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ABSTRACT 

Numerous organizations perform data analytics using relational 

databases by executing data mining queries. These queries include 

complex joins and aggregate functions. However, due to an 

explosion of data in terms of volume, variety, veracity, and velocity 

known as Big Data [1], many organizations such as Foursquare, 

Adobe, and Bosch have migrated to NoSQL databases [2] such as 

MongoDB [3] and Cassandra [4]. We investigate the performance 

impact of analytical queries on a NoSQL document store. We 

benchmark the performance of MongoDB [3], a cross-platform 

document-oriented database, in a stand-alone environment and a 

sharded environment. The TPC-DS benchmark [5] is used to 

generate data of different scales and selected data mining queries 

are executed in both the environments. Our experimental results 

show that along with choosing the environment, data modeling in 

MongoDB also has a significant impact on query execution times. 

Analytical query performance is best when data is stored in a 

denormalized fashion. When the data is sharded, due to multiple 

query predicates in an analytical query, aggregating data from a few 

or all nodes proves to be an expensive process and hence performs 

poorly when compared to the alternative process of executing the 

same in a stand-alone environment.   

CCS Concepts 

• Information systems➝Database management system 

engines   • Database query processing➝query optimization.  
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document databases; MongoDB; sharded query performance; 

analytical queries. 

1. INTRODUCTION 
Relational database systems have been the foundation for enterprise 

data management for over 30 years. Many organizations use a 

relational platform to perform data analysis by running data mining 

queries against a database. With an estimated growth in enterprise 

data to 35ZB by 2020 [6] along with growing user loads, 

organizations are adopting newer technologies such as NoSQL 

databases to store data. Among the types of NoSQL databases [7] 

(key-value store, column-oriented, document store, and graph), we 

have chosen MongoDB, a cross-platform document-oriented 

database against which we execute data mining queries. It provides 

features such as aggregation, secondary indexing, sharding and 

replication. Parker et al. [8] compare the runtime performance of 

MongoDB with SQL Server for a modest-sized database (3 tables, 

at most 12,416 tuples total) and conclude that the former performs 

equally well or better than SQL Server except when aggregation is 

utilized. However, the impact of data modeling and deployment 

environments for aggregation operations were not explored in 

detail. 

In this paper, we investigate the performance of complex data 

mining queries against datasets of different sizes. We use a stand-

alone and distributed data organization known as sharding [9]. In a 

sharded database, data is split into chunks and distributed across the 

cluster nodes. A query run against such a system can target either 

one, a few, or all the nodes and the result from each of the nodes is 

aggregated and displayed to the user. 

In Section 2, we outline features of MongoDB such as data 

modeling, indexing, sharding, and aggregation. In Section 3, we 

discuss the TPC-DS benchmarking standard that is used to generate 

datasets of varying sizes as well as the criteria used to select data 

mining queries for our study. In Section 4, we describe the 

hardware and software configurations of the systems used to 

conduct the experiments. In Section 5, algorithms for migrating 

relational data and translating SQL queries to MongoDB are 

presented.  Section 6 outlines the experimental procedures 

implemented on the stand-alone and sharded environments and 

discusses our findings. We conclude with a synopsis of the 

contributions and future work in Section 7. 

2. MongoDB/BIG DATA BENCHMARKING 
We give an overview of MongoDB concepts and terms, followed 

by a discussion of relevant benchmarking efforts to date. 

2.1 MongoDB 
MongoDB is a cross-platform document-oriented database 

classified under the aegis of the NoSQL databases. It is coined from 

the term huMONGOus for its support of big data management. Key 

features of MongoDB include high performance, high availability, 

and automatic scaling [10]. It is schema-less or has a flexible 

schema. Unlike SQL where the structure of the data is defined prior 

to loading into the database, MongoDB does not enforce any rigid 

structure. The flexible structure is achieved by storing data in 

BSON format [11], which is a binary-encoded serialization of 

JSON-like [13] key and value pairs. 

A document is composed of key-value pairs, and is the basic unit 

of data in MongoDB. The value of these fields can be another 

document, array, and array of documents. A group of documents is 

called a collection. Since documents do not dictate a specific 
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format, a collection can have documents with each having a varying 

number of fields and types of values, thereby giving it a flexible 

schema.  

An example of a document is given in Figure 1. Every document in 

a collection has a unique _id field that acts as the primary key. 

Unless explicitly specified by the application, MongoDB uses a 

special 12-byte BSON type, called ObjectId, as the default value 

for the _id field. The ObjectId is generated from the timestamp, 

machine ID, process ID, and a process-local incremental counter 

that guarantees uniqueness [10]. 

