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ABSTRACT
Managing large and confusing sets of increasing data is a
well-known problem in Data Mining. Since compromises in
many use cases like Recommender Systems or preference-
based applications are becoming more and more usual, it is
very useful to cluster sets of promising results in order to
get an overview and present them properly. In this paper we
present the Pareto-dominance as a very suitable and promis-
ing approach to cluster objects over better than relationships.
In order to meet someones desires, one can tip the balance of
the final results to the more favored dimension if no decision
for allocating objects is possible.

CCS Concepts
•Information systems → Clustering;

Keywords
Clustering, Pareto-Dominance, k-means

1. INTRODUCTION
Suggestions in Recommender Systems sometimes are con-

fusing, because there are often too many results presented to
the user. Clustering these results is a very promising oppor-
tunity to present less but representative results to the user.
For example, in a Recommender System which addresses
people with a similar taste of music, the regional distance
to users which represents possible matches, similar to other
applications, e.g., Tinder1, is considered almost as important
as the music-matching score.

Assuming user Bob is searching for users, who have a high
music-matching score and live in the neighborhood. There
are users which are better than other users regarding one

1http://www.gotinder.com/
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dimension, e.g., the music-matching score, but are worse at
the same time than other users regarding the other dimension,
e.g., the distance to Bob. In Figure 1 user P1 has a very
close distance to Bob, and dominates due to that all other
users. But P1 is dominated by all other users w.r.t. the very
low music-matching score to Bob at the same time. This
exposition, where only non-dominated users are shown is
called Pareto-frontier or Skyline.

Now, the aim is to organize a large set of objects in a Pareto-
frontier clearly. One method is to compress this set and
express it with a smaller appropriate set of representatives.
Another approach is to mask out undesirable results, e.g.,
users like P9 and P10 who have a higher music-matching
score, but unfortunately a very high distance. These two
attempts can only be reached with some kind of clustering.

Figure 1: Pareto-frontier of users with preferably best music-
matching and preferably closest distance.

However we have two dimensions with different domains,
e.g., distance in kilometers and music-matching as a score
value. Therefore it is hardly possible to achieve an useful
outcome without great afford, because the dimensions should
be set into relation to each other. In our example it is very
circumstantial to set this wide range of distances in relation
to only a small range of music-matching scores. Since every
user has diverse requirements in such a Recommender System,
it is by far not sufficient to use the basic k-means clustering
algorithm along with the typical Euclidean distance.

The approach presented in this paper uses the Pareto-
dominance in order to cluster over better than relationships
unlike mapped Euclidean distances, which have to be ad-
justed inconveniently for each use case.

The rest of the paper is organized as follows: We present
related work in Section 2 and explain the basic background



knowledge in Section 3. Our Pareto-dominance clustering
approach is described in Section 4. After that, we discuss
experiments, where runtime, number of iterations and quality
of the final clusters are considered and compared to the basic
k-means clustering algorithm in Section 5. Finally Section 6
summarizes results and gives an outlook on future work.

2. RELATED WORK
A very early approach considering a Pareto-efficient clus-

tering was published in [3] where more then one criterion
for clustering was consulted. This paper presents on the
one hand a modified relocation algorithm, and on the other
hand a modified agglomerative algorithm. These approaches
aim finding a Pareto-dominant clustering that dominates all
other clusterings, while the approach presented in our paper
uses Pareto-dominance in order to allocate an object to a
specific cluster.

In [4] a k-means clustering-based technique was published,
where a so-called SkyClustering method is working within
a Skyline-computation in SQL on a relational database, in
order to compress a large Pareto-optimal set of objects to
explore the diversity of a Skyline.

In order to prevent a large set of Pareto-optimal objects
in highdimensional space in [2] only a few dimensions k are
considered for the Skyline computation. This approach at-
taches weight to less, but maybe more important dimensions
on objects.

Another approach to handle with Skylines was presented
in [7], where supervised alternative clusterings are intro-
duced. The main focus of this paper is to find clusterings of
good quality starting from given negative clusterings which
should be as different as possible and at the same time a
Pareto-optimal solution. If the solution is not satisfying, the
Pareto-frontier will be reclustered with the tradition k-means
clustering, unlike the Pareto-dominant clustering presented
in our paper.

3. BACKGROUND
Before explaining the Pareto-dominance clustering frame-

work, we describe some important concepts. One basic point
is the preference framework in order to shape desire-based
queries. The other basic point mentioned in this section is
the k-means clustering algorithm.

