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ABSTRACT
The growing use of document stores has resulted in vast
amounts of semi-structured data holding precious informa-
tion, which could be profitably integrated into existing BI
systems. Unfortunately, due to their schemaless nature, doc-
ument stores are hardly accessible via direct OLAP query-
ing. In this paper we propose an interactive, schema-on-read
approach for finding multidimensional structures in docu-
ment stores aimed at enabling OLAP querying in the context
of self-service BI. Our approach works in three steps: mul-
tidimensional enrichment, querying, and OLAP enabling;
the validation of user queries and the detection of multidi-
mensional structures is based on the mining of approximate
functional dependencies from data. The efficiency of our
approach is discussed with reference to real datasets.

CCS Concepts
•Information systems Ñ Data warehouses; •Applied
computing Ñ Business intelligence;

Keywords
NoSQL, Document-Oriented Databases, JSON, Multidimen-
sional modeling

1. INTRODUCTION
Over the past decade, companies have been adopting NoSQL

databases to deal with the huge volumes of data manipu-
lated by modern applications. NoSQL systems have emerged
as an alternative to relational database management sys-
tems in many implementations [4]. They can be classi-
fied based on their data model, the most popular categories
being key-value, wide-column, graph-based and document-
oriented; document-oriented databases (briefly, document
stores) are probably the most widely adopted so far. The
common features of document stores are horizontal scala-
bility on commodity hardware and the lack of an explicit
schema (according to the data first, schema later or never
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paradigm). This schemaless nature provides a flexible data
model that has attracted developers seeking to avoid the
restrictions posed by the relational model.

Document stores usually collect nested, denormalized, and
hierarchical documents in the form of collections; the docu-
ments within the same collection may present a structural
variety due to schema flexibility and data evolution. Doc-
uments are self-describing and mainly encoded using the
semi-structured data format JSON (JavaScript Object No-
tation), which is also popular as an exchange format and
widely adopted in modern web APIs.

The growing use of document stores and the dominance
of JSON have resulted in vast amounts of semi-structured
data holding precious information, which could be profitably
integrated into existing business intelligence (BI) systems
[1]. Indeed, multidimensional modeling and analysis has
been recognized to be an effective way for conducting an-
alytics over big NoSQL data [6]. Unfortunately, due to their
schemaless nature, document stores are hardly accessible via
direct OLAP querying. Recent efforts in this area propose
SQL-like query interfaces (e.g., Apache Drill, Spark SQL,
Presto), which provide access to schemaless and nested data
while offering the possibility of using traditional BI tools.
However, none of these solutions supports multidimensional
querying or OLAP over document stores.

In this paper we propose an interactive, schema-on-read
approach for finding multidimensional structures in docu-
ment stores aimed at enabling OLAP querying in the con-
text of self-service BI. Differently from a schema-on-write
approach, which would force a fixed structure in data and
load them into a data warehouse, a schema-on-read ap-
proach leaves data unchanged in their structure until they
are accessed by the user [16]. We claim that, when querying
document stores for self-service BI, a schema-on-read ap-
proach should be preferred to a schema-on-write approach.
The main reason for this is that document stores handle
high volumes of data with varied structure, which question
the ability of the traditional ETL in processing data on the
one hand, and the possibility of storing them into a data
warehouse with a fixed schema on the other hand.

To discover the information necessary for discovering mul-
tidimensional concepts despite the lack of structure, we re-
sort to data distributions, i.e., we mine approximate func-
tional dependencies (AFDs) and use them to automate the
design process. More specifically, our approach takes as in-
put a collection of nested documents and operates in three
phases.



1. Multidimensional Enrichment. In this phase, a
schema is extracted out of the collection and enriched
with some basic multidimensional knowledge. This is
done by tentatively classifying attributes into dimen-
sions and measures, and by relating each measure to
the subset of dimensions that determine its granular-
ity, so as to create a draft multidimensional schema.

2. Querying. Now the user can formulate a multidi-
mensional query by picking dimensions and measures
of interest. This query is checked by accessing data to
ensure its multidimensional validity and correct sum-
marization. If the query is found to be well-formed, it
is executed. Otherwise, the multidimensional schema
is refined and some possible querying alternatives are
proposed to the user.

3. OLAP Enabling. This iterative phase enables the
user to further explore data by running an OLAP ses-
sion. To this end, local portions of multidimensional
hierarchies (consisting of roll-up and drill-down rela-
tionships for each level involved in the user query) are
built by mining AFDs from data. The user can now
apply an OLAP operator (e.g., roll-up or drill-down)
to iteratively create a new query on the collection.

The advantages of the proposed approach are twofold. First,
it enables decision makers to formulate multidimensional
queries and create reports on-the-fly on document stores in
a self-service fashion, i.e., without any support from ICT
people. This reduces the time and effort spent in traditional
BI settings. Second, our approach also works when nested
structures are not present within the input data (e.g., for
flat documents), which is relevant because a large number
of non-nested datasets are available in JSON format on the
web (e.g., more than 11000 collections in www.data.gov).
The approach has been implemented on top of MongoDB,
one of the most popular document stores.

The rest of this paper is organized as follows. Section 2
discusses the related work and Section 3 presents document
stores along with the working example. Our approach is
detailed in Section 4 and experimentally evaluated in Sec-
tion 5. Section 6 concludes the paper and gives some future
directions for research.

2. RELATED WORK
Supply-driven multidimensional design. The au-

tomation of multidimensional modeling has been widely ex-
plored in the area of data warehouse design. Supply-driven
approaches automate the discovery of multidimensional con-
cepts by a thorough analysis of the source data. The first
approaches proposed algorithms to build multidimensional
schemata starting from Entity/Relationship diagrams or re-
lational schemata [8, 19, 12], while further approaches con-
sidered more expressive conceptual sources such as UML
class diagrams [20] and ontologies [23]. Furthermore, [24]
discussed the use of FDs for automating multidimensional
modeling from ontologies. In particular, similarly to the
querying phase of our approach, [22] proposes an algorithm
to check the multidimensional validity of an SQL cube query
and to derive the underlying multidimensional schema. This
algorithm identifies multidimensional concepts from the struc-
ture of the query itself and by following foreign keys in the
relational schema.