{ 

_id: ObjectId (“5480abb8986c9d3197f6682c”), 

customer_id: 23, 

customer_address: { 

apartment_number: 26, 

street_name: “Whitfield”, 

state: “CA”, 

country: “United States” 

} 

customer_name: “Earl Garrison”, 

birth_date: “9/25/1979”, 

email_id: earl.garrison@G3sM4P.com 

} 
Figure 1: Document Structure 

2.1.1 Data Modeling 
An application that uses a relational database management system 

models data by declaring a table’s structure and its relationships to 

other tables prior to inserting data into it. Similarly, data modeling 

in MongoDB focuses on the document structure and relationships 

between data. Since MongoDB does not support joins, the two 

concepts that facilitate data modeling are embedding and 

referencing [10]. 

We illustrate data modeling techniques in MongoDB through an 

example. Consider two entities, Book and Publisher and a one-to-

many relationship between them. 

 
Figure 2: Embedded Data Model 

Figure 2 illustrates the embedded data model design for the one-to-

many relationship between Publisher and Book entities. 

Embedding represents a relationship by encapsulating related 

information in a single document or structure. It depicts a contains 

relationship between entities since related pieces of information is 

stored in the same database record. The one-to-many relationship 

between a Publisher and a Book can be modeled by embedding the 

book data entities in the publisher data. This provides good 

performance for read operations as related data can be retrieved in 

a single database operation. For example, an application can 

retrieve complete publisher information in one query and new 

books published by the publisher can be added as embedded sub-

documents to the books array. This ensures no repetition of the 

publisher details per book, thereby reducing redundant data. 

However, if the size of the document exceeds the 16 MB limit, data 

has to be split and stored in separate documents. In such cases, the 

referenced data model can be adopted. 

 

Figure 3: Referenced Data Model 

Figure 3 illustrates the referenced data model design for the one-to-

many relationship between Publisher and Book entities. References 

represent relationships between data by associating or referencing 

one document to another. This is achieved by storing the _id of one 

document as the value for another field in the other document. The 

one-to-many relationship between Publisher and Book can be 

modeled by keeping the publisher and book information in two 

separate collections and the relationship can be enforced by storing 

the Publisher reference inside the Book document. In doing so, a 

query to retrieve complete publisher information would have to 

make multiple requests to the server as follow-up queries are 

necessary to resolve the references. However, it is a suitable choice 

to model entities that are independent of each other. Also, if two or 

more entities are related but complex, then the complexity can be 

reduced by breaking down the data into multiple documents.  Table 

1 provides a comparison between the two data models. 

Table 1: Embedded and Referenced Data Model Comparison 

 

For fast and efficient data access, indexes can be created to locate 

data quickly and perform random lookups. 

2.1.2 Indexing 
An index is a special on-disk data structure that allows the database 

application to retrieve data faster by not scanning the entire 

collection. It uses keys built from one or more fields in a document. 

MongoDB implements indexing by storing the keys in a B-Tree 

data structure which helps in finding rows associated with the keys 

quickly and efficiently. Indexes in MongoDB are defined at the 

collection level on any field or sub-field of the document. 

MongoDB supports 7 different types of indexes [10].  In our work, 



we use the default_id and compound indexes.  All collections are 

indexed on the _id field by default. A compound index is created 

on multiple fields of a document with a specific sort order for each 

field. If a collection has a compound index on PersonID and Age, 

the index sorts first by PersonID and then within each PersonID 

value, sorts by Age. Therefore, the order of the fields in the 

compound index should be declared appropriately based on the 

application needs. 

2.1.3 Sharding 
A database system deployed on a single server can experience 

heavy loading due to high query rates or large datasets. When the 

demand on the server spikes drastically, alternate means should be 

identified to keep the system online and robust. This scaling issue 

is addressed in database systems by implementing vertical scaling 

or horizontal scaling [15]. MongoDB implements horizontal 

scaling, or sharding [10]. It is the process of splitting data into 

chunks and distributing the chunks across multiple servers, known 

as shards. The data is partitioned at a collection level and stored on 

multiple shards such that all shards put together make up a single 

logical database. 

A sharded cluster in MongoDB [10] has 3 components: 

1. A shard is either a single mongod instance or a replica set [10] 

that stores data. The mongod is a daemon process that starts the 

MongoDB server and handles data requests and other 

background operations. Replica set is a feature of MongoDB that 

ensure redundancy by storing the same data on multiple servers.  

2. A config server is a mongod instance that stores the metadata of 

the cluster. It maintains a mapping of the chunks to the shards.  

3. A query router is a mongos instance that is responsible for 

directing read and write operations from the client application 

layer to the specific shard or shards. The mongos is a routing 

service to which the application queries are directed internally, 

which then uses the metadata information stored in the config 

server to locate the target shard or shards and consolidates all the 

information returned from the various shards before displaying 

it to the user. 

While deploying the sharded cluster for our research, we 

encountered issues that affect the application and cluster 

performance. Most issues are caused by the number of instances of 

each of the components deployed in the cluster. We discuss the 

issues faced and methods adopted to avoid them. 

