
Secondary Indexing Techniques for Key-Value Stores:
Two Rings To Rule Them All

Joseph Vinish D’silva
joseph.dsilva@mail.mcgill.ca

Roger Ruiz-Carrillo
roger.ruiz@mail.mcgill.ca

Cong Yu
cong.yu@mail.mcgill.ca

Muhammad Yousuf Ahmad
muhammad.ahmad2@mail.mcgill.ca

Bettina Kemme
kemme@cs.mcgill.ca

School of Computer Science, McGill University
Montréal, Canada

ABSTRACT
Secondary indices are traditionally used in DBMS to in-
crease the performance of queries that do not rely on the
keys of the table for data reads. Many of the newer NoSQL
distributed data stores, even if they provide a table-based
data model such as HBase, however, do not yet have a sec-
ondary indexing feature built in. In this paper, we explore
the challenges associated with indexing modern distributed
table-based data stores and investigate two secondary index
approaches which we have integrated within HBase. Our
detailed analysis and experimental results prove the bene-
fits of both the approaches. Further, we demonstrate that
such secondary index implementation decisions cannot be
made in isolation of the data distribution and that different
indexing approaches can cater to different needs.

CCS Concepts
•Information systems → Point lookups; Unidimen-
sional range search;

Keywords
secondary indexing; NoSQL data stores; in-memory indices;

1. INTRODUCTION
Secondary indexing plays a key-role in addressing the per-

formance necessities of relational database management sys-
tems (RDBMS). It is instrumental in facilitating efficient
selection of a subset of the dataset based on business con-
straints by providing alternative access paths to the base
records. Its performance benefits are primarily derived from
the reduced I/O facilitated by retrieving only those data
pages that contain relevant records.

The dawn of BigData resulted in a resurgence of inter-
est in NoSQL (non-relational) DBMS, in particular, key-
value stores. Their simple data model and query interface

c©2017, Copyright is with the authors. Published in the Workshop Proceed-
ings of the EDBT/ICDT 2017 Joint Conference (March 21, 2017, Venice,
Italy) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd
4.0

allowed for easy distribution of data, and thus, scalability.
Also other typical DBMS functionality, such as transaction
management, was only implemented in rudimentary format,
leading to much less complexity compared to traditional
RDMBS. However, given the prolific success and decades of
domination of the relational model, applications started to
request the modeling and querying functionality they were
used to from RDBMS but at the same time wanted to main-
tain the flexibility and scalability of key-value stores.

Therefore, several“hybrid”data stores emerged that adapted
a relaxed notion of the “table-column” abstraction (we will
cover this further in section 2.2) with a much less restrictive
table-based data model than traditional RDBMS, suitable
for the sparse datasets that are commonly found in BigData
applications. In tandem with this table concept the query in-
terface also became more powerful, allowing, e.g., for predi-
cate search. However, answering such complex queries either
requires scanning the entire data sets or access to alternate
access paths. As a result, many NoSQL stores are trying to
implement their own notion of a secondary index.

A notable deviation in the development of key-value stores
compared to the traditional DBMS is its open source nature,
facilitating the database development community at large to
pitch in their contributions. This has resulted in various de-
sign approaches being attempted in providing a secondary
index functionality for these data stores, including HBase
[14] (which we briefly cover in related work in section 6).
However, so far, we are not aware of any in-depth study and
comparative analysis of these different approaches. More-
over, many implementations fall short on modularity. Our
analysis of index implementations of HBase shows that most
of them require significant changes to the core HBase code
instead of leveraging the existing HBase frameworks to de-
velop a pluggable module.

In this paper, we present an in-depth discussion of in-
dexing for distributed, table-based NoSQL data stores. In
particular, our paper makes the following contributions.

• We discuss two indexing strategies for distributed key-
value stores: one based on distributed tables that is
able to exploit the table model of the underlying sys-
tem for index management, the other using a co-location
approach allowing for efficient main-memory access.

• Both strategies are implemented and integrated into
HBase in a non-intrusive way.



• We provide an enhanced client interface to query HBase
tables using secondary indexing that supports both
point queries and range queries.

• We present a detailed performance metrics on various
database operations with secondary indices and a com-
parative analysis of the different approaches.

• We present a thorough analysis on the effects of data
distribution on different indexing approaches.

2. BACKGROUND

2.1 Indexing Techniques
Predicate queries that only retrieve a subset of the data

of a table can be executed through a table scan where each
record is inspected and only qualifying records are returned.
If the table is already sorted (clustered) based on the at-
tribute on which the search constraint is defined, then a full
table scan can be avoided as the matching tuples can be
found in logarithmic time.

Alternatively to a scan, special index structures can help
identify the records that qualify, and then only those records
are retrieved from the base table. Indices are defined over
one or more attributes. Such indices are called secondary
indices and are often constructed over non primary-key at-
tributes. Typically, a secondary index contains an entry for
each existing value of the attribute to be indexed. This entry
can be seen as a key/value pair with the attribute value as
key and as value a list of pointers to all records in the base
table that have this value. In centralized database manage-
ment systems (DBMS) a pointer is typically a physical iden-
tifier indicating the position of the record in the file system.
In distributed systems or more high-level implementations,
a pointer is often the primary key of the record, assuming
that a lookup via the primary key can be done efficiently.

A simple index implementation would be a system table
(inverted list) with the index attribute as primary key and
the list of record pointers as extra column. This system table
can be sorted by primary key making the lookup of a specific
attribute value fast. More common are tree-based indices,
where inner nodes guide to leaf nodes which contain the
key/value pairs. Both sorted inverted lists and tree struc-
tures are good for point queries (search on a single attribute
value) and range queries (search on a range of attribute val-
ues). A mechanism that performs very well for point queries
is a hash-table with the index attribute as key and the list
of pointers as value.