In these approaches, multidimensional modeling is done at
design time, mainly based on FDs expressed in the source
schemata as foreign keys or many-to-one relationships. Con-
versely, our approach is meant to be used at query time
and automates the discovery of multidimensional concepts
by mining FDs from data, as required by the schemaless
context.

Multidimensional design from non-relational data.
Our approach closely relates to previous approaches for mul-
tidimensional modeling from semi-structured data [9, 13, 28]
in XML format, which is similar to JSON. These approaches
take in input DTDs or XML schemata that provide rich in-
formation about XML documents (e.g., multiplicities, data
types), so they cannot operate directly on XML data not
having a schema specification. In particular, the work in [28]
builds multidimensional schemata starting from an XML
schema but, in some cases, data is accessed to discover FDs
that are not expressed in the schema. Similarly, starry vault
[7] is a recent approach that mines FDs for multidimensional
modeling from data vaults. These are databases character-
ized by a specific data model tailored to provide historical
storage in presence of schema evolutions. The main idea is
to mine approximate and temporal FDs to cope with the
issue of noisy and time-varying data, which may result in
hidden FDs.

All the above-mentioned approaches are similar in that
they define multidimensional schemata at design time using
structural and additional information extracted from data
(i.e., FDs). In contrast, our approach operates at query
time and mostly relies on data distributions, while structural
information is only used —when available— to intelligently
reduce the search space.

OLAP on linked data. Recent works in this space pro-
pose to directly perform OLAP-like analysis over semantic
web data. Exploratory OLAP has been defined as the pro-
cess that discovers, collects, integrates, and analyzes these
external data on the fly [2]. Some works in this direction ad-
dress the problem of building multidimensional hierarchies
from linked data [21, 27], which is closely related to the
third phase of our approach. Specifically, iMOLD [21] is
an instance-based approach that operates at query time for
exploratory OLAP on linked data; it aims at finding mul-
tidimensional patterns representing roll-up relationships, in
order to enable users to extend corporate data cubes with
new hierarchies extracted from linked data. Similarly, [27]
proposes an algorithm for discovering hierarchies from di-
mensions present in statistical linked data represented us-
ing the RDF Data Cube (QB) vocabulary (www.w3.org/TR/
vocab-data-cube/). Like starry vault, this algorithm mines
for AFDs (here called quasi-FDs) to cope with the presence
of imperfect and partial data.

The algorithm that we propose for building hierarchies dif-
fers from these works in that, to ensure good performances,
it looks for local portions of hierarchies for the levels involved
in the user queries, thus acting in an on-demand fashion.

SQL on schemaless data. Several solutions have emerged
in the industry to enable SQL querying of schemaless data
for analytic purposes. These solutions can be classified into
two categories: (1) relational systems enabling the storage
and management of schemaless data, and (2) systems de-
signed as an SQL interface for schemaless data.

Solutions in the first category include RDBMSs that sup-
port storage and querying of schemaless data to be used



along with relational data in one system [5, 17] (e.g., Or-
acle, IBM DB2, and PostgreSQL). Current systems do not
impose a fixed relational schema to store and query data,
but derive and maintain a dynamic schema to be used for
schema-on-read SQL/JSON querying instead [17]. Other so-
lutions that fall into this category are virtual adapters that
expose a relational view of the data in a document store, to
be used in common BI tools; an example is the MongoDB
BI connector (www.mongodb.com/products/bi-connector).

The second line of solutions are SQL-like interfaces that
offer extensions to query schemaless data persisted in doc-
ument stores or as JSON files (e.g., in Hadoop). Spark
SQL [3] has been designed for relational data processing
of native Spark distributed datasets in addition of diverse
data sources and formats (including JSON). In order to run
SQL queries on schemaless data in Spark SQL, a schema
is automatically inferred beforehand. Apache Drill (drill.
apache.org) is a distributed SQL engine that can join data
from multiple data sources, including Hadoop and NoSQL
databases. It has a built-in support for JSON with colum-
nar in-memory execution. Drill is also able to dynamically
discover a schema during query processing, which allows to
handle schemaless data without defining a schema upfront.
Finally, Presto (prestodb.io) is a distributed SQL engine,
developed at Facebook for interactive queries, that can also
combine data from multiple kinds of data sources includ-
ing relational and non-relational databases. When querying
schemaless data, Presto tries to discover data types, but it
may need a schema to be defined manually in order to run
queries. All above-mentioned engines differ in their archi-
tecture, support to ANSI SQL, and extensions to SQL to
handle schemaless and nested data. These engines can con-
nect to MongoDB, which gave us various architectural op-
tions for implementation. However, none of them supports
multidimensional or OLAP querying over document stores.

3. DOCUMENT STORES
A document store holds a set of databases, each organizing

the storage of documents in the form of collections in a way
similar to rows and tables in relational databases. A docu-
ment, also called object, consists of a set of key-value pairs
(or fields) mainly encoded in JSON format (www.json.org).
JSON has many variants that are used for storage and op-
timization purposes such as BSON (www.bsonspec.org) in
MongoDB and, very recently, OSON in the Oracle DBMS
[17]. Keys are always strings, while values have the follow-
ing types: primitive (number, string, Boolean), object (or
sub-document), array of atomic values or objects.