In a sharded environment the number of instances of each of the 

components determines the robustness of the cluster. For read 

intensive applications, having multiple query routers helps balance 

the application needs rather than having a single query router that 

can be easily overloaded due to high frequency of read operations. 

Based on the cluster and application needs, query routers can be 

added to the cluster on the fly by establishing connections to the 

config servers and the shards. 

The number of config servers and shards is of greater importance 

since they perform all the application critical operations. Deploying 

a cluster with multiple config servers enables data accessibility and 

avoids a single point of failure. Similar to config servers, the 

number of shards can also cause potential problems if they are not 

aligned with the application needs. For write intensive applications, 

shards can exceed their capacity and be exhausted quickly if data is 

continually written to it.  Therefore the capacity of a shard should 

be decided before deploying the cluster based on the amount of the 

data to be stored on them. If the number of shards are too few, data 

resides on just a few shards leading to exhaustion problems. Having 

more shards reduces the amount of data on each shard and resources 

such as RAM and CPU cannot be used effectively. The number of 

shards in a cluster can be calculated based on the following factors 

[14]. 

1. The sum of disk storage space across shards should be greater 

than the required storage size. For example, if the application 

data is 1.5TB and the disk storage available per server is 256GB, 

then the number of shards needed can be calculated as 

1.5TB/256GB ~ 6 shards. 

2. The sum of RAM across shards should be greater than the 

working set of the sharded cluster. The working set is the 

segment of client data that is accessed most frequently by the 

application. For read intensive applications, storing the entire 

working set in the RAM results in faster read operations. If the 

working set memory requirement is more than the available 

RAM, the operating system needs to perform frequent IO 

operations to the disk to retrieve the information, thereby 

drastically slowing down the system.  The working set size is the 

size of the frequently accessed collections and their indexes. For 

a working set of 200GB and server RAM of 64GB, the number 

of shards can be calculated as 200GB/64GB ~ 4 shards. 

Other factors include disk throughput and operations per second.  

We calculate the number of shards needed in our cluster based on 

disk storage and RAM. Since the data load is a write intensive 

process, each server needs to have a sufficient amount of disk space 

to the store the data that is continually written. In doing so the 

server resources such as CPU, memory, and disk are utilized 

effectively without being overloaded. Also, since we focus on 

analytical query performance, read operations should be optimized 

to achieve best results. For fast read operations, all the collections 

and indexes related to the query should reside in the RAM to avoid 

disk IO operations. For this purpose, along with disk storage, we 

also take the server RAM into consideration for calculating the 

number of shards. 

Data distribution effects the application read and write 

performance. If a considerable amount of data resides on a single 

shard, it can lead to a server crash or latency issues. Similarly, if 

too little data resides on each shard, the server resources are not 

fully utilized. In MongoDB, distribution of data across multiple 

cluster members is determined by the shard key. A shard key [10] 

is either an indexed field or an indexed compound field that is 

present in all documents of a collection. MongoDB uses the shard 

key to divide a collection into small non-overlapping ranges called 

chunks and the default chunk size is 64 MB. MongoDB uses range-

based partitioning and hash-based partitioning for dividing shard 

key values into chunks. 

If the shard key is a numeric value, MongoDB can use range-based 

partitioning [10], where documents with nearby shard key values 

reside in the same chunk and therefore on the same shard.  This 

distributes data evenly with an overhead for efficient range queries. 

MongoDB outlines the following strategies for selecting a shard 

key: 

1. High cardinality: The cardinality of a shard key refers to the 

number of different values associated to it. A shard key with high 

cardinality has low probability of creating jumbo chunks. 

2. Compound shard key: If a collection does not have a field which 

can serve as an optimal shard key, additional fields can be added 

to produce a more ideal key. 



3. Hashed shard key: For a shard key with high cardinality, a 

hashed index on the field can ensure even distribution of data 

across the shards. 

We utilize high cardinality and compound shard keys in our 

implementation. 

2.2 Benchmarking Big Data 
Among the many definitions for big data, we adopt the definition 

given by Dumbill: “Big data is data that exceeds the processing 

capacity of conventional database systems. The data is too big, 

moves too fast, or doesn’t fit the strictures of your database 

architectures.” [1] Big data is typically characterized by 4V 

properties (i.e., volume, velocity, variety, and veracity [15]). 

Therefore in order to benchmark big data, a standard should be 

chosen that satisfies the 4V properties at least partially, if not 

completely. The synthetic data generator should meet the following 

criteria. 

1. Volume refers to the ability to generate data of various scaling 

factors as inputs of typical workloads. The volume of data 

generated can range from GBs to PBs. 

2. Velocity refers to data generation rates. 

3. Variety refers to the support for generating diverse data types, 

which include structured data, unstructured data, and semi-

structured data. 

4. Veracity, with respect to benchmarking, is the ability to keep the 

synthetic data generated aligned with the characteristics of real 

world data [15]. The credibility of the benchmark is dependent 

on how well the raw data features are preserved in the generated 

data. 

