
Performance Evaluation of Analytical Queries on a

Stand-alone and Sharded Document Store

Aarthi Raghavendra and Karen C. Davis
Electrical Engineering and Computing Systems Department

University of Cincinnati
Cincinnati, OH USA 45221-0030

1-513-556-2214

raghavai@mail.uc.edu, karen.davis@uc.edu

ABSTRACT

Numerous organizations perform data analytics using relational

databases by executing data mining queries. These queries include

complex joins and aggregate functions. However, due to an

explosion of data in terms of volume, variety, veracity, and velocity

known as Big Data [1], many organizations such as Foursquare,

Adobe, and Bosch have migrated to NoSQL databases [2] such as

MongoDB [3] and Cassandra [4]. We investigate the performance

impact of analytical queries on a NoSQL document store. We

benchmark the performance of MongoDB [3], a cross-platform

document-oriented database, in a stand-alone environment and a

sharded environment. The TPC-DS benchmark [5] is used to

generate data of different scales and selected data mining queries

are executed in both the environments. Our experimental results

show that along with choosing the environment, data modeling in

MongoDB also has a significant impact on query execution times.

Analytical query performance is best when data is stored in a

denormalized fashion. When the data is sharded, due to multiple

query predicates in an analytical query, aggregating data from a few

or all nodes proves to be an expensive process and hence performs

poorly when compared to the alternative process of executing the

same in a stand-alone environment.

CCS Concepts

• Information systems➝Database management system

engines • Database query processing➝query optimization.

Keywords

document databases; MongoDB; sharded query performance;

analytical queries.

1. INTRODUCTION
Relational database systems have been the foundation for enterprise

data management for over 30 years. Many organizations use a

relational platform to perform data analysis by running data mining

queries against a database. With an estimated growth in enterprise

data to 35ZB by 2020 [6] along with growing user loads,

organizations are adopting newer technologies such as NoSQL

databases to store data. Among the types of NoSQL databases [7]

(key-value store, column-oriented, document store, and graph), we

have chosen MongoDB, a cross-platform document-oriented

database against which we execute data mining queries. It provides

features such as aggregation, secondary indexing, sharding and

replication. Parker et al. [8] compare the runtime performance of

MongoDB with SQL Server for a modest-sized database (3 tables,

at most 12,416 tuples total) and conclude that the former performs

equally well or better than SQL Server except when aggregation is

utilized. However, the impact of data modeling and deployment

environments for aggregation operations were not explored in

detail.

In this paper, we investigate the performance of complex data

mining queries against datasets of different sizes. We use a stand-

alone and distributed data organization known as sharding [9]. In a

sharded database, data is split into chunks and distributed across the

cluster nodes. A query run against such a system can target either

one, a few, or all the nodes and the result from each of the nodes is

aggregated and displayed to the user.

In Section 2, we outline features of MongoDB such as data

modeling, indexing, sharding, and aggregation. In Section 3, we

discuss the TPC-DS benchmarking standard that is used to generate

datasets of varying sizes as well as the criteria used to select data

mining queries for our study. In Section 4, we describe the

hardware and software configurations of the systems used to

conduct the experiments. In Section 5, algorithms for migrating

relational data and translating SQL queries to MongoDB are

presented. Section 6 outlines the experimental procedures

implemented on the stand-alone and sharded environments and

discusses our findings. We conclude with a synopsis of the

contributions and future work in Section 7.

2. MongoDB/BIG DATA BENCHMARKING
We give an overview of MongoDB concepts and terms, followed

by a discussion of relevant benchmarking efforts to date.

2.1 MongoDB
MongoDB is a cross-platform document-oriented database

classified under the aegis of the NoSQL databases. It is coined from

the term huMONGOus for its support of big data management. Key

features of MongoDB include high performance, high availability,

and automatic scaling [10]. It is schema-less or has a flexible

schema. Unlike SQL where the structure of the data is defined prior

to loading into the database, MongoDB does not enforce any rigid

structure. The flexible structure is achieved by storing data in

BSON format [11], which is a binary-encoded serialization of

JSON-like [13] key and value pairs.

A document is composed of key-value pairs, and is the basic unit

of data in MongoDB. The value of these fields can be another

document, array, and array of documents. A group of documents is

called a collection. Since documents do not dictate a specific

__
2017, Copyright is with the authors. Published in the Workshop DOLAP.

Proceedings of the EDBT/ICDT 2017 Joint Conference (March 21, 2017,

Venice, Italy) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-

by-nc-nd 4.0.

format, a collection can have documents with each having a varying

number of fields and types of values, thereby giving it a flexible

schema.

An example of a document is given in Figure 1. Every document in

a collection has a unique _id field that acts as the primary key.

Unless explicitly specified by the application, MongoDB uses a

special 12-byte BSON type, called ObjectId, as the default value

for the _id field. The ObjectId is generated from the timestamp,

machine ID, process ID, and a process-local incremental counter

that guarantees uniqueness [10].

{

_id: ObjectId (“5480abb8986c9d3197f6682c”),

customer_id: 23,

customer_address: {

apartment_number: 26,

street_name: “Whitfield”,

state: “CA”,

country: “United States”

}

customer_name: “Earl Garrison”,

birth_date: “9/25/1979”,

email_id: earl.garrison@G3sM4P.com

}
Figure 1: Document Structure

2.1.1 Data Modeling
An application that uses a relational database management system

models data by declaring a table’s structure and its relationships to

other tables prior to inserting data into it. Similarly, data modeling

in MongoDB focuses on the document structure and relationships

between data. Since MongoDB does not support joins, the two

concepts that facilitate data modeling are embedding and

referencing [10].