From a conceptual point of view, a typical collection con-
sists of a set of business entities connected through two kinds
of relationships: nesting and references. Nesting consists of
embedding objects arbitrarily within other objects, which
corresponds to two types of relationships: to-one in the case
of a nested object and to-many in the case of an array of
nested objects. On the other hand, references are similar
to foreign keys in relational databases and can be expressed
manually or using a specific mechanism such as $ref in Mon-
goDB. However, when references are used, getting data re-
quires joins which are not supported in document stores; so,
nesting is most often used instead. Since a document store
has a flexible schema there are a variety of ways for data
representation; nevertheless, the way data is modeled may
affect performance and data retrieval patterns.

games :
{“ id” : “52f2a70eddbd75540aba7c06”,
“date” : ISODate(“1989-03-27”),
“teams” :
[ {“name” : “Detroit Pistons”,

“abbreviation” : “DET”,
“score” : 90,
“home” : true,
“won” : 1,
“results” : {“points” : 90, . . . },
“players” :
[ {“player” : “Isiah Thomas”,

“points” : 30, . . . },
. . .

]
},
{“name”: “Dallas Mavericks”,
“abbreviation” : “DAL”,
“score” : 77,
“home” : false,
“won” : 0,
“results” : {“points” :77, . . . },
“players” :
[ {“player” : “Rolando Blackman”,

“points” : 23, . . . },
. . .

]
}

]
}

(a)

games :
{“ id” : “52f2a70eddbd75540aba7c06”,
“date” : ISODate(“1989-03-27”),
“hometeam” :
{“name” : “Detroit Pistons”,
“abbreviation” : “DET”,
“score” : 90,
“home” : true,
“won” : 1,
“results” : {“points” : 90, . . . },
“players” :
[ {“player” : “Isiah Thomas”,

“points” : 30, . . . },
. . .

]
},
“guestteam” :
{“name”: “Dallas Mavericks”,
“abbreviation” : “DAL”,
“score” : 77,
“home” : false,
“won” : 0,
“results” : {“points” :77, . . . },
“players” :
[ {“player” : “Rolando Blackman”,

“points” : 23, . . . },
. . .

]
}

}

(b)

Figure 1: Sample JSON document of a game

Example 1. In the scope of this paper, we focus on col-
lections of JSON documents that logically represent the same
business entities, while expecting that their structure may
vary. In particular, we will use as a working example a col-
lection that models NBA games (adapted from [26]), where a
document represents one game between two teams along with
players and team results. In the sample document shown in
Figure 1a the main object is games, which holds the array
of objects teams (to-many), which in turn holds the object
results (to-one) and the array of objects players (to-many).
Figure 1b shows an alternative JSON representation of the
same domain; the relationship between game and teams is
modeled using two separate sub-documents (home and guest
team) instead of an array. Note that a simple query that
computes the average score by team would be much easier to
implement using the first representation and it would also
perform better, since in the second representation it would
require two separate queries.

4. APPROACH
As already discussed, our approach for enabling self-service

BI on document stores includes three phases: multidimen-
sional enrichment, querying, and OLAP enabling; these phases
are discussed in the detail in the following subsections.

4.1 Multidimensional Enrichment
The aim of this phase is to define a draft multidimensional

schema on which the user will be able to formulate queries.
To this end, we extract the schema of the input collection
and enrich it with basic multidimensional knowledge. Sev-
eral works have addressed schema extraction and discovery
from document stores [25, 29, 14]. These works focus on the
structural variety of documents within the same collection
caused by their schemaless nature and by the evolution of
data; for instance, [14] proposes to extract a JSON schema
(www.json-schema.org) similar to a JSON document and



infer attribute and type occurrence frequencies to empha-
size the structural variety. In [29], all the schema versions
in a collection are extracted and stored in a repository to be
used within a schema management framework. In order to
have a single view of the distinct schemata in a collection,
the authors propose a relaxed form of schema called skele-
ton that better captures the core and prominent fields and
filters out unfrequent ones. This would be useful for us since
we rely on a single view of the collection; however, the com-
putational cost for building skeletons is high, making them
unsuitable in real-time contexts.

Since schema discovery is not the focus of this paper, we
adopt a simple algorithm that builds a tree-like schema in-
cluding all the fields that appear in the documents [3]. This
algorithm works in a single-pass over data to infer a tree
structure of fields and their corresponding types (fields with
varying types are generalized to String).

The tree-like collection schema that will be the input for
the subsequent steps of our approach is defined as follows.

Definition 1 (Collection Schema). Given a collec-
tion D, its schema (briefly, c-schema) is a tree S “ pK,Eq
where:

‚ K is the union of the sets of keys appearing in the
documents of D;

‚ r P K is the distinguished root node and is labelled with
the collection name;

‚ E is a set of arcs that includes (i) an arc r Ñ k for
each key/value pair in the root r, and (ii) an arc k1 Ñ
k2 iff k2 appears as a key in an array of nested objects
having key k1.

Figure 2 shows the c-schema to which the document of
Figure 1a conforms. A path from the root key to a leaf
key is called an attribute. In denoting attributes we use
the dot notation omitting the root key (since a single col-
lection is involved) but including the keys corresponding to
nested objects; so, for instance, the c-schema in Figure 2
contains attributes id, date, teams.name, teams.results.points,
teams.players.player, teams.players.points, etc. The depth of
an attribute a is the number of arcs included in its path,
and is denoted by depthpaq (e.g., depthpidq “ 1); the set of
attributes at depth δ is denoted by Attrspδq.

games

id date teams

name abbreviation home score results.points players

player points . . .

. . .

Figure 2: NBA games c-schema

After the c-schema S of a collection has been defined, a
corresponding multidimensional schema has to be derived
from it. Since measures at different granularities can pos-
sibly be included in the documents (e.g., in our example,
points at the player’s level and score at the team level), the
definition we provide relates each single measure to a specific
set of dimension.

Definition 2 (Md-Schema). A multidimensional
schema (briefly, md-schema) is a triple M “ pH,M, gq
where:

‚ H is a finite set of hierarchies; each hierarchy hi P H
is associated to a set Li of categorical levels and a roll-
up partial order ľi of Li. Each element G P 2L, where
L “

Ť

i Li and at most one level in G is taken from
each hierarchy hi, is called a group-by set of H.

‚ M is a finite set of numerical measures.