Han et al. [15] compare big data benchmarks such as TPC-DS [16]  

BigBench [17], and Hibench [18] in terms of data generation and 

benchmarking techniques. We use this paper as a reference to 

choose our benchmarking standard for generating data sets of 

various scale factors and data mining queries of varying 

complexities. We briefly discuss the state-of-the-art which includes 

terms introduced in relation to each of the 4V properties in order to 

compare and categorize the existing big data benchmarks. Table 3 

gives basic definitions of the terminology. 

Table 2: Terms Used to Categorize Big Data Benchmarks 

based on 4V Properties [15] 

 
 

We conduct a performance evaluation of MongoDB by executing 

analytical queries on datasets of two different sizes. Therefore, we 

need a benchmark that can generate scalable datasets, and real 

world data in order to achieve a realistic result. MongoDB is an 

appropriate choice of database for unstructured data rather than 

tabular data. However, we are interested in the performance of 

MongoDB when tabular data is denormalized and modeled in a way 

that better suits MongoDB; we compare the performance of 

analytical queries against a normalized and denormalized data 

model. Therefore, among the big data benchmarks [15], we choose 

a benchmark that satisfies a scalable volume, semi-controllable 

velocity, structured variety, and partially considers veracity. The 3 

benchmarks that satisfy our needs are TPC-DS [16], BigBench [17] 

and Bigdatabench [19]. Since we are studying the performance 

evaluation of analytical queries, we need the benchmark to be able 

to generate data that supports joins between entities and queries 

containing varying aggregate functions. BigBench benchmark 

provides a limited number of data mining queries and Bigdatabench 

provides a dataset consisting of only two tables, whereas TPC-DS 

provides a dataset of 24 tables and a query set of 100 queries, most 

of which support aggregate functions. Therefore, we choose TPC-

DS as our big data benchmark 

3. TPC-DS AND QUERY SELECTION 
The underlying business model of the TPC-DS schema is a retail 

product supplier that follows a snowflake schema [16]. It is a 

database architecture where a central table called fact table is linked 

to multiple other tables called dimension tables. A fact table 

typically has two types of columns, the foreign key columns and 

measures columns. The foreign key columns reference the primary 

key of the dimension tables, and the measures columns hold data 

used for calculations and analysis.  

Table 3: Query Features 

 

Table 4: Table Details for Datasets 1GB and 5GB 

 

The TPC-DS benchmark [5] has a total of 7 fact tables and 17 

dimension tables. Among the 24 tables, the representative queries 

we selected utilize 3 fact tables (Store_Sales, Store_Returns, and 



Inventory) and a total of 9 dimension tables. Among the 4 query 

classes supported by TPC-DS we choose the data mining class. 

Among the 23 queries available in that class, we select 4 queries 

which meet three or more of these criteria: (1) join of 4 or more 

tables, (2) aggregation functions such as sum() and avg(), (3) group 

by and order by clauses, (4) conditional constructs such as case, 

and (5) correlated subquery using the from clause. 

We select 4 queries that satisfy the criteria: Query 7, Query 21, 

Query 46, and Query 50. Table 3 summarizes the criteria met by 

each query. Table 4 lists the number of records in the tables for 

datasets of sizes 1GB and 5GB. 

4. EXPERIMENTAL PLATFORM 
For setting up the stand-alone and sharded environments, we used 

the Amazon Web Services (AWS), a cloud-computing platform 

that provides on-demand delivery of IT resources [20]. We rented 

virtual computers through the Amazon Elastic Compute Cloud 

(EC2) web service for application deployment and experimental 

set-up. We boot the Red Hat Enterprise Linux AMI (Amazon 

Machine Image) to create our virtual machines [20]. AWS provides 

the capability of starting, stopping, and terminating instances as 

needed, whereby active servers are charged by the hour.  

TPC-DS is chosen as our benchmark for generating data and 

analytical queries. We use datasets of sizes 1GB and 5GB for 

conducting our research. However, the 1GB and 5GB text data 

when migrated to MongoDB increases to 9.94GB and 41.93GB 

respectively, an increase by a factor of nearly nine compared to the 

original dataset size. Therefore, we need machine(s) that can 

accommodate datasets with a minimum size of 10GB. Hence, an 

EC2 instance is chosen such that the RAM is greater than the 

working set, the portion of data that is accessed often by the 

application server [10]. A RAM that fits all the indexes and 

working set ensures faster processing there by reducing random 

disk IO.  

The MongoDB stand-alone environment uses the m4.4xlarge1 

instance that is capable of storing both the 9.94GB and 41.93GB 

datasets. The MongoDB sharded environment is a 5 node cluster 

where every machine/instance has the same configuration. For 

application deployment on the MongoDB cluster we use the 

t2.large1 instance for the 9.94GB dataset and the m4.xlarge1 

instance for the 41.93GB dataset.  