We illustrate data modeling techniques in MongoDB through an

example. Consider two entities, Book and Publisher and a one-to-

many relationship between them.

Figure 2: Embedded Data Model

Figure 2 illustrates the embedded data model design for the one-to-

many relationship between Publisher and Book entities.

Embedding represents a relationship by encapsulating related

information in a single document or structure. It depicts a contains

relationship between entities since related pieces of information is

stored in the same database record. The one-to-many relationship

between a Publisher and a Book can be modeled by embedding the

book data entities in the publisher data. This provides good

performance for read operations as related data can be retrieved in

a single database operation. For example, an application can

retrieve complete publisher information in one query and new

books published by the publisher can be added as embedded sub-

documents to the books array. This ensures no repetition of the

publisher details per book, thereby reducing redundant data.

However, if the size of the document exceeds the 16 MB limit, data

has to be split and stored in separate documents. In such cases, the

referenced data model can be adopted.

Figure 3: Referenced Data Model

Figure 3 illustrates the referenced data model design for the one-to-

many relationship between Publisher and Book entities. References

represent relationships between data by associating or referencing

one document to another. This is achieved by storing the _id of one

document as the value for another field in the other document. The

one-to-many relationship between Publisher and Book can be

modeled by keeping the publisher and book information in two

separate collections and the relationship can be enforced by storing

the Publisher reference inside the Book document. In doing so, a

query to retrieve complete publisher information would have to

make multiple requests to the server as follow-up queries are

necessary to resolve the references. However, it is a suitable choice

to model entities that are independent of each other. Also, if two or

more entities are related but complex, then the complexity can be

reduced by breaking down the data into multiple documents. Table

1 provides a comparison between the two data models.

Table 1: Embedded and Referenced Data Model Comparison

For fast and efficient data access, indexes can be created to locate

data quickly and perform random lookups.

2.1.2 Indexing
An index is a special on-disk data structure that allows the database

application to retrieve data faster by not scanning the entire

collection. It uses keys built from one or more fields in a document.

MongoDB implements indexing by storing the keys in a B-Tree

data structure which helps in finding rows associated with the keys

quickly and efficiently. Indexes in MongoDB are defined at the

collection level on any field or sub-field of the document.

MongoDB supports 7 different types of indexes [10]. In our work,

we use the default_id and compound indexes. All collections are

indexed on the _id field by default. A compound index is created

on multiple fields of a document with a specific sort order for each

field. If a collection has a compound index on PersonID and Age,

the index sorts first by PersonID and then within each PersonID

value, sorts by Age. Therefore, the order of the fields in the

compound index should be declared appropriately based on the

application needs.

2.1.3 Sharding
A database system deployed on a single server can experience

heavy loading due to high query rates or large datasets. When the

demand on the server spikes drastically, alternate means should be

identified to keep the system online and robust. This scaling issue

is addressed in database systems by implementing vertical scaling

or horizontal scaling [15]. MongoDB implements horizontal

scaling, or sharding [10]. It is the process of splitting data into

chunks and distributing the chunks across multiple servers, known

as shards. The data is partitioned at a collection level and stored on

multiple shards such that all shards put together make up a single

logical database.

A sharded cluster in MongoDB [10] has 3 components:

1. A shard is either a single mongod instance or a replica set [10]

that stores data. The mongod is a daemon process that starts the

MongoDB server and handles data requests and other

background operations. Replica set is a feature of MongoDB that

ensure redundancy by storing the same data on multiple servers.

2. A config server is a mongod instance that stores the metadata of

the cluster. It maintains a mapping of the chunks to the shards.

3. A query router is a mongos instance that is responsible for

directing read and write operations from the client application

layer to the specific shard or shards. The mongos is a routing

service to which the application queries are directed internally,

which then uses the metadata information stored in the config

server to locate the target shard or shards and consolidates all the

information returned from the various shards before displaying

it to the user.

While deploying the sharded cluster for our research, we

encountered issues that affect the application and cluster

performance. Most issues are caused by the number of instances of

each of the components deployed in the cluster. We discuss the

issues faced and methods adopted to avoid them.

In a sharded environment the number of instances of each of the

components determines the robustness of the cluster. For read

intensive applications, having multiple query routers helps balance

the application needs rather than having a single query router that

can be easily overloaded due to high frequency of read operations.

Based on the cluster and application needs, query routers can be

added to the cluster on the fly by establishing connections to the

config servers and the shards.

The number of config servers and shards is of greater importance

since they perform all the application critical operations. Deploying

a cluster with multiple config servers enables data accessibility and

avoids a single point of failure. Similar to config servers, the

number of shards can also cause potential problems if they are not

aligned with the application needs. For write intensive applications,

shards can exceed their capacity and be exhausted quickly if data is

continually written to it. Therefore the capacity of a shard should

be decided before deploying the cluster based on the amount of the

data to be stored on them. If the number of shards are too few, data

resides on just a few shards leading to exhaustion problems. Having

more shards reduces the amount of data on each shard and resources

such as RAM and CPU cannot be used effectively. The number of

shards in a cluster can be calculated based on the following factors

[14].

1. The sum of disk storage space across shards should be greater

than the required storage size. For example, if the application

data is 1.5TB and the disk storage available per server is 256GB,

then the number of shards needed can be calculated as

1.5TB/256GB ~ 6 shards.