‚ g is a function relating each measure in M to its di-
mensions, i.e., to the set of levels that determine its
granularity: g : M Ñ G where G is the set of all group-
by sets of H.

At first, a draft md-schema Mdraft is built from S by
tentatively labelling all attributes of types date, string, and
Boolean as dimensions (i.e., as levels of different hierarchies),
and all attributes of types integer and decimal as measures.
Date dimensions are then decomposed into different categor-
ical levels giving rise to standard temporal hierarchies (e.g.,
date ľ month ľ year). Note that no further attempt to dis-
cover hierarchies is made at this stage, since discovering the
FDs involving all attributes would be computationally too
expensive. As a consequence, in Mdraft two levels l and l1

might be erroneously modeled as two separate dimensions,
while they should be actually part of the same hierarchy
because l ľ l1.

The user can contribute to this step by manually changing
the label of some attributes, since in some cases a numeric
attribute can be used as a dimension, and a non-numeric
attribute can be used as a measure. The first situation has
no impact on the following steps, since a group-by set can
also include numeric attributes. Conversely, the second sit-
uation requires that the values of the non-numeric attribute
are transformed into numerical values to be supported by
aggregation functions.

To complete the definition ofMdraft, the granularity map-
ping g must be built. We recall from [22] that an md-schema
should comply with the multidimensional space arrangement
constraint, stating that each instance of a measure is related
to one instance of each dimension. In the c-schema S, at-
tributes in Attrspδq are related by to-many multiplicity to
those in Attrspδ ` 1q, so a measure cannot be related to
levels having a higher depth. Therefore, gpmq is set by con-
necting each measure m to the group-by set G that contains
all levels l P L such that depthpmq ě depthplq.

Example 2. In this example and in the following ones
we will refer to the representation in Figure 1a. Attribute
teams.score is numerical, so it is assumed to be a mea-
sure. It is depthpteams.scoreq “ 2, therefore teams.score
is tentatively associated in Mdraft with group-by set G “

tteams.name, teams.abbreviation, teams.home, id, dateu. All
the measures that have the same depth of teams.score



(e.g., teams.won and teams.results.points) are also asso-
ciated with G. Similarly, measure teams.players.points
has depth 3, so it is associated with group-by set
G1

“ tteams.players.player, teams.name, teams.abbreviation,
teams.home, id, dateu.

4.2 Querying
This phase is aimed at supporting a non-expert user in for-

mulating a well-formed multidimensional query. In a schema-
on-write approach, queries are formulated on a complete md-
schema whose correctness is ensured by the designer. Con-
versely, in a schema-on-read approach —our case—, the md-
schema is defined at read-time by the query itself. Though
this approach gives more flexibility because each user can
“force” her own multidimensional view onto the data, it re-
quires a further check to ensure that the FDs implied by the
query are not contradicted by data; so, querying becomes
an iterative process where the underlying md-schema is pro-
gressively refined together with the query.

Definition 3 (Md-Query). A multidimensional query
(briefly, md-query) q on md-schema M “ pH,M, gq is a
triple q “ pGq,Mq,Σq where

‚ Gq P G is the md-query group-by set;

‚ Mq ĎM is the set of required measures;

‚ Σ is a function that associates each measure m P Mq

with an aggregation operator.

Starting from the draft md-schema Mdraft, the user for-
mulates an md-query q by choosing one to three dimensions
(Gq), one or more measures of interest (Mq), and an ag-
gregation operator for each measure (Σ). However, to be
considered well-formed, q (and the md-schema q is formu-
lated on) should comply with the following constraints [22]:

71 The base integrity constraint, stating that the levels
in the group-by set are orthogonal, i.e., functionally
independent on each other.

72 The summarization integrity constraint, which requires
disjointness (the measure instances to be aggregated
are partitioned by the group-by instances), complete-
ness (the union of these partitions constitutes the en-
tire set), and compatibility (the aggregation operator
chosen for each measure is compatible with the type
of that measure) [15].

How to carry out these validity checks is discussed in the
following subsections.

Example 3. A possible md-query on the draft md-schema
described in Example 2 is the one characterized by Gq “

tteams.players.player, dateu, Mq “ tteams.scoreu, and Σ “

Sum. Unfortunately, aggregating on teams.score would re-
sult in double counting since each instance of teams.score is
related to multiple instances of teams.players.player (a team
has several players). So, this query violates disjointness and
is not well-formed.

The pseudo-code of the querying phase is sketched in Al-
gorithm 1. It starts from the md-query q and takes as input
both the c-schema and the md-schema. The output of the
algorithm is a valid md-query based on a refined md-schema

Algorithm 1 Querying

Require: A c-schema S, an md-schema M, an md-query q “

pGq,Mq,Σq on M
Ensure: A (refined) md-schema M, a (valid) md-query q on M
1: Mq Ð CheckMeasurespMq, Gq,Mq

2: if Mq “ H then
3: Mrec “ RecommendMeasurespGq,Mq

4: if Mrec ‰ H then
5: update Mq based on the user’s choice

6: if Mq ‰ H then
7: if |Gq | ą 1 then
8: Gq “ CheckGroupBypMq, Gq,M,Sq
9: if |Gq | “ 1 then
10: Lrec “ RecommendLevelspGq,Mq

11: update Gq and M based on the user’s choice

12: Σ Ð CheckSummarizationpq,Mq

13: Executepqq
14: else
15: ask the user to change the md-query group-by set Gq

to be used in the next phase. Algorithm 1 works as fol-
lows. Firstly, procedure CheckMeasures drops from Mq the
measures, if any, that are not compatible with Gq based on
their granularity (Line 1). If no measure is left, some alter-
native (compatible) measures are suggested by Recommend-
Measures (Lines 2–5). If some measures Mrec are found,
the user interacts to approve their inclusion in the md-query
(Line 5). Then, if the md-query group-by set includes either
2 or 3 levels (Lines 7–11), procedure CheckGroupBy is called
to drop from Gq the levels, if any, that are not compliant
with the base integrity constraint and update M accord-
ingly (Line 8). If just one level is left in Gq, procedure
RecommendLevels is called to look for additional group-by
levels (Line 10) and possibly include them in the md-query
(Line 11). Finally, procedure CheckSummarization checks
the aggregation operators (Line 12). We allow the resulting
md-query to be executed with a single group-by level, but
not without measures (Lines 6 and 13); in the latter case,
the user is asked to choose a new group-by set (Line 15).