4.1 Hardware/Software Configuration 
This section discusses the hardware configurations of all the AWS 

machines utilized for the deployment of the stand-alone and 

sharded environments. Table 5 illustrates the machine 

configurations for the MongoDB sharded and stand-alone 

environments.  

Table 5: Machine Hardware Configurations  

 

Two different MongoDB sharded environments are created for the 

9.94GB and 41.93GB datasets. Each of the sharded environments 

have 5 machines. Since each sharded environment supports a 

                                                                 

1 AWS machine nomenclature 

dataset of specific size, the machine configurations for both the 

environments differ. For example, the 41.93GB sharded 

environment has more powerful machines than the 9.94GB sharded 

environment since it has more data. Only one stand-alone system is 

setup for both the 9.94GB and 41.93GB datasets. All the AWS 

machines have the same software configuration: Red Hat 

Enterprise Linux 7.1 and MongoDB version 3.0.2. 

4.2 MongoDB Cluster Architecture 
A MongoDB sharded system consists of 3 components: shards, 

config servers, and query routers. We determine the number of 

instances of each component by taking the 9.94GB dataset as an 

example. The MongoDB sharded cluster test architecture [10] is 

used as a reference for creating our sharded system. The test 

architecture uses 1 config server, 1 query router, and 1 or more 

shards based on the application needs. Our MongoDB sharded 

system has 1 config server and 1 query router similar to the test 

architecture. However, the number of shards is decided taking into 

consideration the data to be stored on it, which in this case is 9.94 

GB. 

We use the disk storage and RAM as factors for deciding the 

number of shards in the cluster. Among the two factors, RAM is 

given priority as it reduces random disk IO thereby improving read 

performance. Therefore, a system that is capable of accommodating 

data, indexes, and other running applications in the RAM is chosen. 

Among the available AWS machines, those with a RAM storage of 

either 4GB or 8GB best suit our application needs. A machine with 

less RAM would require deploying more systems in the cluster, 

increasing operational costs and a machine with RAM higher than 

8GB would make sharding insignificant for the 9.94GB dataset.  

The RAM consumption of the operating system and other 

applications typically does not exceed 2GB. If an AWS machine 

with 4GB RAM is chosen, only 2GB space would be available for 

storing data and indexes, hence requiring 5 machines 

(9.94GB/2GB). On the other hand, if an AWS machine with 8GB 

RAM is chosen, 6GB space would be available for storing data and 

indexes, thus requiring 2 machines (9.94GB/6GB). However, we 

use 3 machines with 8GB RAM as shards to accommodate not only 

the data but also indexes and the intermediate and final query 

collections. Therefore, the MongoDB sharded system deployed on 

AWS has 3 shards, 1 config server, and 1 query router.  

Figure 4 illustrates the organization of the sharded system. Each 

node in the sharded system is named after their functionality 

namely, Shard1, Shard2, Shard3, ConfigServer, and AppServer/ 

QueryRouter. Since each node has a specific functionality, the 

processes running on them differ. The 3 shards are responsible for 

storing data and therefore run the mongod instance. The config 

server stores the metadata of the cluster and runs a mongod 

instance. The query router is a mongos instance, a routing service 

to which the application queries are directed to. It internally makes 

use of the config server metadata to direct queries to the appropriate 

shards. The application server and query router are deployed on the 

same AWS machine because the query router is a lightweight 

process and does not utilize much of the server resources. The two 

segmented lines represent the actual flow path of query or any 

related read operation and the continuous line indicates the 

observed flow path. 



 

Figure 4: MongoDB Cluster Architecture 

5. PERFORMANCE STUDY 
In this section, we describe the algorithms developed for data 

loading and translation of a SQL query to a Mongo query using 

Java as the programming language2 and we describe the 

experimental setup. Table 6 illustrates the different experimental 

setups based on the choice of dataset sizes, data models, and 

deployment environments. The experiments are conducted by 

taking into consideration the two dataset sizes, two data models, 

and two deployment environments. 

Table 6: Experiments 

 

5.1 Migrating Data into MongoDB 
We develop an algorithm to migrate the TPC-DS generated data 

files into MongoDB in the JSON format. The same algorithm is 

used to load datasets of sizes 1GB and 5GB, which translate to 

9.94GB and 41.93GB, respectively, when loaded into MongoDB. 

The increase in size is due to the data storage in JSON format. Each 

document has key-value pairs where the key corresponds to the 

table column. Each key is repeated in every document in the 

collection, hence drastically increasing the size of the dataset. The 

following points summarize the flow of data starting with its 

creation using the TPC-DS benchmark up to its migration into 

MongoDB: 

1. TPC-DS generates a .dat file for each table. The column values 

are delimited by the ‘|’ operator. 

2. The databases in MongoDB for 1GB and 5GB TPC-DS datasets 

are called Dataset_1GB and Dataset_5GB, respectively. Steps 3 

and 4 correspond to the Dataset_1GB database, however they 

work analogously for the Dataset_5GB database. 