2. The sum of RAM across shards should be greater than the

working set of the sharded cluster. The working set is the

segment of client data that is accessed most frequently by the

application. For read intensive applications, storing the entire

working set in the RAM results in faster read operations. If the

working set memory requirement is more than the available

RAM, the operating system needs to perform frequent IO

operations to the disk to retrieve the information, thereby

drastically slowing down the system. The working set size is the

size of the frequently accessed collections and their indexes. For

a working set of 200GB and server RAM of 64GB, the number

of shards can be calculated as 200GB/64GB ~ 4 shards.

Other factors include disk throughput and operations per second.

We calculate the number of shards needed in our cluster based on

disk storage and RAM. Since the data load is a write intensive

process, each server needs to have a sufficient amount of disk space

to the store the data that is continually written. In doing so the

server resources such as CPU, memory, and disk are utilized

effectively without being overloaded. Also, since we focus on

analytical query performance, read operations should be optimized

to achieve best results. For fast read operations, all the collections

and indexes related to the query should reside in the RAM to avoid

disk IO operations. For this purpose, along with disk storage, we

also take the server RAM into consideration for calculating the

number of shards.

Data distribution effects the application read and write

performance. If a considerable amount of data resides on a single

shard, it can lead to a server crash or latency issues. Similarly, if

too little data resides on each shard, the server resources are not

fully utilized. In MongoDB, distribution of data across multiple

cluster members is determined by the shard key. A shard key [10]

is either an indexed field or an indexed compound field that is

present in all documents of a collection. MongoDB uses the shard

key to divide a collection into small non-overlapping ranges called

chunks and the default chunk size is 64 MB. MongoDB uses range-

based partitioning and hash-based partitioning for dividing shard

key values into chunks.

If the shard key is a numeric value, MongoDB can use range-based

partitioning [10], where documents with nearby shard key values

reside in the same chunk and therefore on the same shard. This

distributes data evenly with an overhead for efficient range queries.

MongoDB outlines the following strategies for selecting a shard

key:

1. High cardinality: The cardinality of a shard key refers to the

number of different values associated to it. A shard key with high

cardinality has low probability of creating jumbo chunks.

2. Compound shard key: If a collection does not have a field which

can serve as an optimal shard key, additional fields can be added

to produce a more ideal key.

3. Hashed shard key: For a shard key with high cardinality, a

hashed index on the field can ensure even distribution of data

across the shards.

We utilize high cardinality and compound shard keys in our

implementation.

2.2 Benchmarking Big Data
Among the many definitions for big data, we adopt the definition

given by Dumbill: “Big data is data that exceeds the processing

capacity of conventional database systems. The data is too big,

moves too fast, or doesn’t fit the strictures of your database

architectures.” [1] Big data is typically characterized by 4V

properties (i.e., volume, velocity, variety, and veracity [15]).

Therefore in order to benchmark big data, a standard should be

chosen that satisfies the 4V properties at least partially, if not

completely. The synthetic data generator should meet the following

criteria.

1. Volume refers to the ability to generate data of various scaling

factors as inputs of typical workloads. The volume of data

generated can range from GBs to PBs.

2. Velocity refers to data generation rates.

3. Variety refers to the support for generating diverse data types,

which include structured data, unstructured data, and semi-

structured data.

4. Veracity, with respect to benchmarking, is the ability to keep the

synthetic data generated aligned with the characteristics of real

world data [15]. The credibility of the benchmark is dependent

on how well the raw data features are preserved in the generated

data.

Han et al. [15] compare big data benchmarks such as TPC-DS [16]

BigBench [17], and Hibench [18] in terms of data generation and

benchmarking techniques. We use this paper as a reference to

choose our benchmarking standard for generating data sets of

various scale factors and data mining queries of varying

complexities. We briefly discuss the state-of-the-art which includes

terms introduced in relation to each of the 4V properties in order to

compare and categorize the existing big data benchmarks. Table 3

gives basic definitions of the terminology.

Table 2: Terms Used to Categorize Big Data Benchmarks

based on 4V Properties [15]

We conduct a performance evaluation of MongoDB by executing

analytical queries on datasets of two different sizes. Therefore, we

need a benchmark that can generate scalable datasets, and real

world data in order to achieve a realistic result. MongoDB is an

appropriate choice of database for unstructured data rather than

tabular data. However, we are interested in the performance of

MongoDB when tabular data is denormalized and modeled in a way

that better suits MongoDB; we compare the performance of

analytical queries against a normalized and denormalized data

model. Therefore, among the big data benchmarks [15], we choose

a benchmark that satisfies a scalable volume, semi-controllable

velocity, structured variety, and partially considers veracity. The 3

benchmarks that satisfy our needs are TPC-DS [16], BigBench [17]

and Bigdatabench [19]. Since we are studying the performance

evaluation of analytical queries, we need the benchmark to be able

to generate data that supports joins between entities and queries

containing varying aggregate functions. BigBench benchmark

provides a limited number of data mining queries and Bigdatabench

provides a dataset consisting of only two tables, whereas TPC-DS

provides a dataset of 24 tables and a query set of 100 queries, most

of which support aggregate functions. Therefore, we choose TPC-

DS as our big data benchmark

3. TPC-DS AND QUERY SELECTION
The underlying business model of the TPC-DS schema is a retail

product supplier that follows a snowflake schema [16]. It is a

database architecture where a central table called fact table is linked

to multiple other tables called dimension tables. A fact table

typically has two types of columns, the foreign key columns and

measures columns. The foreign key columns reference the primary

key of the dimension tables, and the measures columns hold data

used for calculations and analysis.

