks: 16, 11, 11

(called evolution events) and proposes changes to the ETL
processes based on defined policies. The Hecataeus frame-
work abstracts ETL processes as SQL queries and views
which are used in a graph to represent the activities. An ac-
tivity resembles an ETL transformation. Hecataeus’s graph
is captured by an ETL Summary which can have multiple
subgraphs for each activity. Each activity can further be
broken down, as it includes nodes or entire subgraphs for
relations, SQL queries, conditions, and uses views, e.g., for
input and output. The types of evolution events taken into
account are addition, deletion, and modification. An ad-
ministrator can annotate nodes and edges with policies for
each type of evolution event, while in MAIME policies are
provided for each EDS change type and not specifically for
each node or edge. The approach taken by MAIME would
be preferable if the administrator had to repair a lot of ETL
processes. The three Hecataeus policies dictate how ETL
processes should be adjusted when an evolution event oc-
curs: (1) Propagate readjusts the graph to reflect the new
semantics according to the evolution event throughout the
rest of the graph, (2) Block retains the old semantics, and
(3) Prompt asks the administrator to choose Propagate or
Block. Both Propagate and Prompt are similar in MAIME,
whereas their Block attempts to retain the semantics. An
extension of Hecataeus has been made for what-if analysis of
evolutions of relations, views, or queries in a data-intensive
ecosystem [6]. While MAIME models columns on edges,
Hecataeus models input and output schemata as subgraphs.

Another framework is E-ETL [14, 15] by Wojciechowski
which is also able to semi-automatically adapt ETL pro-
cesses to EDS schema changes. In order to adapt the ETL
processes, there are different methods which define how repa-
rations are propagated. E-ETL has the same three policies
as Hecataeus, with the exception of the Block policy. In
E-ETL the Block policy ignores the EDS schema change
and does not attempt to modify the graph. The E-ETL
framework has multiple ways to handle an EDS schema
change. These include Defined rules in which the admin-
istrator can define rules himself for nodes and edges; Stan-
dard rules which are the default rules used if the admin-
istrator did not define anything; and Alternative scenarios
where case-based reasoning is used to adjust the ETL pro-
cess based on solutions to similar problems experienced pre-
viously. How these algorithms are used together is not speci-
fied. Like Hecataeus, E-ETL models ETL processes through
SQL queries.

Related work also exists on how to conceptually model
ETL processes using transformations that are commonly
used in ETL processes. Trujillo et al. [13] do this by defin-
ing a small set of transformations modeled through UML
diagrams. Examples of the mechanism include Aggrega-
tion, Conversion, and Join. This is in contrast to other



frameworks, such as Hecataeus and E-ETL, where ETL pro-
cesses are described by SQL queries and views, and repre-
sented with graphs. Using transformations rather than SQL
queries can make conceptual modeling simpler and more
maintainable as each transformation has a clear responsi-
bility and provides a higher level of abstraction compared
to SQL queries, but at the cost of expressiveness. Trujillo
et al. provide a set of general ETL processes that are not
specific to any platform, while our transformations are spe-
cific to SSIS. Furthermore, instead of using UML diagrams
we use property graphs to more closely relate to the internal
graphs of SSIS. In [11], conceptual models are specified with
a kind of diagrams which then are mapped to logical models
where graphs also are used.

Business Intelligence Markup Language (BIML) [1] is an
XML dialect that can be used to generate SSIS packages. It
can be used to create templates and reusable code snippets
to make the creation of SSIS packages easier and less time-
consuming. BIML does, however, not handle changes, but
can rather re-generate packages when a change occurs.

8. CONCLUSION AND FUTURE WORK
ETL processes can be complex and time-consuming to re-

pair manually. We presented MAIME as a tool to reduce
the amount of errors and time spent on maintaining ETL
processes. To accomplish this task, we introduced and im-
plemented a graph model as a layer on top of SSIS Data
Flow tasks, which simplifies the handling of EDS schema
changes.

As we have seen in the evaluation, MAIME required 9.5
times less input from the user and was 9.8 times faster com-
pared to doing it manually with the SSIS Designer tool.
MAIME can thus ease the burden of maintaining ETL pro-
cesses.

There are a number of possible directions for future work.
The paper presents an adaptive way of handling source data
changes in ETL programs. One direction for future work is
to make MAIME more robust against the variance of source
types and change types. The adaptivity very often depends
on manual decisions made by the ETL administrator. Thus,
an interesting extension of this work is to model or formalize
the pattern of the manual decisions and predict the next de-
cisions such that the system execution process involves less
manual interruptions. Since the system starts to make auto-
matic changes to ETL programs, it is very natural that the
ETL administrators considers to “roll-back” the execution of
certain groups of ETL programs to the previous state. How
to define the transaction process in such an ETL program
and how to ensure the possibility of the roll-back action is
another direction to explore.

We have so far disregarded propagating changes to the
DW, e.g., adding a column to the relevant DW schema.
However, an administrator might want to do proper adjust-
ments to the DW in order to capture the correct semantics
of an EDS schema change. For example, when a column was
inserted in an EDS, it might be reasonable to insert a corre-
sponding column into the DW. This is another direction to
investigate. It could also be interesting to investigate how
to maintain ETL programs when the target DW is changed.

Another direction for future work is to extend the current
prototype. Currently, we extract only one SSIS Data Flow
task from the current SSIS package. An improvement would

be to extract all SSIS Data Flow tasks from each SSIS pack-
age. Furthermore, support for more SSIS transformations
could be implemented as well as support for SSIS Con-
trol Flow tasks. For example, it would be interesting to
have support for more kinds of data sources, such as XML
(where a schema can be explicitly given) and a CSV (where
a schema typically has to be inferred). We note that a few
local software vendors and IT service providers have been in
the progress of adopting and extending MAIME into their
product and service offerings.
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