3. Each table in the TPC-DS schema corresponds to a separate 

collection in the Dataset_1GB database. Hence, Dataset_1GB 

contains a total of 24 collections, representing the 7 fact tables 

                                                                 

2 code is available at https://github.com/raghavai/Performance-Evaluation-

of-Analytical-Queries-on-a-Stand-alone-and-Sharded-Document-Store 

and 17 dimension tables. The records in each table correspond to 

the documents in the respective collections.  

4. Since data in MongoDB in stored in the JSON format, the 

column names of the table correspond to the keys in the JSON 

document and the column values of the table correspond to the 

respective key values in the document. 

The pseudocode of the data migration algorithm is illustrated in 

Figure 5. It takes a data file as input and generates the MongoDB 

collection as output. The algorithm makes use of the HashMap data 

structure in Java [21], a tabular structure that maps keys to values. 

It uses hashing to generate a hashcode for every key, which 

determines the object location in the table. 

Figure 5: Data Migration Algorithm 

5.2 Translating SQL Queries to MongoDB 
The SQL queries in our study differ from one another in aspects 

such as numbers of joined tables, aggregate functions, where 

clauses, from clauses, group by and order by clauses, and correlated 

and uncorrelated subqueries. Manually translating each of these 

queries into a Mongo query can be tedious and error-prone. We 

create algorithms for translating an analytical SQL query to its 

equivalent Mongo query. These algorithms focus on executing the 

selected queries that support aggregate functions, where clauses, 

from clauses, group by, and order by clauses. 

Performance of queries or any read operation is greatly dependent 

on the data model that supports the application needs. In a relational 

database system, data models are broadly classified into normalized 

and denormalized data models. A normalized data model has a 

higher number of foreign keys and hence a higher number of joins. 

On the other hand, in a denormalized data model, data is 

consolidated into one or a few tables, resulting in fewer foreign 

keys and hence fewer joins. We are interested in the query 

performance on MongoDB when run against both the normalized 

and denormalized data models.  

In order to execute analytical queries against a denormalized 

model, the collections in the MongoDB database should be 

denormalized. During data load the TPC-DS data files are migrated 

into individual collections, therefore on initial load the data is 

completely normalized. We develop an algorithm for creating a 

denormalized collection from a set of given fact collection and 

dimension collections. In this approach, all the dimension 

collections are joined to the fact collection based on their foreign 

key relationships. In MongoDB, joining a dimension collection to 

a fact collection is equivalent to embedding the dimension 

collection documents in the fact collection. To understand the 

structure of a denormalized collection in MongoDB, consider the 



store_sales fact collection connected to multiple dimension 

collections such as time_dim, store, and item. The foreign keys such 

as ss_sold_date_sk, ss_item_sk, and ss_cdemo_sk are replaced by 

the actual document in the document collection. 

Figure 6 illustrates pseudocode for the algorithm to create a 

denormalized fact collection. It takes in a fact collection and a set 

of dimension collections as input and outputs the denormalized fact 

collection. An EmbedDocuments method, shown in Figure 7, is 

called on every dimension collection, which embeds the dimension 

collection documents in the fact collection. 

 
Figure 6: Denormalized Collection Creation Algorithm 

 
Figure 7: Embedding Documents Algorithm 

5.3 Query Translation Algorithm for 

Normalized Data Model 
An analytical query against a normalized data model typically 

queries data from one or more tables. In SQL, this is accomplished 

through join operations. The SQL query optimizer plays a vital role 

in identifying an optimal query plan with low cost. For example, if 

a query contains join operations, where clauses, and a group by 

clause, the query optimizer decides the best possible execution 

order of the operations that yields a query plan that has a low cost 

and execution time. 

In MongoDB, query optimization is limited to the usage of indexes 

and efficient read operations. Join operations cannot be optimized 

as MongoDB does not support joins. To overcome this hurdle, we 

develop an algorithm that simulates join operations and executes 

queries on the fly. All the queries used here implement the select-

from-where template. Therefore, the algorithm is optimized for 

queries that follow this template. The algorithm does not take into 

consideration the details of the query predicates, aggregation 

operations, and sequence of join operations, but only follows a 

predetermined order of execution: 

1. Query all the dimension collections based on their respective 

where clauses. 

2. Perform a semi-join of the fact collection with the filtered 

dimension collection documents, i.e., obtain only those fact 

collection documents whose foreign keys are present in the 

filtered dimension collection documents. For example, a semi-

join of the store_sales and customer_address collections would 

result in a collection containing only those store_sales 

documents whose foreign key is referenced in the 

customer_address collection. Store the semi-joined fact 

collection in an intermediate collection. 

3. Embed dimension collection documents in the intermediate 

collection documents. To improve performance embed only 

those dimension collection documents whose attributes are used 

in query aggregation.  

4. Perform aggregation operations against the embedded 

intermediate collection and store the final query results in an 

output collection. 