Table 3: Query Features

Table 4: Table Details for Datasets 1GB and 5GB

The TPC-DS benchmark [5] has a total of 7 fact tables and 17

dimension tables. Among the 24 tables, the representative queries

we selected utilize 3 fact tables (Store_Sales, Store_Returns, and

Inventory) and a total of 9 dimension tables. Among the 4 query

classes supported by TPC-DS we choose the data mining class.

Among the 23 queries available in that class, we select 4 queries

which meet three or more of these criteria: (1) join of 4 or more

tables, (2) aggregation functions such as sum() and avg(), (3) group

by and order by clauses, (4) conditional constructs such as case,

and (5) correlated subquery using the from clause.

We select 4 queries that satisfy the criteria: Query 7, Query 21,

Query 46, and Query 50. Table 3 summarizes the criteria met by

each query. Table 4 lists the number of records in the tables for

datasets of sizes 1GB and 5GB.

4. EXPERIMENTAL PLATFORM
For setting up the stand-alone and sharded environments, we used

the Amazon Web Services (AWS), a cloud-computing platform

that provides on-demand delivery of IT resources [20]. We rented

virtual computers through the Amazon Elastic Compute Cloud

(EC2) web service for application deployment and experimental

set-up. We boot the Red Hat Enterprise Linux AMI (Amazon

Machine Image) to create our virtual machines [20]. AWS provides

the capability of starting, stopping, and terminating instances as

needed, whereby active servers are charged by the hour.

TPC-DS is chosen as our benchmark for generating data and

analytical queries. We use datasets of sizes 1GB and 5GB for

conducting our research. However, the 1GB and 5GB text data

when migrated to MongoDB increases to 9.94GB and 41.93GB

respectively, an increase by a factor of nearly nine compared to the

original dataset size. Therefore, we need machine(s) that can

accommodate datasets with a minimum size of 10GB. Hence, an

EC2 instance is chosen such that the RAM is greater than the

working set, the portion of data that is accessed often by the

application server [10]. A RAM that fits all the indexes and

working set ensures faster processing there by reducing random

disk IO.

The MongoDB stand-alone environment uses the m4.4xlarge1

instance that is capable of storing both the 9.94GB and 41.93GB

datasets. The MongoDB sharded environment is a 5 node cluster

where every machine/instance has the same configuration. For

application deployment on the MongoDB cluster we use the

t2.large1 instance for the 9.94GB dataset and the m4.xlarge1

instance for the 41.93GB dataset.

4.1 Hardware/Software Configuration
This section discusses the hardware configurations of all the AWS

machines utilized for the deployment of the stand-alone and

sharded environments. Table 5 illustrates the machine

configurations for the MongoDB sharded and stand-alone

environments.

Table 5: Machine Hardware Configurations

Two different MongoDB sharded environments are created for the

9.94GB and 41.93GB datasets. Each of the sharded environments

have 5 machines. Since each sharded environment supports a

1 AWS machine nomenclature

dataset of specific size, the machine configurations for both the

environments differ. For example, the 41.93GB sharded

environment has more powerful machines than the 9.94GB sharded

environment since it has more data. Only one stand-alone system is

setup for both the 9.94GB and 41.93GB datasets. All the AWS

machines have the same software configuration: Red Hat

Enterprise Linux 7.1 and MongoDB version 3.0.2.

4.2 MongoDB Cluster Architecture
A MongoDB sharded system consists of 3 components: shards,

config servers, and query routers. We determine the number of

instances of each component by taking the 9.94GB dataset as an

example. The MongoDB sharded cluster test architecture [10] is

used as a reference for creating our sharded system. The test

architecture uses 1 config server, 1 query router, and 1 or more

shards based on the application needs. Our MongoDB sharded

system has 1 config server and 1 query router similar to the test

architecture. However, the number of shards is decided taking into

consideration the data to be stored on it, which in this case is 9.94

GB.

We use the disk storage and RAM as factors for deciding the

number of shards in the cluster. Among the two factors, RAM is

given priority as it reduces random disk IO thereby improving read

performance. Therefore, a system that is capable of accommodating

data, indexes, and other running applications in the RAM is chosen.

Among the available AWS machines, those with a RAM storage of

either 4GB or 8GB best suit our application needs. A machine with

less RAM would require deploying more systems in the cluster,

increasing operational costs and a machine with RAM higher than

8GB would make sharding insignificant for the 9.94GB dataset.

The RAM consumption of the operating system and other

applications typically does not exceed 2GB. If an AWS machine

with 4GB RAM is chosen, only 2GB space would be available for

storing data and indexes, hence requiring 5 machines

(9.94GB/2GB). On the other hand, if an AWS machine with 8GB

RAM is chosen, 6GB space would be available for storing data and

indexes, thus requiring 2 machines (9.94GB/6GB). However, we

use 3 machines with 8GB RAM as shards to accommodate not only

the data but also indexes and the intermediate and final query

collections. Therefore, the MongoDB sharded system deployed on

AWS has 3 shards, 1 config server, and 1 query router.