In some cases, a query can be answered directly using the
index, without having to access the base table. Typically,
index structures are effective if few records qualify the search
criteria. Through the index, these records are found very
quickly and then can be individually retrieved from the base
table. When many records qualify, it might be faster to scan
the entire table, as a scan allows reading tuples in batches
(e.g., all on a given block) while using an index not only
first requires the index access but the individual retrievals of
the qualifying tuples might result in many random accesses
across the blocks of the base table. In fact, if every block
contains a qualifying record, an index will not reduce the
I/O costs for bringing blocks into main memory.

2.2 Table-based NoSQL DBMS

Personal Office
Row	Key Name Res-Phone Office-phone Dept
al23 John 321-124-7894 323-551-7452 1
ke77 Mark 321-435-7821 323-907-7873 1
liu7 Sally 321-513-3212 323-875-7681 2
pat8 Sean 321-542-5521 323-423-7911 3
smi1 Zoe 321-789-9013 323-791-4231 3

Column	families	and	associated	
column	names	under	them

Row	keys	
are	sorted

Cells	are	the	most	fine	grain	unit	of	data

Figure 1: Key-value Data Model [16]

Although NoSQL DBMSes have been around since the
1960s [18] employing hierarchical, network, graph and other
semi-structured data models, the dawn of Big Data in the re-
cent decades and the associated processing frameworks have
spawned a new breed of NoSQL DBMS, key-value, and de-
rived from there, table-based data stores. The resurgence of
interest in NoSQL DBMSes was primarily attributed to the
rigid structural requirements of relational DBMS, such as
the need to define the layout of the data in advance. Such
restrictions did not fit well with the processing needs of many
modern Big Data applications, prompting the search for al-
ternative data models. Further, scalability requirements ne-
cessitated the distribution of data and computation. Widely
used in practice are now data stores with a flexible table-
based data model. Examples are Bigtable [11], Cassandra
[17] and HBase. In the following, we describe the general
structure along HBase as the others are quite similar.

2.2.1 Data Model
Similar to the relational database data model, HBase ag-

gregates related data into tables. Each table is comprised of
multiple rows. Each row contains a unique row key (or pri-
mary key), one or more column families and columns under
them. The table is (logically) sorted by row key. In general,
each specific value in the columns is defined as a cell, and
can be referenced uniquely by the combination of row key,
column family, and column.

An important characteristic of the data model is that not
all columns need to be provided for a row, and new columns
can be added on the fly. Column names are stored along with
the associated value in the database. Such tables can con-
ceptually be sparse as a given column need not be present
in many of the rows. Also, column values are treated as
byte arrays and clients are responsible to perform the proper
data type conversion. This dynamic structure is a distin-
guishing characteristic compared to RDBMS where the table
structure is rigid, typically defined ahead and maintained as
meta-table information.

Fig. 1 shows an HBase table containing employee informa-
tion, with two column families: Personal with columns Name
and Res-Phone, and column family Office with columns
Office-phone and Dept.

2.2.2 Client API
While not providing a full SQL interface, HBase and other

table-based NoSQL DBS provide reasonably sophisticated



call level interfaces. The most common data retrieval is the
lookup method that requires the row key as input. HBase has
internal index structures that very efficiently find a record
based on its row key. Further, the relational equivalent of
projection is accomplished by providing the lookup method
with the list of column families and columns of interest.

Apart from lookup by primary key, HBase also provides a
scan operator that can take as input filters similar to SQL
predicates. HBase then returns all records that satisfy the
filter. Queries over several tables, however, are not provided.
A scan operation on a range of row keys is relatively efficient
as HBase sorts a table by primary key. However, filters
over non row key attributes require a scan over the entire
table to find the matching records. There are first attempts
of providing secondary indices but none has been officially
integrated. Details are discussed in section 6.

Writes and Updates are the same from the perspective
of the client API. They require as input the row key, the
column families and column names to be updated and their
corresponding values. Deletes require the row key of the
record impacted, and also the column family names/column
names to be deleted. This allows specific attributes to be
deleted instead of the entire record [14], a necessity when
the data model allows the table to be sparse. Deletes in gen-
eral do not translate to physical deletes. Instead, a delete
marker is used to indicate that the data was requested to
be removed. Retrieval operations will encounter the delete
marker and skip that record. Storage optimization opera-
tions are often performed in a periodical manner which take
care of physically removing the deleted data.

2.2.3 Distributed Architecture
In order to handle very large tables, most data store im-

plementations split the rows of a table into multiple shards,
called regions in HBase. Each region can then be served by
one of the nodes in the DBS cluster, referred to as region
server in HBase, and each region server can host several
regions, also from different tables. In principle, this is simi-
lar to the horizontal partitioning method employed by large
scale relational DBMS.

The decision of which shard a particular row belongs to
is often determined by a partitioning function over the row
key. The two common partitioning approaches are based
on hashing of the row key or on the range of the row keys.
The later is an especially popular approach when locality of
associated rows are desirable (such as retrieving over a small
range of row keys). Such requests can often be processed
by searching just one shard. HBase follows this approach.
When a region becomes very large, the region server can
initiate a region split, where the rows are divided into two
equal sized daughter regions each covering a sub-range of the
rows. One of the regions will then typically be reassigned to
a different region server.

HBase also performs vertical partitioning, as each column
family is stored in a different partition, referred to as store.
Such vertical partitioning approaches have been known to
provide better performance [8] when reading only a subset
of columns, a concept popularized by columnar DBMS [7].
To utilize this approach, column families are chosen so as to
bundle columns that are frequently accessed together.

There are two fundamental approaches to cluster design.
In the first approach, a dedicated node acts as a master.
This is the case with Bigtable and HBase. The master server

manages meta-information, is responsible for the allocation
of regions to region servers and balances the load in the
HBase cluster. Clients only communicate with the master to
retrieve the meta information (e.g. the location of regions)
but they perform data transfer directly with region servers
so that the master does not become overloaded. Master
failures are handled by a monitoring system external to the
DBMS cluster.