4.2.1 Checking Measures
The goal of this procedure is to ensure that all the mea-

sures in Mq can be correctly aggregated at group-by set Gq;
specifically, our goal is to avoid that for some m PMq there
is a to-many relationship between m and a level l P Gq,
because this would violate disjointness and lead to double
counting when executing q. Measure check is based on the
g component of M, which expresses the granularity of each
measure.

To explain how this is done, we observe that the roll-up
partial orders on the hierarchies H of M induce a partial
order ľH on the set G of the group-by sets of H, defined as
the product order of the single roll-up orders.1 Measure m is
compatible with Gq iff gpmq ľH Gq; indeed, if this condition
is satisfied, the granularity expressed by the group-by set is
coarser than the one at which m is defined, meaning that
m can be safely aggregated at Gq. The measures that are
found not to be compatible with Gq are removed from Mq.

Example 4. Considering again the query in Example 3,
it is gpteams.scoreq ńH Gq (because teams.players.player is
not in gpteams.scoreq). Then, q is not well-formed and
teams.score is dropped from Mq.

1The product order of n total orders is a partial order on
the Cartesian product of the n totally ordered sets, such
that px1, . . . , xnq ľ py1, . . . , ynq iff xi ľ yi for i “ 1, . . . , n.



This check is performed at the schema level, so some ex-
ceptions may arise when the relationship between a measure
m and Gq is hidden in data. This may happen when arrays
are not used to model to-many relationships, or when m de-
pends either on a level not present in Gq or on a subset of
the levels in Gq [18]. In these cases, m may be non-additive
or even non-aggregable on Gq, so the user’s knowledge of
the application domain is required to manually fix summa-
rization (see Section 4.2.5).

4.2.2 Checking Group-by Set
This process is aimed at ensuring completeness and base

integrity.
The completeness condition is violated when, for some

level l P Gq, there is no instance corresponding to one or
more instances of a measure in Mq; from a conceptual point
of view, l is classified as optional [8]. In a schema-on-write
approach this problem is fixed by aggregating all “dangling”
measures into an ad-hoc group of l. Similarly, in our schema-
on-read approach, these instances are grouped into a null
instance of l thus restoring the completeness condition; then
for instance, the $ifNull operator of MongoDB could be used
to replace null values with an ad-hoc one when executing q.

Base integrity requires that the levels in Gq are mutually
orthogonal. So, from this point of view, md-query q is valid
only if, for each pair of levels l, l1 P Gq, there is no FD
between l and l1, i.e., there is a many-to-many relationship
between them. An FD is a to-one relationship, which we will
denote with lÑ l1 to emphasize that values of l functionally
determine the values of l1. Checking base integrity requires
to access data in order to retrieve AFDs between the levels,
in Gq, that are not related by a to-many multiplicity in the
c-schema (see Section 4.3 for more details about AFDs).

We recall that 1 ď |Gq| ď 3:

1. If |Gq| “ 1, orthogonality is obvious.

2. If |Gq| “ 2, the relationship between the two levels
in Gq is checked. If it turns out to be many-to-many
(e.g., if Gq “ tdate, teams.nameu), the base integrity
constraint is met and both levels remain in Gq. If it
turns out to be many-to-one (e.g., if Gq “ tid, dateu),
then there is a roll-up relationship between the two
levels in Gq. Only the level at the “many” side (id) re-
mains in Gq and the md-schema is modified by placing
these levels in the same hierarchy (id ľ date). A spe-
cial case is when the relationship is one-to-one (e.g.,
if Gq “ tteams.name, teams.abbreviationu); here, one of
the levels is kept in Gq while the other is considered
as a descriptive attribute.

3. In case |Gq| “ 3, there are three possibilities:

(a) If many-to-many relationships are found between
each pair of levels, then the constraint is met
and all levels remain in Gq (e.g., if Gq “

tdate, teams.name, teams.players.playeru).

(b) Let many-to-many relationships be found between
two pairs of levels pl, l1q, pl, l2q, and a many-to-one
relationship be found between the remaining pair
pl1, l2q (e.g., if Gq “ tteams.name, id, dateu, since
idÑ date). In this case, l1and l2 are placed in the
same hierarchy in the md-schema (l1 ľ l2), and
l2 is removed from Gq.

(c) Finally, when l1 Ñ l and l2 Ñ l,

i. if the relationship between l1 and l2 is many-to-
many, they are both retained in Gq; conceptu-
ally, l is a convergence [8] and the md-schema
must be updated by adding l1 ľ l and l2 ľ l.

ii. if the relationship between l1 and l2 is many-to-
one, then the three levels in Gq belong to the
same hierarchy (l1 ľ l2 ľ l) and only the level
with highest cardinality, l1, is kept in Gq.

4.2.3 Recommending Measures
When there is no compatible measure left in Mq, this pro-

cedure looks for alternative measures. Specifically, it returns
all the measures in the md-schema that are compatible with
Gq, i.e., all m PM such that gpmq ľH Gq.

Example 5. With reference to Example 4, procedure
RecommendMeasures returns teams.players.points, since it
is gpteams.players.pointsq ľH Gq.

4.2.4 Recommending Levels
Recommending additional group-by levels is done when

originally the user had selected two or three group-by levels,
but only one of them was left in Gq after checking the group-
by set. For a given candidate level l, it requires to check
that the base integrity constraint is met between l and some
other level inM, and that the measure check is not violated.
The first level found is proposed to the user, who has the
choice to use it or to proceed looking for other levels (up to
a maximum of three levels in the group-by set).