Figure 4 illustrates the organization of the sharded system. Each

node in the sharded system is named after their functionality

namely, Shard1, Shard2, Shard3, ConfigServer, and AppServer/

QueryRouter. Since each node has a specific functionality, the

processes running on them differ. The 3 shards are responsible for

storing data and therefore run the mongod instance. The config

server stores the metadata of the cluster and runs a mongod

instance. The query router is a mongos instance, a routing service

to which the application queries are directed to. It internally makes

use of the config server metadata to direct queries to the appropriate

shards. The application server and query router are deployed on the

same AWS machine because the query router is a lightweight

process and does not utilize much of the server resources. The two

segmented lines represent the actual flow path of query or any

related read operation and the continuous line indicates the

observed flow path.

Figure 4: MongoDB Cluster Architecture

5. PERFORMANCE STUDY
In this section, we describe the algorithms developed for data

loading and translation of a SQL query to a Mongo query using

Java as the programming language2 and we describe the

experimental setup. Table 6 illustrates the different experimental

setups based on the choice of dataset sizes, data models, and

deployment environments. The experiments are conducted by

taking into consideration the two dataset sizes, two data models,

and two deployment environments.

Table 6: Experiments

5.1 Migrating Data into MongoDB
We develop an algorithm to migrate the TPC-DS generated data

files into MongoDB in the JSON format. The same algorithm is

used to load datasets of sizes 1GB and 5GB, which translate to

9.94GB and 41.93GB, respectively, when loaded into MongoDB.

The increase in size is due to the data storage in JSON format. Each

document has key-value pairs where the key corresponds to the

table column. Each key is repeated in every document in the

collection, hence drastically increasing the size of the dataset. The

following points summarize the flow of data starting with its

creation using the TPC-DS benchmark up to its migration into

MongoDB:

1. TPC-DS generates a .dat file for each table. The column values

are delimited by the ‘|’ operator.

2. The databases in MongoDB for 1GB and 5GB TPC-DS datasets

are called Dataset_1GB and Dataset_5GB, respectively. Steps 3

and 4 correspond to the Dataset_1GB database, however they

work analogously for the Dataset_5GB database.

3. Each table in the TPC-DS schema corresponds to a separate

collection in the Dataset_1GB database. Hence, Dataset_1GB

contains a total of 24 collections, representing the 7 fact tables

2 code is available at https://github.com/raghavai/Performance-Evaluation-

of-Analytical-Queries-on-a-Stand-alone-and-Sharded-Document-Store

and 17 dimension tables. The records in each table correspond to

the documents in the respective collections.

4. Since data in MongoDB in stored in the JSON format, the

column names of the table correspond to the keys in the JSON

document and the column values of the table correspond to the

respective key values in the document.

The pseudocode of the data migration algorithm is illustrated in

Figure 5. It takes a data file as input and generates the MongoDB

collection as output. The algorithm makes use of the HashMap data

structure in Java [21], a tabular structure that maps keys to values.

It uses hashing to generate a hashcode for every key, which

determines the object location in the table.

Figure 5: Data Migration Algorithm

5.2 Translating SQL Queries to MongoDB
The SQL queries in our study differ from one another in aspects

such as numbers of joined tables, aggregate functions, where

clauses, from clauses, group by and order by clauses, and correlated

and uncorrelated subqueries. Manually translating each of these

queries into a Mongo query can be tedious and error-prone. We

create algorithms for translating an analytical SQL query to its

equivalent Mongo query. These algorithms focus on executing the

selected queries that support aggregate functions, where clauses,

from clauses, group by, and order by clauses.

Performance of queries or any read operation is greatly dependent

on the data model that supports the application needs. In a relational

database system, data models are broadly classified into normalized

and denormalized data models. A normalized data model has a

higher number of foreign keys and hence a higher number of joins.

On the other hand, in a denormalized data model, data is

consolidated into one or a few tables, resulting in fewer foreign

keys and hence fewer joins. We are interested in the query

performance on MongoDB when run against both the normalized

and denormalized data models.

In order to execute analytical queries against a denormalized

model, the collections in the MongoDB database should be

denormalized. During data load the TPC-DS data files are migrated

into individual collections, therefore on initial load the data is

completely normalized. We develop an algorithm for creating a

denormalized collection from a set of given fact collection and

dimension collections. In this approach, all the dimension

collections are joined to the fact collection based on their foreign

key relationships. In MongoDB, joining a dimension collection to

a fact collection is equivalent to embedding the dimension

collection documents in the fact collection. To understand the

structure of a denormalized collection in MongoDB, consider the

store_sales fact collection connected to multiple dimension

collections such as time_dim, store, and item. The foreign keys such

as ss_sold_date_sk, ss_item_sk, and ss_cdemo_sk are replaced by

the actual document in the document collection.

Figure 6 illustrates pseudocode for the algorithm to create a

denormalized fact collection. It takes in a fact collection and a set

of dimension collections as input and outputs the denormalized fact

collection. An EmbedDocuments method, shown in Figure 7, is

called on every dimension collection, which embeds the dimension

collection documents in the fact collection.

Figure 6: Denormalized Collection Creation Algorithm

Figure 7: Embedding Documents Algorithm

5.3 Query Translation Algorithm for

Normalized Data Model
An analytical query against a normalized data model typically

queries data from one or more tables. In SQL, this is accomplished

through join operations. The SQL query optimizer plays a vital role

in identifying an optimal query plan with low cost. For example, if

a query contains join operations, where clauses, and a group by

clause, the query optimizer decides the best possible execution

order of the operations that yields a query plan that has a low cost

and execution time.