In the decentralized approach, there is no master node to
perform explicit coordination, but each node in the cluster
has identical functionality and can take up the role of a coor-
dinator. Clients connect to any node in the cluster. Apache
Cassandra follows this approach of cluster management.

2.2.4 Storage Structure
Many table-based NoSQL data stores follow a storage

approach first proposed in the Log-Structured Merge-Tree
(LSM-Tree) [22]. In this approach, the table abstraction
has an in-memory component and a persistent storage com-
ponent. The in-memory component is used to store the most
recent updates of data. Additionally, these updates are also
recorded in the database logs for durability, similar to tra-
ditional DBMS. When the in-memory component becomes
very large, this data structure is persisted in an immutable
format into the disk. Therefore, at any time a table might
be made up of one in-memory component and multiple im-
mutable disk components. A search for a row key is first
performed on the memory component followed by the disk
components. A background process can periodically scan
and merge multiple disk components of a table into one
larger data structure in the disk to reduce the amount of
structures to be searched during a read operation.

In HBase terminology, the in-memory component is called
memstore, and the persistence storage is in Hadoop file sys-
tem (HDFS) [9]. HDFS is a fault tolerant distributed filesys-
tem that is designed to run on commodity hardware and is
optimized for large datasets. It forms an integral part of the
Hadoop ecosystem, providing storage functionality for many
distributed applications such as HBase. When the memstore
starts filling up, the data is flushed to HDFS where it is
stored as immutable HFiles. Thus, a store is a collection of
memstore and the HFiles of the corresponding column fam-
ily. The background process merging these HFiles is referred
to as compaction.

3. INDEXING APPROACHES
Secondary indexing becomes complicated in a distributed

DBMS. As discussed in section 2.1, a straightforward mech-
anism stores the inverted list in a separate table and treats
it as a “system table” automatically maintained by the in-
dex maintenance modules. System table and base table are
treated as independent units by the DBMS and thus, in a
distributed setting, can reside on different nodes. A second
approach co-locates index and base table in such a way that
the index entries for a record are guaranteed to reside on
the same node as the base record itself. In the following
sections we will discuss the relevance and the general design
approach to both these forms of secondary indexing along
with their pros and cons.

3.1 Table-based Secondary Indexing
In the table-based approach, the secondary index can be

viewed as special system table whose row key is the sec-



User_Info table
row key name …
al23 John …
ke77 Mark …
kit9 John …

secondary index
row key user	id
Alex zik1

John
al23
kit9

Justin rid1

Node	1
User_Info table

row key name …
liu7 Sally …
mel2 Mark …
nei3 Nancy …

secondary index
row key user	id

Mark
ke77
mel2

Mow pet9
Nancy nei3

Node	2
User_Info table

row key name …
pat8 Sean …
pet9 Mow …
rid1 Justin …

secondary index
row key user	id

Sally
liu7
see1

Sean pat8
Zoe smi1

Node	3
User_Info table

row key name …
see1 Sally …
smi1 Zoe …
zik1 Alex …

Node	4

Figure 2: Table-based Secondary Index

node	1

node	2

node	3

1.	Retrieve	base	table	row	keys	
using	secondary	attribute’s	value

2.	Retrieve	base	table	
rows	using	the	row	keys

base	table
secondary	index

Cl
ie
nt

Cl
ie
nt
	A
PI

node	4

Figure 3: Querying Using a Table-based Secondary
Index

ondary attribute’s value and an extra column contains the
list of row keys of the base table records that contain this
secondary attribute’s value. By using the DBMS’ table man-
agement module also for index tables, they can be parti-
tioned and distributed across the cluster in the same man-
ner as base tables. Fig. 2 shows a concrete example with a
base table User_Info that is partitioned across 4 nodes, and
a secondary index for attribute name, which is distributed
across three of the nodes. Notice how the secondary index
entry for Mark, which is stored in node 2, points to two base
table records, one in node 1 and another in node 2.

Fig. 3 shows the control flow for a read request that utilizes
such a table-based secondary index. Read requests based on
a secondary attribute’s value are sent directly to the node
responsible for the secondary index entry corresponding to
that value. This node can then either return the keys of the
base table records to the client which can then lookup each
of the base table records by key (as shown in fig. 3) from
the corresponding nodes, or the node itself can read the
base table records and send the results back to the client.
As can be inferred, this is a four-hop process that leads to
four consecutive message exchanges (the retrieval of the base
records from different nodes can be done in parallel).

An important feature is that base table or index partitions
with no relevant data are never involved. The index lookup
is only sent to the index partitions that maintain attribute
values that are requested: for a point query (e.g., name =
‘Mark’) this will be one partition, for a range query (e.g.
name LIKE ‘M%’), the index entries might span more than
one partition. After that, only the nodes that have base
partitions with matching records are contacted.

If the number of matching base table records is fairly
small compared to the total number of partitions, this is
an efficient approach as it avoids communication messages
to nodes that have no data to return. However, if the base
records to be returned span most of the partitions, there
is little gain in terms of message exchange compared to a
table scan. This is particularly true, as we have the addi-
tional round of index access, that might itself contact many
partitions in case of large range queries.

Whenever a record is inserted into the base table or an
indexed attribute of a record is updated, the corresponding
secondary index (indices) must be updated. These updates
involve non-negligible communication overhead, as in a large
cluster, most secondary index entries will be located in a
different node than its base table record. This can lead to
contention in index updates, as with non-unique and skewed
data distributions, the probability of multiple concurrent
updates on the same secondary index entry will rise, making

the node handling that index entry a hot spot.
A big advantage of this approach is that it is easy to im-

plement as it can exploit the table management mechanisms
already provided by the DBMS.

3.2 Co-located Secondary Indexing
A co-located index adheres to the shared nothing architec-

ture [24], a design paradigm that is followed by most mod-
ern distributed DBMS, owing to its overall performance and
scalability benefits. In this approach, the secondary index
entries are stored on the same node as the corresponding
base table records. Each node is therefore responsible for
maintaining its portion of the secondary index. Fig. 4 shows
a co-located secondary index for the same base table as in
fig. 2. Notice how the secondary index has two entries for
the value Mark, one in node 1, the other in node 2.