We illustrate the pseudocode for the query translation algorithm 

against a normalized data model in Figure 8. It takes the fact 

collection(s) and dimension collections related to the query as input 

and outputs the final query collection. In addition to the final query 

collection, an intermediate collection is created which holds the 

semi-joined fact collection documents. The algorithm uses the 

ArrayList data structure in java [23], a dynamic array that can grow 

and shrink as needed. It is used in the process of performing a semi-

join on the fact collection. The EmbedDocuments method 

illustrated in Figure 7 is called on the intermediate collection and a 

dimension collection during the embedding process. To improve 

performance, only those dimension collections whose attributes are 

used in query aggregation are embedded. After the embedding 

process, the MongoDB aggregation framework is used to execute 

the aggregation operations in the query. 

 

Figure 8: Query Translation Algorithm for the Normalized 

Data Model 

6. EXPERIMENT RESULTS 
Table 7 summarizes the data load times for each table for both the 

dataset sizes. We also show query runtimes executed on each of the 

experimental setups. Table 8 illustrates the selectivity of the 

queries, i.e., the proportion of data retrieved for both the 9.94GB 

and 41.93GB datasets. Table 9 summarizes the query execution 

runtimes for each of the experiments. Every query is run 5 times on 

each experimental setup. For each run data is cached in the 

memory. Among the 5 runtimes we obtain, Table 9 presents the 

best results. Hours are denoted by h, minutes by m, and seconds by 

s. 



We analyze the results of the data load times for the 1GB and 5GB 

datasets below. 

1. For tables having the same number of records in both the 

datasets, the data load times are nearly identical. This can be 

observed for tables catalog_page, customer_demographics, 

date_dim, household_demographics, income_band, ship_mode, 

and time_dim. 

2. For tables with an unequal number of records in both the 

datasets, the ratio of the number of records is nearly identical to 

the ratio of their load times. This can be observed for tables 

call_center, catalog_returns, catalog_sales, customer, 

customer_address, inventory, item, promotion, reason, store, 

store_returns, store_sales, warehouse, web_page, web_returns, 

web_sales, and web_site. 

Table 7: Data Load Times 

 

Table 8: Query Selectivity 

 

Table 9: Query Execution Runtimes 

 

Figures 9 and 10 illustrate the query performance on the 9.94GB 

and 41.93GB dataset taking into consideration the data models and 

deployment environments. 

We analyze the query execution runtimes below. 

1. Experiments 3 and 6 have the fastest query runtimes in their 

respective dataset sizes. It can be observed that the two 

experiments correspond to the denormalized data models 

running on stand-alone systems. This indicates that 

denormalized data models outperform their normalized counter 

parts. Also, the algorithm implemented to execute queries 

against a denormalized data model handles scaling effectively, 

for the scales used in our experiments. 

2. Among the experiments conducted against a normalized data 

model, stand-alone systems are observed to be faster than 

sharded systems. The runtimes for the Queries 7, 21, and 46 for 

Experiments 1, 2 and 4, 5 support this statement.  

3. Query 50 is observed to be faster on the sharded system. This 

does not indicate that the sharded system is slower or faster than 

a stand-alone system. It  depends on the type of the query sent to 

either of the systems. If a query includes a shard key, the mongos 

routes the query to a specific shard rather than broadcasting the 

query to all the shards in the cluster, enhancing the query 

performance, which is the case for Query 50. Thus, we can infer 

that Queries 7, 21, and 46 which are faster on a stand-alone 

system are being broadcasted on the sharded system, resulting in 

slower runtimes.  

 

Figure 9: A Comparison of Query Execution Times for 

9.94GB Dataset 

 

Figure 10: A Comparison of Query Execution Times for 

41.93GB Dataset 

There have been other studies that benchmarked the performance 

of MongoDB [8, 25, 26, 27, 28]. However, the majority of them 

performed the MongoDB benchmark against popular databases 

such as Oracle, Cassandra, HBase, and Couchbase but none of them 

study the performance of MongoDB based on the deployment 

environments, data modeling, and scalable datasets. We 

specifically focus on modeling relational data in a NoSQL 

environment and tune it in different ways and study why one data 



model outperforms the other. Also, we base our conclusions on 

running complex analytical queries on each of the data models. 

Based on the results obtained from executing analytical queries on 

different experimental setups, we conclude that performance of 

queries on MongoDB is influenced by the data model and 

deployment environment. Given the two choices of normalized and 

denormalized data models, a decision has to be made based on the 

amount of data stored in each document. If the size of a document 

does not exceed 16MB, a denormalized data model should be 

chosen over a normalized data model. Our experiments indicate 

that a denormalized data model results in faster query times than its 

normalized counterpart irrespective for the two dataset sizes we 

investigate. Queries against a normalized data model are slower 

since join operations followed by the embedding procedure are 

expensive. It is also expensive in terms of storage consumption due 

to the creation of intermediate collections.  