In MongoDB, query optimization is limited to the usage of indexes

and efficient read operations. Join operations cannot be optimized

as MongoDB does not support joins. To overcome this hurdle, we

develop an algorithm that simulates join operations and executes

queries on the fly. All the queries used here implement the select-

from-where template. Therefore, the algorithm is optimized for

queries that follow this template. The algorithm does not take into

consideration the details of the query predicates, aggregation

operations, and sequence of join operations, but only follows a

predetermined order of execution:

1. Query all the dimension collections based on their respective

where clauses.

2. Perform a semi-join of the fact collection with the filtered

dimension collection documents, i.e., obtain only those fact

collection documents whose foreign keys are present in the

filtered dimension collection documents. For example, a semi-

join of the store_sales and customer_address collections would

result in a collection containing only those store_sales

documents whose foreign key is referenced in the

customer_address collection. Store the semi-joined fact

collection in an intermediate collection.

3. Embed dimension collection documents in the intermediate

collection documents. To improve performance embed only

those dimension collection documents whose attributes are used

in query aggregation.

4. Perform aggregation operations against the embedded

intermediate collection and store the final query results in an

output collection.

We illustrate the pseudocode for the query translation algorithm

against a normalized data model in Figure 8. It takes the fact

collection(s) and dimension collections related to the query as input

and outputs the final query collection. In addition to the final query

collection, an intermediate collection is created which holds the

semi-joined fact collection documents. The algorithm uses the

ArrayList data structure in java [23], a dynamic array that can grow

and shrink as needed. It is used in the process of performing a semi-

join on the fact collection. The EmbedDocuments method

illustrated in Figure 7 is called on the intermediate collection and a

dimension collection during the embedding process. To improve

performance, only those dimension collections whose attributes are

used in query aggregation are embedded. After the embedding

process, the MongoDB aggregation framework is used to execute

the aggregation operations in the query.

Figure 8: Query Translation Algorithm for the Normalized

Data Model

6. EXPERIMENT RESULTS
Table 7 summarizes the data load times for each table for both the

dataset sizes. We also show query runtimes executed on each of the

experimental setups. Table 8 illustrates the selectivity of the

queries, i.e., the proportion of data retrieved for both the 9.94GB

and 41.93GB datasets. Table 9 summarizes the query execution

runtimes for each of the experiments. Every query is run 5 times on

each experimental setup. For each run data is cached in the

memory. Among the 5 runtimes we obtain, Table 9 presents the

best results. Hours are denoted by h, minutes by m, and seconds by

s.

We analyze the results of the data load times for the 1GB and 5GB

datasets below.

1. For tables having the same number of records in both the

datasets, the data load times are nearly identical. This can be

observed for tables catalog_page, customer_demographics,

date_dim, household_demographics, income_band, ship_mode,

and time_dim.

2. For tables with an unequal number of records in both the

datasets, the ratio of the number of records is nearly identical to

the ratio of their load times. This can be observed for tables

call_center, catalog_returns, catalog_sales, customer,

customer_address, inventory, item, promotion, reason, store,

store_returns, store_sales, warehouse, web_page, web_returns,

web_sales, and web_site.

Table 7: Data Load Times

Table 8: Query Selectivity

Table 9: Query Execution Runtimes

Figures 9 and 10 illustrate the query performance on the 9.94GB

and 41.93GB dataset taking into consideration the data models and

deployment environments.

We analyze the query execution runtimes below.

1. Experiments 3 and 6 have the fastest query runtimes in their

respective dataset sizes. It can be observed that the two

experiments correspond to the denormalized data models

running on stand-alone systems. This indicates that

denormalized data models outperform their normalized counter

parts. Also, the algorithm implemented to execute queries

against a denormalized data model handles scaling effectively,

for the scales used in our experiments.

2. Among the experiments conducted against a normalized data

model, stand-alone systems are observed to be faster than

sharded systems. The runtimes for the Queries 7, 21, and 46 for

Experiments 1, 2 and 4, 5 support this statement.

3. Query 50 is observed to be faster on the sharded system. This

does not indicate that the sharded system is slower or faster than

a stand-alone system. It depends on the type of the query sent to

either of the systems. If a query includes a shard key, the mongos

routes the query to a specific shard rather than broadcasting the

query to all the shards in the cluster, enhancing the query

performance, which is the case for Query 50. Thus, we can infer

that Queries 7, 21, and 46 which are faster on a stand-alone

system are being broadcasted on the sharded system, resulting in

slower runtimes.

Figure 9: A Comparison of Query Execution Times for

9.94GB Dataset

Figure 10: A Comparison of Query Execution Times for

41.93GB Dataset

There have been other studies that benchmarked the performance

of MongoDB [8, 25, 26, 27, 28]. However, the majority of them

performed the MongoDB benchmark against popular databases

such as Oracle, Cassandra, HBase, and Couchbase but none of them

study the performance of MongoDB based on the deployment

environments, data modeling, and scalable datasets. We

specifically focus on modeling relational data in a NoSQL

environment and tune it in different ways and study why one data

model outperforms the other. Also, we base our conclusions on

running complex analytical queries on each of the data models.

Based on the results obtained from executing analytical queries on

different experimental setups, we conclude that performance of

queries on MongoDB is influenced by the data model and

deployment environment. Given the two choices of normalized and

denormalized data models, a decision has to be made based on the

amount of data stored in each document. If the size of a document

does not exceed 16MB, a denormalized data model should be

chosen over a normalized data model. Our experiments indicate

that a denormalized data model results in faster query times than its

normalized counterpart irrespective for the two dataset sizes we

investigate. Queries against a normalized data model are slower

since join operations followed by the embedding procedure are

expensive. It is also expensive in terms of storage consumption due

to the creation of intermediate collections.