Example 6. Let Gq “ tid, dateu and Mq “

tteams.players.pointsu. The relationship between the
levels in Gq is many-to-one, so date is removed. In this
case, to recommend levels we may look for a many-to-many
relationship between id and teams.name, teams.abbreviation,
teams.home, and teams.players.player. Since teams.name
does not violate the measure check and has a many-to-many
relationship with id, it is recommended to the user as a
possible group-by level.

4.2.5 Checking Summarization
Compatibility states that measures cannot be aggregated

along hierarchies using any aggregation operators. In prin-
ciple, checking summarization would require knowing the
measure category (flow, stock, or value-per-unit), the type
of group-by levels (temporal or non-temporal), and the ag-
gregation operator (Sum, Avg, Min, Max, Count, etc.) [15].
Knowing the measure category and type of group-by levels
could be used to recommend some aggregation operators,
but still the user would have to choose among a number
of potential options; besides, correctly classifying a mea-
sure into flow, stock, or value-per-unit may be hard for non-
skilled users. Therefore, we prefer to enable users to directly
pick an aggregation operator for each measure in Mq.

Summarization is violated when a measure m P Mq has
finer granularity than another measure m1

P Mq, since m
would be double-counted when executing q. In this case,
the user is warned that she will get erroneous results, and
she may choose to change the aggregation operator for m
(e.g., using Min, Max or Avg instead of Sum will give the
correct result) or to drop m from Mq.



Example 7. Let Mq “ tteams.score, teams.players.ptsu.
These measures have different granularities, so if the user
has chosen to aggregate teams.score (which has finer gran-
ularity) using Sum she will get double counting. Then, she
can either change the aggregation operator for teams.score
to Avg or drop teams.score from Mq.

4.3 OLAP Enabling
The goal of this phase is to refine the md-schema by dis-

covering some hierarchies, so that the user is enabled to in-
teract with data in an OLAP fashion. Completely building
all the hierarchies would require to mine all FDs between
levels, which would be computationally too expensive. For
this reason, we only build local portions of hierarchies for
the levels in the group-by set of the previously-formulated
md-query q. Besides, again for complexity reasons, we only
mine simple FDs (i.e., those relating single attributes rather
than attribute sets), which are mostly common in multidi-
mensional schemata.

Specifically, the idea is to mine, for each level l P Gq for
which no roll-up relationships have been discovered yet, the
FDs of either type lÑ l1 (to enable a roll-up of l) or l1 Ñ l (to
enable a drill-down of l). Then, if the user applies a roll-up
or drill-down, a new md-query q1 is formed and the process
is iterated to further extend the hierarchies. Remarkably,
using FDs to discover hierarchies guarantees that q1 satisfies
the conditions discussed earlier, specifically disjointness and
completeness.

FDs are not explicitly modeled in a document store, so
we must resort to data. Since document stores host large
amounts of data, we can reasonably assume that the mined
FDs are representative enough of the application domain.
However, schemaless data commonly present some errors
and missing values which may hide some FDs. The tool we
adopt to cope with this issue are approximate FDs (AFDs)
[10, 11], which “almost hold” on data, instead of traditional
ones. Unfortunately, this entails an approximate satisfac-
tion of the disjointness and completeness conditions, possi-
bly leading to non-disjoint and incomplete hierarchies.

Definition 4 (Approximate FD). Given two levels l
and l1, let strengthpl, l1q denote the ratio between the number
of unique values of l and the number of unique values of ll1.
We will say that AFD l ; l1 holds if strengthpl, l1q ě ε,
where ε is a user-defined threshold [11].

At a given time during a user’s session, letM be the cur-
rent version of the md-schema and q be the last md-query
formulated. Then, the search space for mining AFDs in-
cludes the levels that are not in Gq and are not involved
in roll-up relationships in M. To reduce the search com-
plexity we take into account the structural clues provided
by the c-schema. Specifically, let l and l1 be two levels, such
that depthplq ă depthpl1q; as already stated, the attributes
in Attrspδq are related by to-many multiplicity to those in
Attrspδ ` 1q, so l ; l1. For this reason, checking if l and
l1 should be placed in the same hierarchy only requires to
check if l1 ; l. In addition, we avoid checking trivial and
transitive AFDs since we explore one hierarchy at a time.
Finally, the result of all AFD checks performed is stored
in a meta-data repository, to be used to avoid checking the
same AFDs twice.

In the following subsections, roll-up and drill-down dis-
covery are detailed.

4.3.1 Roll-up Discovery
Let l P Gq; discovering possible roll-ups for l requires to

mine the AFDs of type l ; l1, with l1 P LzGq and depthpl1q ď
depthplq. Let R be the set of all right-hand sides for these
AFDs. To avoid useless checks, the AFDs whose right-hand
side l1 has higher cardinality than l are not checked, since
they clearly cannot hold. One exception is when |l| “ |l1| or
|l| Á |l1| (due to approximation): in this case both l1 ; l
and l ; l1 must be checked, since the relationship between
l and l1 may be one-to-one (so l1 is a descriptive attribute
for l). These bidirectional checks are made at the end of the
process to prioritize the discovery of “true” hierarchies. The
AFDs in R are checked until one is found to hold, say l ; l1.
Then, the md-schema M is updated by placing these levels
in the same hierarchy (l ľ l1) and the user is notified of the
ability of performing a roll-up from l.

Example 8. Let Gq “ tid, teams.nameu and Mq “

tteams.score, teams.wonu. The search space for level id
only includes date, since it is the only level for which
depthpdateq ď depthpidq. Since |id| ą |date|, id ; date
is checked. This is found to be true, so the md-schema is
updated with id ľ date. The search space for teams.name
consists of teams.abbreviation and teams.home; by query-
ing data we find that |teams.name| “ |teams.abbreviation| ą
|teams.home|. Firstly, teams.name ; teams.home is
checked, and found not to hold. Then, teams.name ;

teams.abbreviation and teams.abbreviation ; teams.name are
checked; both are found to hold, giving rise to a descriptive
attribute.