Given the two choices of a stand-alone and sharded deployment 

environment, a decision has to be made based on application needs, 

available resources, and types of queries to be executed. A sharded 

system is an appropriate choice when an application deployed on 

stand-alone system becomes resource intensive resulting in an 

increase in data volumes and read/write throughput. Another 

scenario considers the high cost incurred from running a stand-

alone system as compared to a sharded system. When operating 

with a sharded system, we have to be mindful of the following 

aspects. Firstly, the shard key is immutable, i.e., it cannot be altered 

after the collection is sharded. Secondly, queries have to be 

structured to use a shard key to prevent broadcasting across all the 

shards in the cluster. This allows the mongos to route the query to 

a specific shard providing better performance. On the other hand, 

if a stand-alone system is utilized within its resource limits, it can 

be equally effective at processing queries as compared to a sharded 

system with equivalent resources. Since it does not encounter the 

constraint of a shard key, indexing can be applied to any field and 

a wide variety of queries can be directed to the system. Based on 

the experimental results we can conclude that a stand-alone system 

is a suitable choice when queries with varying predicates are 

directed to the system and a sharded system is a suitable choice 

when specific queries containing the shard key are directed to the 

cluster. 

7. CONCLUSIONS AND FUTURE WORK 
In this section, we summarize the contribution of our research and 

elaborate possible extensions for future work. 

We address the performance impact organizations may face if they 

choose to run complex analytical queries on a stand-alone and 

sharded document store. We highlight the importance of data 

modeling coupled with deployment environments. Different 

experimental setups are implemented to evaluate the combination 

of a data model and a deployment environment and its impact on 

query performance and scaling.  

For conducting performance evaluation of analytical queries, we 

use TPC-DS as our chosen benchmark to generate data and 

analytical queries.  We develop a data loading algorithm to migrate 

data generated by the TPC-DS benchmark into MongoDB for 

performing query analysis. TCP-DS generated SQL queries employ 

join operations and SQL operations. Since MongoDB does not 

support joins, we develop an algorithm to simulate join operations 

and perform aggregation operations. 

We assess the performance of stand-alone MongoDB system with 

a MongoDB sharded system and conclude that it is dependent on 

deployment environments, data models, dataset sizes, and query 

types. Our results indicate that the denormalized data model speeds 

up queries by a significant amount when deployed on a stand-alone 

environment. The trend in execution times remains the same with 

the increase in scalability we investigated.  

With the help of the algorithms proposed here, a tool can be created 

that migrates SQL-like data into MongoDB. Since MongoDB lacks 

the support for join operations, the query translation algorithm 

developed here can be used as a basis for a tool to streamline join 

and aggregation operations. 

There are many different ways that this study could be both 

broadened and deepened. Specifically, the preliminary experiments 

described here could be extended by implementing a denormalized 

data model on a sharded system and comparing its performance to 

a denormalized data model implemented on a stand-alone system.  

Other ways of organizing the data could be considered. Herrero et 

al. consider conceptual, logical, and physical design of NoSQL 

databases and propose techniques that allow for varying amounts 

of denormalization depending on factors such as query workload 

[29].  Truică et al. study the performance of three document 

databases (including MongoDB) and three relational databases for 

create, read, update, and delete operations [30].  The replication of 

data considered in their approach would be interesting to consider 

as part of a future study using benchmark queries. 

The research work can be furthered in different aspects such as 

varying the dataset sizes, increasing the scalability, and using 

different benchmarks that are suited for schema-less data. 

MongoDB can be implemented on both a sharded and stand-alone 

system. For the case of a stand-alone system, MongoDB is thread 

safe; multi-threading is handled by the database on the client side. 

MongoDB allows operations to lock at either the collection level or 

database level. In a collection level lock, only a single thread is 

allowed to perform write operations to the collection. Aggregation 

queries usually involve multiple collections that are queried 

individually followed by the aggregation operations. Since 

MongoDB uses collection level locks, individual threads can be 

used to query each collection in parallel and then perform 

aggregation on a single thread that runs after the completion of the 

other threads. In our research, the entire query was performed on a 

single thread; using multithreading may reduce the query execution 

times. The same concept can be used in the sharded environment 

where individual collections reside on different shards and multiple 

threads can be issued to query each collection in parallel. 

Parallelizing can also be performed for aggregation over collection 

subsets using multiple threads on a sharded database. 

The performance of MongoDB can be tested further by employing 

a more varied dataset in terms of number of fields and datatypes, 

and also by using a different benchmark intended for a document 

store database. Different denormalized data models could be 

deployed on the sharded cluster and its performance can be studied 

by varying the number of shards and the number of mongos 

instances, and implementing multi-threading.   Additional metrics 

could be collected such as the amount of data read from disk and 

transmitted.  All of the possible extensions could be executed in a 

more recent MongoDB engine such as WiredTiger [31], which 

introduces enhanced features including compression, column-

oriented management techniques, and additional indexing styles. 
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