Given the two choices of a stand-alone and sharded deployment

environment, a decision has to be made based on application needs,

available resources, and types of queries to be executed. A sharded

system is an appropriate choice when an application deployed on

stand-alone system becomes resource intensive resulting in an

increase in data volumes and read/write throughput. Another

scenario considers the high cost incurred from running a stand-

alone system as compared to a sharded system. When operating

with a sharded system, we have to be mindful of the following

aspects. Firstly, the shard key is immutable, i.e., it cannot be altered

after the collection is sharded. Secondly, queries have to be

structured to use a shard key to prevent broadcasting across all the

shards in the cluster. This allows the mongos to route the query to

a specific shard providing better performance. On the other hand,

if a stand-alone system is utilized within its resource limits, it can

be equally effective at processing queries as compared to a sharded

system with equivalent resources. Since it does not encounter the

constraint of a shard key, indexing can be applied to any field and

a wide variety of queries can be directed to the system. Based on

the experimental results we can conclude that a stand-alone system

is a suitable choice when queries with varying predicates are

directed to the system and a sharded system is a suitable choice

when specific queries containing the shard key are directed to the

cluster.

7. CONCLUSIONS AND FUTURE WORK
In this section, we summarize the contribution of our research and

elaborate possible extensions for future work.

We address the performance impact organizations may face if they

choose to run complex analytical queries on a stand-alone and

sharded document store. We highlight the importance of data

modeling coupled with deployment environments. Different

experimental setups are implemented to evaluate the combination

of a data model and a deployment environment and its impact on

query performance and scaling.

For conducting performance evaluation of analytical queries, we

use TPC-DS as our chosen benchmark to generate data and

analytical queries. We develop a data loading algorithm to migrate

data generated by the TPC-DS benchmark into MongoDB for

performing query analysis. TCP-DS generated SQL queries employ

join operations and SQL operations. Since MongoDB does not

support joins, we develop an algorithm to simulate join operations

and perform aggregation operations.

We assess the performance of stand-alone MongoDB system with

a MongoDB sharded system and conclude that it is dependent on

deployment environments, data models, dataset sizes, and query

types. Our results indicate that the denormalized data model speeds

up queries by a significant amount when deployed on a stand-alone

environment. The trend in execution times remains the same with

the increase in scalability we investigated.

With the help of the algorithms proposed here, a tool can be created

that migrates SQL-like data into MongoDB. Since MongoDB lacks

the support for join operations, the query translation algorithm

developed here can be used as a basis for a tool to streamline join

and aggregation operations.

There are many different ways that this study could be both

broadened and deepened. Specifically, the preliminary experiments

described here could be extended by implementing a denormalized

data model on a sharded system and comparing its performance to

a denormalized data model implemented on a stand-alone system.

Other ways of organizing the data could be considered. Herrero et

al. consider conceptual, logical, and physical design of NoSQL

databases and propose techniques that allow for varying amounts

of denormalization depending on factors such as query workload

[29]. Truică et al. study the performance of three document

databases (including MongoDB) and three relational databases for

create, read, update, and delete operations [30]. The replication of

data considered in their approach would be interesting to consider

as part of a future study using benchmark queries.

The research work can be furthered in different aspects such as

varying the dataset sizes, increasing the scalability, and using

different benchmarks that are suited for schema-less data.

MongoDB can be implemented on both a sharded and stand-alone

system. For the case of a stand-alone system, MongoDB is thread

safe; multi-threading is handled by the database on the client side.

MongoDB allows operations to lock at either the collection level or

database level. In a collection level lock, only a single thread is

allowed to perform write operations to the collection. Aggregation

queries usually involve multiple collections that are queried

individually followed by the aggregation operations. Since

MongoDB uses collection level locks, individual threads can be

used to query each collection in parallel and then perform

aggregation on a single thread that runs after the completion of the

other threads. In our research, the entire query was performed on a

single thread; using multithreading may reduce the query execution

times. The same concept can be used in the sharded environment

where individual collections reside on different shards and multiple

threads can be issued to query each collection in parallel.

Parallelizing can also be performed for aggregation over collection

subsets using multiple threads on a sharded database.

The performance of MongoDB can be tested further by employing

a more varied dataset in terms of number of fields and datatypes,

and also by using a different benchmark intended for a document

store database. Different denormalized data models could be

deployed on the sharded cluster and its performance can be studied

by varying the number of shards and the number of mongos

instances, and implementing multi-threading. Additional metrics

could be collected such as the amount of data read from disk and

transmitted. All of the possible extensions could be executed in a

more recent MongoDB engine such as WiredTiger [31], which

introduces enhanced features including compression, column-

oriented management techniques, and additional indexing styles.

8. REFERENCES
[1] (January 11, 2012). What is big data?. Available:

https://beta.oreilly.com/ideas/what-is-big-data.

https://beta.oreilly.com/ideas/what-is-big-data

[2] A. Moniruzzaman and S. A. Hossain, "NoSQL database: New

era of databases for big data analytics-classification,

characteristics and comparison," arXiv Preprint

arXiv:1307.0191, 2013.

[3] (2013). MongoDB: A Document Oriented Database.

Available: http://www.mongodb.org/about/.

[4] A. Lakshman and P. Malik, "Cassandra: a decentralized

structured storage system," ACM SIGOPS Operating Systems

Review, vol. 44, pp. 35-40, 2010.