4.3.2 Drill-Down Discovery
Here the set of candidate levels for checking AFDs of type

l1 ; l includes the levels in LzGq whose depth is greater
or equal than l, i.e., such that depthpl1q ě depthplq. As in
roll-up discovery, an AFD whose left-hand side l1 has lower
cardinality than l is not checked, since it cannot hold. If
l1 ; l is found to hold, l1 ľ l is added to M and the user is
notified of the ability of drilling down from l.

Note that drilling down from l to l1 could produce a new
md-query q1 whose group-by set, Gq1 “ Gqztlu Y tl

1
u, is not

compatible with some of the measures in Mq1 “ Mq. Since
checking compatibility is computationally cheaper than check-
ing AFDs (as explained in Section 4.2.1, it can be done
based on the partial order of group-by sets, without access-
ing data), the AFD for a candidate level l1 is checked only if
Gq1 is found to be compatible with at least one of the mea-
sures in Mq1 . Of course, if l1 ; l is found to hold and the
user decides to drill-down to l1, the incompatible measures
in Mq1 must be dropped.

Example 9. Consider again Example 8. The
search space for id includes date, teams.home, and
teams.players.player (we recall that teams.abbreviation has
already been added as a descriptive attribute). Since id
has the highest cardinality, there are no AFDs to check.
On the other hand, the search space for teams.name
consists of teams.home and teams.players.player, where
|teams.home| ă |teams.name| ă |teams.players.player|. AFD
teams.home ; teams.name is not checked because of its
cardinality; the same for teams.players.player ; teams.name,
since Gq1 “ tid, teams.players.playeru is not compatible with
the measures in Mq1 .



The md-schema resulting after OLAP enabling in Exam-
ples 8 and 9 is shown in DFM notation [8] in Figure 3. Note
that, at the end of the user’s session, md-schemata can be
stored for reuse and sharing.

Game

Teams.score
Teams.won

Teams.nameid 

Date Teams.abbreviation

Month

Year

Figure 3: The games md-schema

5. EXPERIMENTAL EVALUATION
We evaluate the performance of our approach using two

real-world datasets :

‚ Games. The working example dataset has been col-
lected by Sports Reference LLC [26]. It contains around
32K nested documents representing NBA games in the
period of 1985–2013. Each document represents a game
between two teams with at least 11 players each. It
contains 46 attributes; 40 of them are numeric and
represent team and player results.

‚ DBLP. This dataset contains 5.4M documents scraped
from DBLP (dblp.uni-trier.de/xml/) in XML for-
mat and converted into JSON. Documents are flat and
represent eight kinds of publications including confer-
ence proceedings, journal articles, books, thesis, etc.
So, they have common attributes such as title, au-
thor, type, year and uncommon ones such as journal
and booktitle.

Implementation. Each dataset has been loaded as a col-
lection in a local MongoDB instance running on Intel Core i5
CPU at 3.3 GHz and 4 GB of RAM machine with Ubuntu
14.04 OS. We have focused on the parts of our approach
that require accessing data to retrieve multiplicities of inter-
level relationships by means of count distinct queries,
since the purely algorithmic parts have no relevant compu-
tational complexity. Query execution can be delegated ei-
ther to the document store (MongoDB in our architecture)
or to query engines such as Spark SQL, Drill, and Presto.
Based on the tests we performed, these engines are signifi-
cantly slower than native querying, plausibly because of the
different query execution plans. In addition, these engines
sometimes return incorrect results when it comes to count
distinct queries involving nested attributes. Therefore, we
defined two queries based on the native query language of
MongoDB:

1. The first one (QAFD) checks the AFD between a pair
of levels and returns its approximation using the for-
mula of Definition 4.

2. The second one (Qcard) returns the cardinality of a
level.

Methodology. In the previous section, we showed how
our approach validates md-queries and iteratively derives an
md-schema that satisfies the multidimensional constraints.

In this section, we consider five md-queries on the games
dataset, q1 to q5, and four on the DBLP dataset, q6 to q9
(the group-by sets of all queries are shown in Table 1). Then,
we measure the time required by the querying and OLAP-
enabling phases. We also discuss the efficiency of our algo-
rithm based on the number of performed and skipped checks
in each phase. The results obtained are proposed below.

5.1 Querying
To evaluate the efficiency of the validation of an md-query,

we measure the time of the group-by check since it is the
only step that requires to access data.2 In Table 1 we show,
for our nine md-queries, the number of checks avoided using
the c-schema (#Avoided), and the total time for validating
the md-query (tquerying). In order to measure tquerying, the
AFD checks required by a single md-query are executed in
parallel. We can easily conclude that (i) our approach effec-
tively reduces the number of checks by relying on the dataset
structure, and (ii) the md-query validation time depends on
the number of levels in the group-by set and on their depths.
Remarkably, the md-query validation time is still reasonable
(max 50 secs) even with a large dataset, which makes our
approach suitable for real-time usage.

Dataset q Gq #Avoided tquerying

Games

q1 id, teams.name 1/2 0.181
q2 date, teams.name 1/2 0.177
q3 id,teams.name,

teams.home
2/6 0.211

q4 teams.players.player,
date, teams.name

3/6 1.364

q5 teams.players.player,
teams.name,
teams.home,

2/6 1.157

DBLP

q6 journal, year 0/2 3.616
q7 year, type 0/2 11.843
q8 author, year 1/2 36.685
q9 type, year, author 2/6 49.993

Table 1: Total time for the querying phase (in sec-
onds)

5.2 OLAP Enabling
For OLAP enabling, we measure the time to check each

single AFD and the time to retrieve the cardinality of each
level. Tables 2 and 3 show, for each AFD checked between
a pair of levels, the number of processed documents, the
AFD strength, and the checking time. The difference in the
number of documents (or the data size) for a given dataset
is to due to the flattening operation that is performed when
executing QAFD. The results clearly show that the querying
time tAFD depends on the levels and their depths. This
is apparent for the AFDs involving the author attribute in
Table 3, which have a higher execution time. This is due
to the amount of memory allowed by MongoDB for group-
by queries, which is limited to 100 MB; when a query does
not fit in memory, temporary files must be written on disk,
which dramatically slows execution down.