3.1 Preferences
Preferences represent wishes which should be fulfilled. In

database systems a preference P = (A,<P ) is modeled as a
strict partial order on the domain of A, dom(A). The term
x <P y can be described as “I like y more than x”. The most
important preference is the well-known Pareto preference
which models equal importance.

Definition 1 (Pareto Preference).
A Pareto preference P := P1 ⊗ P2 = (A1 ×A2, <P ) with

preferences Pi = (Ai, <Pi) and tuples x = (x1, x2), y =
(y1, y2) ∈ dom(A1)× dom(A2) is defined as follows:

(x1, x2) <P (y1, y2)⇔
(x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨
(x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1))

In order to construct Pareto preferences there are several
preference constructors published in [6], e.g., BETWEEN for
values in an interval [low, up] or LOWEST and HIGHEST for
minimum and maximum . These preferences are used to build
Pareto preferences in an intuitive way. Pareto preference
queries coincide with the traditional Skyline queries [1], If
we restrict the attention to LOWEST/HIGHEST as input
preferences.

3.2 k-means Clustering
The k-means clustering algorithm is the point of origin for

the clustering approach presented in our paper. Therefore
the base k-means clustering is briefly described here, as it is
presented in [5].

Given a set X = {xi | i = 1, ..., n} of d-dimensional
points xi = (xi1, ..., xid) of size n and a set of k Clusters
C = {cj | j = 1, ..., k} the algorithm works as follows:

Algorithm 1 (k-means-clustering).

1. Choose an initial partition for the centroids of k clus-
ters and repeat the following steps 2 and 3 until two
succeeding clusterings are stable. Two clusterings are
stable, if the points of the particular clusters are equal.

2. Allocate each point to the closest cluster based on the
Euclidean norm to the cluster-centroids.

d(x1, x2) = || x1 − x2 ||2=

√
d∑

i=1

(x1i − x2i)2

3. Recalculate the cluster-centroids of each cluster by av-
eraging the contained points.

Example 1 (k-means euclidean norm).
Consider the users in Figure 1, shown as points on a

Pareto-frontier. Now we want to get three clusters. First,
initialize the centroids of the three desired clusters randomly
with P2, P5 and P8 for C1, C2 and C3.

Now for each user P1, ..., P10 the Euclidean distance to all
three centroids, determined in step 1, are calculated. P1, P3

and P4 are allocated to C1, while the users P6 and P7 are
assigned to C2. Finally C3 receives the users P9 and P10.

In the last step of each iteration, the new centroids W1,W2

and W3 of each cluster are averaged based on the points
contained in the clusters. The result is shown in Figure 2.

Figure 2: k-means clustering of users with the Euclidean norm after
the first iteration.



4. PARETO-DOMINANCE FRAMEWORK
In this section we describe the Pareto-dominance frame-

work in detail. While a Pareto preference is used to determine
the importance of preferences, the Pareto-dominance in our
approach is used to allocate an object to the possibly best
cluster, which is not dominated by other clusters w.r.t. the
distances of the individual objects, by using the Euclidean
norm for one-dimensional distances. Moreover the Pareto-
dominance can additionally be used to find the centroids
closest point on the Pareto-frontier as new centroid in each
cluster.

4.1 Cluster Allocation
Consider the Pareto-frontier in Figure 1, presenting users

w.r.t. a possibly high music-matching score and a possibly
close distance. We want to get three promising clusters
C1, C2 and C3. In this case assume the cluster-centroids are
represented by the points P2, P5 and P8 (Step 1 in Algo-
rithm 1). After that, for each point P1, ..., P10 the particular
distances of the x- and the y-dimension to the cluster cen-
troids are calculated as it can be seen in Table 1. In our
approach this replaces step 2 in Algorithm 1. Furthermore
the y-dimension, which represents the music-matching score
is chosen as more important than the x-dimension at the
appearance of Pareto-optimal cluster-centroids. Thus a one-
dimensional clustering is realized. The allocation of each
user to a cluster can be seen in Figure 3.

dxC1
dyC1

dxC2
dyC2

dxC3
dyC3

P1 27.44 0.01 120.72 0.06 264.60 0.09
P2 0.00 0.00 93.27 0.05 237.16 0.09
P3 1.66 0.01 91.61 0.04 235.50 0.07
P4 41.27 0.04 52.00 0.01 195.89 0.05
P5 93.27 0.05 0.00 0.00 143.89 0.04
P6 141.27 0.06 48.00 0.016 95.89 0.023
P7 150.88 0.09 57.61 0.04 86.28 0.00
P8 237.16 0.09 143.89 0.04 0.00 0.00
P9 311.32 0.09 218.05 0.04 74.16 0.00
P10 323.08 0.10 229.81 0.06 85.92 0.02

Table 1: Distances of each user to each cluster centroid. C1 :=
P2, C2 := P5, C3 := P8, x-dim. = distance, y-dim. = music match-
ing score.