The control flow for a read request using a co-located sec-
ondary index is shown in fig. 5. A read request has to be
multicast to all the nodes in the system that contain at least
one partition of the base table as any partition can contain
a matching record, making it necessary for all the parti-
tions to search their co-located portion of secondary index
entries. If a node finds the value in its portion of secondary
index, it will lookup the corresponding records in the local
base table partition and return them to the client. As the
secondary index search and base table retrieval steps are ex-
ecuted locally, a read request in this design has two-hops,
as the individual searches on partitions can be executed all
in parallel. This is, in principle, better than the four-hop
cost of table-based indexing. However, if a table has many
partitions across many nodes, the message and index lookup
costs on all index partitions can be very high. If at the end
only few records are returned, the benefits of co-location in
terms of message rounds might not outweigh the additional
message and processing costs.

A general advantage of this approach compared to a table-
based index is that the writes to the base table are less ex-
pensive, as the secondary index entries are updated locally,
without the communication overhead between the nodes.

A potential disadvantage is that it cannot reuse the table
management module of the underlying DBMS but has to be
implemented from scratch. Nevertheless, this allows plenty
of opportunity for optimization.

3.3 Choosing The right approach
Table 1 shows a summary of the various costs associated

with both index types in a cluster of p partitions.
From the table and our previous discussion, we can derive

that the table-based approach will be beneficial when there



User_Info table
row key name …
al23 John …
ke77 Mark …
kit9 John …

secondary index
row key user	id

John
al23
kit9

Mark ke77

Node	1
User_Info table

row key name …
liu7 Sally …
mel2 Mark …
nei3 Nancy …

secondary index
row key user	id
Sally liu7
Mark mel2
Nancy nei3

Node	2
User_Info table

row key name …
pat8 Sean …
pet9 Mow …
rid1 Justin …

secondary index
row key user	id
Justin rid1
Mow pet9
Sean pat8

Node	3
User_Info table

row key name …
see1 Sally …
smi1 Zoe …
zik1 Alex …

Node	4

secondary index
row key user	id
Alex zik1
Sally see1
Zoe smi1

Figure 4: Co-located Secondary Index

node	1

node	2

node	3

Query	using	secondary	
attribute’s	value

base	table
secondary	index

Cl
ie
nt

Cl
ie
nt
	A
PI

Retrieve	base	table	rows

Lookup	base	table

node	4

Figure 5: Querying Using a co-located Secondary
Index

Nodes to be contacted
Type Hops unique base row base rows > p

table-based 4 2 (1 index / 1 base) 1+ + p
co-located 2 p p

Table 1: Index type overheads for read requests

are many partitions and queries only return few records as
this will lead to few messages and low processing costs as
only a few relevant partitions are targeted. In contrast, co-
location will be beneficial when there are generally few par-
titions or queries return records from most partitions.

We can also consider some advanced use cases for sec-
ondary indices, such as the ability to use two indices simul-
taneously to satisfy conjunctive queries. This can be per-
formed easily in the case of co-located indices as the index
rows for both the indices will be in the same node (as the
node responsible for the base table partition). However, in
the case of the table-based approach, the DBMS will have
to bring the various index rows of a base table record from
different nodes together to perform this operation.

Teradata, a very successful commercial parallel RDBMS,
follows the co-located secondary indexing approach for at-
tributes with non-unique values, while using a strategy sim-
ilar to the table-based approach for attributes that have
unique values [25].

4. SECONDARY INDEXING FOR HBASE
We integrated both indexing approaches into the HBase

data store. We used HBase tables (HTable) for the table-
based index, and we were able to reuse most of the func-
tionality already provided by HTable. For the collocation
approach, we implemented our own solution as significant
changes to the underlying HTable distribution would have
been necessary to exploit it for collocation, and we did not
want to change the HBase source code.

Among the HBase recommendations to tackle indexing
needs [5], only the co-processor framework [20] option can
keep track of updates to base table near real-time. The
co-processor framework allows code to be injected into the
system without changing the base code, akin to triggers,
stored procedures and aspect-oriented programming. It is
therefore suited for developing a modular and pluggable in-
dexing solution. We also extend the HBase client interface
to allow for the creation of indices and index-based queries.

4.1 Table-based Secondary Index
A table-based index for a secondary attribute is imple-

mented via an HTable. Each distinct attribute value is rep-
resented as one row with the attribute value as row key. The

Mark {	ke77, mel2	}

prow	key

user_info_personal_name_idx
i

Sally {	liu7, see1	}

Figure 6: Structure of table-based index

index table has one column family i with one column p. The
value stored under p is a set of row keys of the base table
records, in the serialized form of a java TreeSet [10]. The
TreeSet is based on the Red-Black tree data structure, and
costs only θ(logn) for inserts, updates and deletes, where
as a list-based structure would facilitate an O(1) insert but
costs θ(n) to perform updates and deletes [12].

Fig. 6 shows two example rows for an index created on the
name column of the personal column family of the user_info
table. The row keys of the content table are the userids of
the user information stored in the table. There are two rows
in the index table. The first row’s key ‘Mark’ is a value of the
name column from the user_info table, and the set of two
userids associated with it are the row keys of the records in
the user_info table with name ‘Mark’.

It must be noted that, in this approach, a write in the
base table can also result in a write in the index HTable,
thereby increasing the I/O of the overall write operation.

4.1.1 Querying Using the HTable Index
In our implementation, it is the client who decides whether

a query should use an existing index or whether HBase
should perform a standard table scan. For that purpose
we extended the HTable interface of the HBase client API.
We have created a new query method that has the same
input parameters as the default query (table name and fil-
ter predicates that select specific rows), plus an additional
parameter that indicates the column name that is indexed.