[5] (April, 2012). TPC BENCHMARK ™ DS. Available:

http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf.

[6] C. Baru, M. Bhandarkar, R. Nambiar, M. Poess and T. Rabl,

"Setting the direction for big data benchmark standards," in

Selected Topics in Performance Evaluation and

Benchmarking, Springer, 2013, pp. 197-208.

[7] A. Nayak, A. Poriya and D. Poojary, "Type of NoSQL

databases and itscomparison with relational databases,"

International Journal of Applied Information Systems, vol. 5,

2013.

[8] Z. Parker, S. Poe and S. V. Vrbsky, "Comparing NoSQL

Mongodb to an SQL db," in Proceedings of the 51st ACM

Southeast Conference, 2013, pp. 5.

[9] (April 9, 2015). Sharding. Available:

http://docs.mongodb.org/manual/sharding/.

[10] (June 04, 2015). MongoDB Documentation Release 3.0.3.

Available: http://docs.mongodb.org/master/MongoDB-

manual.pdf.

[11] BSON. Available: http://bsonspec.org/.

[12] N. Nurseitov, M. Paulson, R. Reynolds and C. Izurieta,

"Comparison of JSON and XML data interchange formats: A

case study." Caine, vol. 2009, pp. 157-162, 2009.

[13] D. Pritchett, "Base: An acid alternative," Queue, vol. 6, pp.

48-55, 2008.

[14] (2014, September 25). Sharding Methods for MongoDB.

Available: http://www.slideshare.net/mongodb/sharding-v-

final.

[15] R. Han, X. Lu and J. Xu, "On big data benchmarking," in Big

Data Benchmarks, Performance Optimization, and Emerging

Hardware, Springer, 2014, pp. 3-18.

[16] M. Poess, R. O. Nambiar and D. Walrath, "Why you should

run TPC-DS: A workload analysis," in Proceedings of the

33rd International Conference on very Large Data Bases,

2007, pp. 1138-1149.

[17] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte

and H. Jacobsen, "BigBench: Towards an industry standard

benchmark for big data analytics," in Proceedings of the

2013 ACM SIGMOD International Conference on

Management of Data, 2013, pp. 1197-1208.

[18] S. Huang, J. Huang, J. Dai, T. Xie and B. Huang, "The

HiBench benchmark suite: Characterization of the

MapReduce-based data analysis," in Proceedings of the 2010

IEEE 26th International Conference On Data Engineering

Workshops (ICDEW), 2010, pp. 41-51.

[19] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao,

Z. Jia, Y. Shi and S. Zhang, "Bigdatabench: A big data

benchmark suite from internet services," in Proceedings of

2014 IEEE 20th International Symposium On High

Performance Computer Architecture (HPCA) , 2014, pp.

488-499.

[20] (2015). AWS Documentation. Available:

http://aws.amazon.com/documentation/.

[21] HashMap (Java Platform SE 7). Available:

http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.h

tml.

[22] MongoDB Java Driver Documentation. Available:

http://mongodb.github.io/mongo-java-driver/3.0/.

[23] ArrayList (Java Platform SE 7). Available:

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.h

tml.

[24] B. G. Tudorica and C. Bucur, "A comparison between

several NoSQL databases with comments and notes," in

Roedunet International Conference (RoEduNet), 2011 10th,

2011, pp. 1-5.

[25] M. Fotache and D. Cogean, "NoSQL and SQL databases for

mobile applications. Case Study: MongoDB versus

PostgreSQL," Informatica Economica, vol. 17, pp. 41-58,

2013.

[26] V. Abramova and J. Bernardino, "NoSQL databases:

MongoDB vs. Cassandra," in Proceedings of the

International C* Conference on Computer Science and

Software Engineering, 2013, pp. 14-22.

[27] TPC Documentation as of 04/27/2015. Available:

http://www.tpc.org/information/current_specifications.asp.

[28] (Aug 26, 2013). Using TPC-DS to generate RDBMS

performance and benchmark data. Available:

http://www.innovation-

brigade.com/index.php?module=Content&type=user&func=

display&tid=1&pid=3.

 [29] V. Herrero, A. Abello and O. Romero, "NOSQL design for

analytical workloads: variability matters," in Proceedings of

the 35th International Conference on Conceptual Modeling

(ER), 2016, pp. 50-64.

[30] C.-O. Truică, I.I. Bucur and A. Boicea, "Performance

evaluation for CRUD operations in asynchronously

replicated document oriented database," in Proceedings of

the International Conference on Control Systems and

Computer Science, 2015, pp. 191-196.

[31] (January 15, 2017), WiredTiger, Available:

http://www.wiredtiger.com/.

http://www.mongodb.org/about/
http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf
http://docs.mongodb.org/manual/sharding/
http://docs.mongodb.org/master/MongoDB-manual.pdf
http://docs.mongodb.org/master/MongoDB-manual.pdf
http://bsonspec.org/
http://www.slideshare.net/mongodb/sharding-v-final
http://www.slideshare.net/mongodb/sharding-v-final
http://aws.amazon.com/documentation/
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html
http://mongodb.github.io/mongo-java-driver/3.0/
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://www.tpc.org/information/current_specifications.asp
http://www.innovation-brigade.com/index.php?module=Content&type=user&func=display&tid=1&pid=3
http://www.innovation-brigade.com/index.php?module=Content&type=user&func=display&tid=1&pid=3
http://www.innovation-brigade.com/index.php?module=Content&type=user&func=display&tid=1&pid=3
http://www.wiredtiger.com/