2The time for actually executing each md-query is not con-
sidered here, since the optimization of each md-query is out
of the paper scope.



l ; l1 #Docs strengthpl, l1q tAFD

id ; date
32K

100% 0.113
date ; id 13.96% 0.065

t.name ; id

64K

0.05% 0.181
t.name ; date 0.05% 0.177
t.name ; t.abbreviation 100% 0.175
t.name ; t.home 50% 0.168

t.abbreviation ; id

64K

0.05% 0.169
t.abbreviation ; date 0.05% 0.169
t.abbreviation ; t.name 100% 0.161
t.abbreviation ; t.home 50% 0.163

t.home ; id

64K

0.01% 0.169
t.home ; date 0.02% 0.159
t.home ; t.name 2.77% 0.179
t.home ; t.abbreviation 2.77% 0.169

t.players.player ; id

644K

0.34% 1.285
t.players.player ; date 0.34% 1.278
t.players.player ; t.name 34.74% 1.113
t.players.player ; t.abbrev. 34.74% 1.087
t.players.player ; t.home 50.54% 1.054

Table 2: Time for AFD checks on the Games dataset
(in seconds)

l ; l1 #Docs strengthpl, l1q tAFD

year ; type
5.4M

21.76% 10.945
year ; journal 0.35% 3.373
year ; booktitle 0.16% 4.461

type ; year
5.4M

2.07% 11.211
type ; journal 0.12% 8.181
type ; booktitle 0.03% 4.824

journal ; year
5.4M

7.09% 3.365
journal ; type 99.94% 8.166
journal ; booktitle no relationship 1.841

booktitle ; year
5.4M

29.02% 4.517
booktitle ; type 54.97% 4.949
booktitle ; journal no relationship 1.852

author ; type

12M

42.98% 43.231
author ; year 36.13% 36.685
author ; journal 42.31% 15.401
author ; booktitle 31.92% 18.881

Table 3: Time for AFD checks on the DBLP dataset
(in seconds)

Dataset l |l| tcard

Games

id 31686 0.124
date 4424 0.019
teams.name 36 0.057
teams.abbreviation 36 0.056
teams.home 2 0.049
teams.players.player 2191 0.622
All levels — 0.927

DBLP

author 1859242 12.298
journal 1632 0.011
booktitle 10811 0.063
year 82 0.001
type 8 0.001
All levels — 12.374

Table 4: Time for cardinality checks (in seconds)

Table 4 shows for each level its cardinality and the time
to retrieve it. From these results, we can conclude that the
efficiency of checking cardinalities also depends on the lev-
els. tcard is normally small, since MongoDB can use indexes
instead of collection scans. The high value of tcard for the
level teams.players.player is due to the non-use of nested at-
tribute indexes to answer the corresponding query. As to
level author, Qcard failed to return the result because the
BSON document size (16MB) was exceeded. So we had to
define a different query that could not benefit from indexes
and suffered from the memory limit discussed earlier.

Using cardinalities to reduce the search space significantly
improves the overall performance, since checking a cardinal-
ity is faster than checking an AFD. Besides, the number of
feasible AFDs when using cardinalities (8, i.e., their strength
is shown in bold in Table 2) is less than half the total number
of all checked AFDs (19, i.e., the number of rows in Table
2). The same applies for the DBLP dataset, where only 10
of 16 AFDs are feasible.

Finally, Table 5 shows the overall performance of the OLAP
enabling phase for our nine md-queries (for all levels in the
query): the number of roll-up and drill-down relationships
discovered, the number of checks avoided in roll-up and
drill-down discovery, and the total time spent. The latter
(tOLAP ) is calculated as the sum of the times for checking
each AFD, plus the time for checking all cardinalities. The
results show that our approach for discovering hierarchies
effectively reduces the number of AFD checks by using car-
dinalities and by relying on the dataset structure. Further-
more, the time required by OLAP enabling is reasonable for
all md-queries (2 minutes at most), which proves that our
performances fit real-time contexts.

Dataset q #Roll-up, #Drill-down #Avoided tOLAP

Games

q1 1,0 5/8, 6/8 2.657
q2 0,1 6/8 , 5/8 2.657
q3 1,0 7/9, 5/9 3.706
q4 0,1 5/9, 7/9 3.685
q5 0,0 7/9, 7/9 2.513

DBLP

q6 1,0 4/6 , 2/6 89.940
q7 0,1 6/6 , 0/6 113.287
q8 0,0 3/6 , 3/6 107.401
q9 0,1 4/6 , 2/6 67.653

Table 5: Total time for the OLAP enabling phase
(in seconds)

6. CONCLUSION
In this paper we have proposed an interactive schema-on-

read approach for enabling OLAP on document stores. To
this end, AFDs are mined and used to automate the discov-
ery of multidimensional structures. The user interaction is
limited to the selection of multidimensional concepts and to
a proper choice of the aggregation operators. After validat-
ing user queries from the multidimensional point of view and
refining the underlying multidimensional schema, we adopt
a smart strategy to efficiently build local portions of hierar-
chies aimed at enabling OLAP-style user interaction in the
form of roll-ups and drill-downs.

Overall, the experiments we conducted show that the per-
formances of our approach are in line with the requirements



of a real-time user interaction. However, some relevant is-
sues still need to be explored and are part of our future
work. To improve performance, we plan to further optimize
the algorithms proposed. Besides, to increase effectiveness,
the evolution of data and schemata in a collection must be
considered; we intend to address this issues by searching for
temporal FDs.
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[22] O. Romero and A. Abelló. Multidimensional design by
examples. In Proc. DaWaK, pages 85–94, 2006.

[23] O. Romero and A. Abelló. Automating
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