Query execution is then controlled through the client. For
instance, if the filter predicate is a point query (e.g., name
= ‘Mark’), the HBase client library first sends a lookup re-
quest to the HTable containing the secondary index, to find
the secondary entry with the requested attribute value as
row key. This query returns the serialized TreeSet of the
base table row keys associated with this secondary index
value. The set of returned row keys is then used by the
client library to perform a batched lookup for all matching
rows on the base table. If the base table has many regions,
one batched lookup is sent to each region that contains at
least one matching row. The client library then collects all
results and returns them to the client application.

Support for range queries is implemented in a similar fash-
ion. In this case the filter contains the start and end range of



the secondary attribute to be constrained. The client library
first translates this to a range query on the secondary index
with row keys in the search range. This query might be sent
to one or several regions of the HTable index. Each region
will return the qualifying TreeSets. Once the row keys of all
matching records are determined, the procedure is the same
as for a point query where the batched lookups are sent to
all relevant partitions of the base table, and the results are
assembled before return to the user.

Note that if a query contains predicates for indexed at-
tributes and predicates for attributes which have no indices,
additional processing is required. There are many ways to
achieve this. We first determine the row keys of rows that
match the attributes that are indexed. We then push the
remaining filters down to the HBase server by the means of
modified batch lookups. We are in the process of optimizing
this rudimentary approach.

4.1.2 Region Management
The split or merge of base table regions or index table re-

gions has no impact on index management, as the approach
only works with row keys, and HBase automatically redirects
lookups to the appropriate regions. The split of a table re-
gion is independent of the split for an index region as for
HBase, these are two different HTables. Thus, region man-
agement is completely transparent and orthogonal to index
management.

In general, HBase decides automatically when to split re-
gions and on which nodes to put them. Thus, in princi-
ple, the index designer does not need to be concerned at
all with region management. However, HBase allows the
user to specify multiple regions at HTable creation time and
this might be useful when creating indices in order to evenly
distributed the load across region servers, and to prevent
a small number of region servers becoming a hot spot for
index lookups.

4.2 Co-located In-Memory Secondary Index
In the co-location approach, each base table region (parti-

tion) has a collocated index that has index entries covering
exactly the rows in the base table region.

Although it is possible to create an HTable with exactly
this index content, HBase does not provide any straightfor-
ward means to enforce that this HTable-based index parti-
tion would be collocated with the corresponding base table
region. This is because, by default, HBase considers these
as independent HTables and decides individually on their lo-
cation. We would need to modify the HBase code to imple-
ment a custom load balancer, which we did not consider an
attractive solution. Instead, we implemented our propriety,
optimized index structure and embedded it transparently
into the HBase system using the co-processor framework.

Our index structure has been motivated by various as-
pects. First, we decided to focus on main-memory indexing.
That is, the entire index partition is kept in main memory
and only persisted during a region shutdown. As a result,
index maintenance is very fast and can exploit optimized
main-memory data structures. Our motivation is that we
are looking at applications that use HBase’s capability to
scale to many nodes in order to keep the working data set
in main memory and avoid expensive I/O. In such settings
it should be feasible to keep index structures in memory,
too. Thus, our co-located index is memory resident and is

SallyMark

Mark

Sally

{	ke77, mel2	} {	kit9, liu7	}

HashTable Index List	of	secondary	values B-link	tree

TreeSets for	each	secondary	index	value

Figure 7: Abstract Layout of the Co-located In-Memory
Secondary Index

persistent only during a region shutdown.
Second, we wanted to support both point and range queries,

and make updates very fast. While hash table based data
structures are capable of doing point lookups in θ(1), they
cannot be used for range queries. B+-trees, on the other
hand, are capable of performing range queries efficiently as
they store the secondary index values in a logically sorted
order. But point queries have a cost of θ(n logn). Therefore,
we create a hybrid data structure that is a combination of a
hash table and a variation of B+-tree to provide the best of
both worlds. As before, the keys to these data structures are
the secondary index values themselves. We store the set of
base table row keys associated with a secondary index value
using a TreeSet, exactly as we did in the table-based design.
Each base table region has its own secondary index parti-
tion that references only the base table rows which it serves.
Our tree-index structure is based on Blink-tree, a variation of
B+-tree proposed in [19] and stated to have the highest con-
currency and overall optimal performance according to [15,
23]. For the sake of brevity, we encourage the avid reader
to refer to their original work for more details.

Fig. 7 shows an example data of the in-memory index
data structure. The set of row keys associated with each
secondary index value is stored in a TreeSet. The references
to the TreeSets are stored in the hash table as well as the
Blink-tree. Point queries can be easily satisfied by hash ta-
ble lookups. The hash table also provides faster access to
TreeSets for updates and deletes. However, Blink-tree can
facilitate range queries based on the secondary index value.

4.2.1 Querying Using the Co-located Index
The client API for using the co-located index is similar

to that of the table-based index. The internal execution
flow, however, is more similar to the one for native HBase
table scans than for table-based indexing. When the client
API receives a query that wants to use a co-located index, it
sends a special request containing filter conditions contained
in the query to all the regions of the base table. These special
requests are sent in parallel so that the execution across all
regions can execute concurrently1.

At the server side, the special request is directed to a
co-processor method that performs a lookup over the hash-

1Note that the native HBase implementation sends the
query to one region after the other not allowing for simulta-
neous scans across all regions



table portion or a range query over B+-tree portion of the
memory resident secondary index structure associated with
the base table region to retrieve the base table row keys.
These row keys are used to fetch the base table rows from the
corresponding region locally. Queries that contain complex
filters that span attributes with index and attributes without
index, can be easily handled with co-located indices. The
indices are used to determine the row keys of rows that fulfill
the search criteria on the indexed attributes. Then, the base
table is accessed to retrieve those rows and return only those
that fulfill the remaining criteria on the other attributes.