Now we shortly explain the allocation of the given users
to the clusters:

• The users P1 and P3 are assigned to cluster C1, because
the centroid of C1 dominates the other two centroids
regarding the distances in both dimensions.

• P4 has 2 Pareto-optima, because of the closer distance
to C1 regarding the x-dimension and to C2 regard-
ing the y-dimension. Hence C1 and C2 are Pareto-
optimal w.r.t. to the x- and y-dimension. Now the
one-dimensional clustering tips the balance to C2.

• P6 is allocated to Cluster C2, because of the closer
distances to the centroid of C2 in both dimensions.

• P7 is closer to C2 concerning the x-dimension, but has
a smaller distance to the centroid of C3 regarding the
y-dimension. This ensures that P7 is allocated to C3.

• P9 and P10 are allocated to cluster C3, because of the
existence of only one Pareto-dominant cluster centroid
namely C3.

Figure 4 shows a snippet of the Pareto-frontier of Figure 2
respectively Figure 3. While P4 is assigned to C1 regarding

Figure 3: Clustering of users of Figure 1 with the Pareto-dominance
after the first iteration.

the smaller Euclidean distance of 41.27 unlike a distance
of 52.00 to C2, the Pareto-dominance approach shows its
versatility. The user Bob now can influence on the clustering
by choosing one dimension as the more important at the
appearance of Pareto-optima. If he chooses the x-dimension,
as more important P4 will be assigned to C1. This ensures
that each user will be allocated to one and only one cluster,
to avoid overlapping and imprecise clusters. This example
shows, that a Pareto-dominant clustering combined with
a one-dimensional clustering at the appearance of Pareto-
optima tends to a hierarchical clustering. Users with similar
scoring values w.r.t. the music matching score are clustered
together, unlike in the basic k-means clustering. In particular
cluster C1 and C2 contain users with very similar music-
matching scores, where the range between the two boundary
points is very small unlike the k-means clustering approach.
So if P7 is allocated to C2 and P4 to C1 the users contained
in the clusters are not as similar as in our approach.

Figure 4: Camparison of Pareto-dominance and Euclidean Distance.
C1 := P2, C2 := P5.

4.2 Cluster Centroids
After the allocation of each user to a cluster, the cluster-

centroids are recalculated regarding the contained users. For
each cluster all values for the x- and y-dimension are averaged,
which can be seen in Figure 3 as W1,W2 and W3.

After that for each cluster-centroid W1,W2 and W3 the
closest Pareto-dominant user in each cluster can be optionally
selected as the new cluster-centroid for the next iteration. In
order to find these users, the particular distances regarding
the two dimensions are calculated, which can be seen in Table
2. Figure 3 shows the calculated centroids before assigning
and the new centroids aswell.



• P2 is the new cluster centroid of C1, because of the
closest distance of each x- and y-dimension to W1.

• For cluster C2 P5 is allocated as new centroid because
of the closer distances in both dimensions, too.

• P8 and P9 both are Pareto-optima for the allocation
of the cluster centroid of C3, because P9 is closer to
W3 regarding the y-dimension and P8 regarding the x-
dimension. The one-dimensional clustering determined
by Bob tips the balance to P9 as new cluster centroid.

dxW1
dyW1

dxW2
dyW2

dxW3
dyW3

P1 18.848 0.010 — — — —
P2 8.595 0.001 — — — —
P3 10.253 0.010 — — — —
P4 — — 50.667 0.012 — —
P5 — — 1.331 0.002 — —
P6 — — 49.331 0.014 — —
P7 — — — — 104.730 0.004
P8 — — — — 18.451 0.004
P9 — — — — 55.709 0.003
P10 — — — — 67.4726 0.0120

Table 2: Particular distances of recalculated cluster-centroids
W1,W2,W3 to the points in each cluster.

5. EXPERIMENTS
In this section we describe the implemented frameworks

for Java and PG/PL-SQL briefly and present results of exper-
iments regarding runtime, number of iterations and quality
of the clustering approaches compared to the basic k-means
approach.