4.2.2 Persistence, Recovery and Region Splits
A major challenge in main memory based database sys-

tems is the issue of backup and recovery. There is the
dilemma of what happens to the data in memory when a
region is shutdown or if it suffers a crash. Main memory
database systems depend on some fast logging mechanisms
to permanent storage in order to overcome such issues [13].
This, however, could introduce non-negligible delays into
processing that can threaten the performance benefits of
a memory based database. For our memory resident co-
located index, we rely on the fact that a completely lost in-
dex can be recovered by rebuilding it from scratch by scan-
ning the base table region. This, being a local operation,
can be accomplished with reasonable performance overhead.
Given that crashes are not frequent and only always affect
one node, we believe that these recovery costs are reasonable
and worth the improved performance during runtime.

However, as the index has to be co-located with each base
table region, we need to handle region splits to ensure that
the memory resident indices are also split accordingly. This
is accomplished by having the coprocessor listen to region
splits. Upon the initiation of a region split it will create two
new indices from the original in-memory index data struc-
ture and persist them into HDFS as separate files. The re-
gion server will then shutdown the now split region (which
will not exist anymore). The new two daughter regions are
then brought up (by possibly different region servers) and
the coprocessor instances attached to them will load the cor-
responding index files from HDFS into main memory.

In similar spirit, we persist the indices to HDFS storage
during regular region shutdown so that they can be restored
without having to scan the base table region. We do so, be-
cause HBase’s load-balancing might determine that regions
have to be moved. For such moves, it will be faster to per-
sist and transfer the index than re-creating it from scratch
at the new region server.

5. EXPERIMENTS
For experimental setup, we used a cluster of nodes each

with IntelR© PentiumR© Dual-Core CPU G2020 @ 2.9GHz ,
8GB 1333MHz RAM, 500GB SATA-2 HDD, running Ubuntu
12.04.4 LTS 64-bits. The nodes are connected together using
a 1 Gbps switch. Four of the nodes are configured as HBase
Region Servers, also running HDFS Data Nodes. One node
is setup for running HMaster and HDFS Name Node. An-
other node was used for running the client processes. We
used HBase-0.96 and Hadoop-1.2 for the test setup.

In order to understand the impact of the distribution of
secondary indexed attribute’s values on performance, we

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

200,000 500,000 1,000,000 2,000,000 3,000,000 4,000,000

Average	time	per	non-batched	put

tbl-index	:	zipf tbl-index	:	unif coloc-index	:	zipf
coloc-index	:	unif no-index	:	zipf no-index	:	unif

μs

number	of	records

number of	threads	=	4

Figure 8: Average time per non-batch put

used both Uniform distribution as well as Zipfian2 distri-
bution to generate different test datasets. The uniform dis-
tribution (over the size of the number of records in the table)
ensures that the values are highly distinct. Zipfian on the
other hand produces values of a variety of selectivity as the
frequency of occurrence of the values vary and hence rep-
resents skewed data sets. We used the scrambled Zipfian
distribution module in YCSB3 for our experiments.

To reduce any interference from HBase compactions and
java old generation garbage collection [21] on our test met-
rics, we disabled HBase automatic compactions and increased
the jvm heap. Additionally, test metrics were computed by
averaging over five runs.

5.1 Non-Batch Writes
To measure the impact on write to base table, we used

a client that performed non-batched Put using four threads
into an empty table, incrementally adding up to four mil-
lion row keys and associated secondary index values. We
logged the average time taken for every hundred thousand
records as the table grew in size to understand the impact
of a growing table size. As can be seen in fig. 8, the memory
resident co-located index does better than the table-based
implementation for both uniform and Zipfian distributions.
The performance overhead of co-located index is between 9%
to 15% as the table size increases. However, for table-based
implementation the performance penalty is almost 125% for
uniform distribution. This is to be expected as every Put
is now in effect replaced by two Puts. For Zipfian distri-
bution, the performance penalty starts at 300% for 200,000
records and becomes 600% by a million records indicating
severe performance issues. This is attributed due to the
skewed representation of data in Zipfian distribution result-
ing in more contention as well as larger secondary index
entries which takes even more time to process, compound-
ing the issue. However, this is not an issue for the co-located
index as each region processes and updates its secondary in-
dex entries locally, causing less contention as the index en-
tries for the same secondary attribute value are distributed
across multiple regions. Further, in-memory processing is
also faster over HTable, reducing any chance of contention
and giving advantage to co-located index.

To measure the scalability of processing, we vary the num-
ber of client threads. As can be seen in fig. 9, all except the

2https://en.wikipedia.org/wiki/Zipf’s law
3https://research.yahoo.com/news/yahoo-cloud-serving-
benchmark/



0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

2 4 8

Average	time	per	non-batched	put	with	different	
number	of	threads

tbl-index	:	zipf tbl-index	:	unif coloc-index	:	zipf
coloc-index	:	unif no-index	:	zipf no-index	:	unif

μs #records inserted	=	4	million

number of	threads

Figure 9: Average time per non-batch put for different num-
ber of threads

1

10

100

1000

500,000 1,000,000 2,000,000 3,000,000 4,000,000

Average	time	per	record	using	batch	puts

tbl-index	:	zipf tbl-index	:	unif coloc-index	:	zipf
coloc-index	:	unif no-index	:	zipf no-index	:	unif

μs

number	of	records

number of	threads	=	1

Figure 10: Average time per record for batch put

0
2
4
6
8

10
12
14
16
18
20

500,000 1,000,000 2,000,000 3,000,000 4,000,000

Average	time	per	record	using	batch	puts

coloc-index	:	zipf coloc-index	:	unif
no-index	:	zipf no-index	:	unif

μs

number	of	records

number of	threads	=	1

Figure 11: Average time per record for batch put, co-located
index vs no index

table-based Zipfian scales well, giving the optimal perfor-
mance at four threads, where each region server is occupied
simultaneously. We observe that the table-based Zipfian fail
to scale owing to the contention as discussed before.

5.2 Batch Writes
Further, we performed the same experiment, this time

with batched Put, which is the most efficient way of data
loading in HBase. We used a single thread and batches of
100,000 records. From the results in fig. 10, we can see that
the co-located index does far better than table-based index-
ing. Co-located indexing still has about 95% penalty. This
can be expected because, with batched Puts, inefficient net-
work traffic is reduced, and the only performance bounds is

0

0

0

1

10

100

1,000

10,000

200,000 500,000 1,000,000 2,000,000 3,000,000 4,000,000

Average	time	per	read

tbl-index	:	zipf tbl-index	:	unif coloc-index	:	zipf
coloc-index	:	unif no-index	:	zipf no-index	:	unif

m
s

number	of	records

number of	threads	=	4

Figure 12: Average time per read using secondary index

0.001

0.01

0.1

1

10

100

1000

200,000 500,000 1,000,000 2,000,000 3,000,000 4,000,000

Average	time	per	read	chart

tbl-index	:	zipf tbl-index	:	unif
coloc-index	:	zipf coloc-index	:	unif

m
s

number	of	records

number of	threads	=	4

Figure 13: Average time per read using secondary index

0

1

2

3

4

5

6

1 2 3 4 5 10

Average	time	per	read

tbl-index coloc-index

m
s

records	per	secondary index	value

number of	threads	=	4
uniform	distribution
table	size	=	1	million

Figure 14: Average time per read using secondary indexed
attributes at varying selectivity

by the update to the base table and index itself. While table-
based Zipfian continues to show deteriorated performance,
what is intriguing is that the performance penalty of table-
based index with uniform distribution is also very severe.
The reason for this is that, though the client uses batch mode
for performing Puts, the coprocessor architecture of HBase
results in the coprocessors being invoked once per each Put,
dampening the benefits of batched approach. The coproces-
sor is therefore forced to update the index HTables using
individual Puts. Fig. 11 shows the same results without
including table-based implementation for better scalability.

5.3 Point Reads Using Secondary Indices
Point reads are performed using the indices created on

secondary attributes and compared against the näıve HBase



0

1

2

3

4

5

6

7

1 2 4 8

Average	time	per	read

tbl-index coloc-index

m
s

number	of	read	threads

records	per	secondary	index value	=	1
uniform	distribution
table	size	=	1	million

Figure 15: Average time per read using secondary indexed
attributes with varying number of threads

alternative, the scan operation. The scan operation results
in all of the region to be read. We used tables with different
number of records to better measure the variance in perfor-
mance as a function of table size. A client with 4 threads is
used to issue the read requests. The values for secondary in-
dexed attributes are drawn from the same distribution used
to load them into the tables to perform random reads.

The results are shown in fig. 12. For better scale, just
the comparison of the two indexing approaches is shown
in fig. 13. We can see that all the index implementations
provide better performance. For uniform distribution, the
memory resident, co-located index performance increases
from 77 times to 1280 times as the table size grows from
200,000 to 4 million. The performance benefits for co-located
index for Zipfian stays around 21%. This is because with
Zipfian, there are more records for popular values, and this
results in more processing and data transfer. However, even
in such cases the benefit of having the index is very evident.

Table-based Zipfian shows the least improvement, owing
to the fact that a large number of records will have to be read
from all the region servers. Hence retrieving the row keys
first and then querying the base records using them turns
out to be costly across the network hops. However, table-
based index seems to do better with Uniform distribution.
It gives 100 to 1400 times better performance, outdoing even
the memory resident co-located index implementation.

To analyze this further, we next ran the test case for uni-
form distribution, varying the number of records per sec-
ondary index value. The results shown in fig. 14 shows that
as the number of records increase, the table-based index
looses its advantage over the co-located one. This is because
with increase in number of records to be retrieved from the
base table, the table-based implementation will likely has to
interact with all the region servers, a scenario in which the
co-located index will do better due to the reduced number of
hops in the overall read request due to its broadcast nature.

We also analyzed the impact of concurrency by varying
the number of read threads while keeping the number of
base table records per secondary index value at 1. From the
results in fig. 15, we can see that co-located index can do
better at lower concurrency, but as the number of threads
increases, table-based index starts doing better. This is be-
cause, at small workloads, the overhead of broadcast in co-
located implementation does not weigh-in into performance,
while it also benefits from the reduced request rounds. But
at higher concurrency, this overhead starts to come into play.

0

2

4

6

8

10

12

0 50,000 100,000 150,000 200,000

tbl-index coloc-index no-index

se
co
nd

s

range

number of	threads	=	1
table size	=	1	million

Response	time	for	range queries	in	uniform	distribution

Figure 16: Response time for range queries in uniform dis-
tribution

0

2

4

6

8

10

12

0 50,000 100,000 150,000 200,000
tbl-index coloc-index no-index

se
co
nd

s
range

number of	threads	=	1
table size	=	1	million

Response	time	for	range queries	in	Zipfian	distribution

Figure 17: Response time for range queries in Zipfian distri-
bution

Therefore on doing detailed analysis on the performance of
read queries, one can conclude that table-based implemen-
tations are better choice for indexed attributes with near
unique distribution, while co-located implementations pro-
vides better performance when the secondary index distri-
bution tends to be more non-unique.

5.4 Range Queries using Secondary Indices
To test range queries, we chose a single region setup in the

interest of fairness, as HBase scans one region at a time in
contrast to our parallel approach. Fig. 16 shows the perfor-
mance for uniform distribution and fig. 17 shows the same for
Zipfian distribution. In both distributions, the memory res-
ident co-located index seems to outperform the table-based
implementation. This is in concurrence to our observation
in section 5.3 where the co-located index fairs better when
there are many records to be returned.

Further, as the range increases, the performance advan-
tages of secondary indices decrease and beyond some range,
it becomes an overhead to use the index. This threshold
seems to appear at about the range of 80,000 (8% of records
in the table.). Beyond this range, scanning the base table
region directly is beneficial over using the secondary index.

6. RELATED WORK
As stated in section 3.3, Teradata follows a co-located in-

dexing approach for non-unique attributes and a re-distribution
of index entries for unique attributes. However, in Teradata,
row distribution (for non co-located index entries as well as



base table records) is accomplished via automatic hashing of
the attribute values [25]. While this leads to ease of imple-
mentation and maintenance of table and index structures,
the downside is there is no locality of associated attribute
values due to hashing, and operations such as range searches
will have to be performed in all the nodes.

ITHBase [3] is an open source implementation developed
by modifying base HBase source code to include transac-
tion and secondary index support. Their implementation is
similar to our table-based indexing solution.

IHBase [2] is an in-memory secondary indexing solution
for HBase, quite similar to our own in-memory co-located in-
dexing solution. By modifying core HBase, only the portion
of the data in disk is indexed and the contents of the mem-
store is searched completely. The index is built from scratch
by scanning the region every time it is brought online.

Culvert [1] is a secondary index implementation similar
to our table-based approach. However, it seems like they do
their index table updates via modified client side code which
needs to be used to perform data loading.

Lily [4] is a cloud-scale repository for social content ap-
plications that uses HBase for data storage and Solr [6] for
indexing needs. Their indexing engine therefore resides out-
side the HBase ecosystem.

For the sake of brevity, we have covered only the variants
of HBase indexing implementations that are popular in liter-
ature. In our implementation, we focused on leveraging the
flexibility of the coprocessor framework over the approaches
that required modification to core HBase classes. This has
the advantage that existing applications need not be mi-
grated to perform index maintenance. Further, our analysis
demonstrates that either of the indexing approaches could
be the optimal solution depending on the data distribution.

7. CONCLUSION & FUTURE WORK
In this paper we described the challenges associated with

indexing in distributed DBMS and provided two implemen-
tations for HBase that works with less intrusion into the core
HBase source code. Our indexing solutions can work with
point queries as well as range queries. Further, we provided
a very detailed analysis of how different data distributions
warrant different indexing approaches and demonstrated a
case for both implementations. Our results show that there
is clearly a benefit to having secondary indices in HBase,
and that they can be often built with reasonable perfor-
mance overhead. Although there has been some prior works
to achieve secondary indexing in HBase, our work have been
more detailed and insightful about the various alternatives
and clearly shows that there is no one-stop solution to sec-
ondary indexing needs in HBase.

For our future work, we are exploring on how to use End-
Point coprocessors to re-build secondary indices for batch
processing-only type of workloads where real-time consis-
tency of index structures are not necessary. This approach
is also common in large relational databases where the in-
dices are dropped during bulk loads and rebuilt after the
data loads are completed. A key challenge would be how to
tackle the client reads while indices are being rebuilt in a
less intrusive manner.

8. REFERENCES
[1] Culvert.

https://github.com/booz-allen-hamilton/culvert.

[2] IHBase. https://github.com/ykulbak/ihbase.

[3] ITHBase. https://github.com/hbase-trx/
hbase-transactional-tableindexed.

[4] Lily. http://www.lilyproject.org/.

[5] Secondary Indexes and Alternate Query Paths. http://
hbase.apache.org/0.94/book/secondary.indexes.html.

[6] Solr. http://lucene.apache.org/solr/.

[7] D. J. Abadi, P. A. Boncz, and S. Harizopoulos.
Column-Oriented Database Systems. VLDB, pages
1664–1665, 2009.

[8] D. J. Abadi, S. R. Madden, and N. Hachem.
Column-Stores vs. Row-Stores: How Different Are
They Really? In ACM SIGMOD, pages 967–980, 2008.

[9] D. Borthakur. HDFS Architecture Guide. http:
//hadoop.apache.org/docs/r1.2.1/hdfs design.html,
2008.

[10] G. Bracha. Generics in the Java programming
language. Sun Microsystems, pages 1–23, 2004.

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A Distributed Storage System for
Structured Data. ACM Trans. Comput. Syst., pages
4:1–4:26, June 2008.

[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction To Algorithms. MIT Press, 2001.

[13] H. Garcia-Molina and K. Salem. Main Memory
Database Systems: An Overview. IEEE Trans. on
Knowledge and Data Eng., pages 509–516, Dec 1992.

[14] L. George. HBase: The Definitive Guide. O’Reilly
Media, 2011.

[15] T. Johnson and D. Sasha. The Performance of
Current B-tree Algorithms. ACM Tran. on Database
Systems, pages 51–101, 1993.

[16] A. Khurana. Introduction to HBase Schema Design.
Networked Syst, 37:29–36, 2012.

[17] A. Lakshman and P. Malik. Cassandra: A
Decentralized Structured Storage System. ACM
SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[18] N. Leavitt. Will NoSQL Databases Live Up to Their
Promise? Computer, 43(2):12–14, 2010.

[19] P. L. Lehman et al. Efficient Locking for Concurrent
Operations on B-trees. ACM Trans. on Database
Systems, pages 650–670, 1981.

[20] A. P. Mingjie Lai, Eugene Koontz. Coprocessor
Introduction. https://blogs.apache.org/hbase/entry/
coprocessor introduction, 2012.

[21] Oracle Corporation. Java Garbage Collection Basics.
http://www.oracle.com/webfolder/technetwork/
tutorials/obe/java/gc01/index.html.

[22] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
Log-Structured Merge-Tree (LSM-Tree). Acta
Informatica, 33(4):351–385, 1996.

[23] V. Srinivasan and M. J. Carey. Performance of B+
Tree Concurrency Control Algorithms. VLDB, pages
361–406, 1993.

[24] M. Stonebraker. The Case for Shared Nothing. IEEE
Database Eng. Bull., 9(1):4–9, 1986.

[25] Teradata Corporation. Introduction to Teradata.
www.teradata.com/workarea/downloadasset.aspx?id=

17947, 2010.