5.1 Benchmark Settings
The first implementation of our Pareto-dominant cluster-

ing was realized as a Java program with a complexity of
O(n · c ·m) where n is the number of points that should be
clustered in c clusters in m iterations. We also implemented
a database internal approach based on PG/PL-SQL in Post-
greSQL2, because we want to show the benefits of clustering
in relational databases.

For both approaches we varied the number of points
and the number of desired clusters. To compare the run-
times, we created several synthetic anticorrelated sets of
two-dimensional Pareto-optimal points. In order to gain
averaged reliable data, clusterings were performed in test
rows with varying numbers of repeats w.r.t. the number of
points.

5.2 Benchmarks
The benchmarks of the Java implementation in Figure

5 show that the approach using the Pareto-dominance are
mostly similar regarding the runtime compared to the basic
k-means approach using the Euclidean distance. For constant
numbers of clusters and growing number of points the runtime
of the averaged clustering is growing for both approaches.
Whereas for constant numbers of points and growing cluster-
ings there are some aberations at k = 7 for 15000 for both
approaches. Especially if points at the border of the cluster
switch between two clusters, the runtime is growing. All in
all the clustering approach using the Pareto-dominance is
nearly efficient as using the Euclidean distance.

2https://www.postgresql.org/

Figure 5: Java benchmarks of the basic k-means cluster-
ing algorithm with Euclidean distance(Eucl) and Pareto-
dominance(P-d).

The benchmarks for the database approach in Figure 6
shows different behavior. The Pareto-dominance approach
is of factor 2 slower than the approach using the Euclidean
distance, because of the use of expensive database operations
like Joins or Group by operations, which are not needed
using the Euclidean distance. Especially the tests with k =
5, 7 and sets with 15000 points show aberations for the
Pareto-dominance. But all in all for growing number of
points and growing number of clusters the runtime is growing,
too. Finally our approach is slower than the basic k-means
clustering. But the effort of normalizing the users w.r.t. the
two dimensions should be considered as a time-consuming
process in each use case.

Figure 6: PostgreSQL benchmarks of the basic k-means
clustering algorithm with Euclidean distance(Eucl) and
Pareto-dominance(P-d).

The number of iterations w.r.t. the number of desired
clusters and the number of points can be seen in Figure 7.
For both frameworks, the number of iterations is similar. For
growing number of desired clusters, the number of iterations
is growing for both approaches aswell, except for the sets of
k = 5, 7 with 15000 points using the Pareto-dominance. In
contrary to our expectations for this experiment the num-
ber of points in the sets has no influence on the number of
necessary iterations to achieve a stable clustering, i.e. two
succeeding clustering-iterations are equal.



Figure 7: Comparison of Euclidean distance (Eucl.) and
Pareto-dominance(P-d) regarding iterations.

5.3 Quality
In this subsection we want to compare the quality of clus-

ters between the basic k-means clustering algorithm and
our approach in order to show that the stable clusters are
quite similar and not completely different and thus useful for
clustering objects of Pareto-frontiers.

Considering the example from Figure 2 and 3, which show
both the most occurent stable clusterings after the second
iteration. We performed a test-series based on the k-means
clustering, which were compared to a testrow with 100 clus-
terings of our approach. In order to compare these Clusters
we use Precision and Recall. Precision represents all de-
sired and delivered objects (correct alarms) in relation to all
delivered objects (correct alarms & false alarms), whereas
Recall represents the desired and delivered objects (correct
alarms) in relation to all desired objects (correct alarms &
false dismissals).

C1 C2 C3

false alarms (fa) {} {P4} {P7}
false dismissals (fd) {P4} {P7} {}
correct alarms (ca) {P1, P2, P3} {P5, P6} {P8, P9, P10}
Precision: ca

ca+fa 1 0.66 0.75

Recall: ca
ca+fd 0.75 0.66 1

Table 3: Precision-Recall model in detail for the most occurent clus-
tering in Figure 3.

Table 3 shows the values for Precision and Recall for
the most occurent Pareto-dominant clustering on the base
of the k-means clusters. Precision and Recall both show
for all clusters very high values with only two user, which
switch between the clusters. Thus the quality of the Pareto-
dominant clustering is in this case mostly als high as possible,
but not equal to the k-means clustering with Euclidean
distance.

Clustering freq. PC1
PC2

PC3
RC1

RC2
RC3

1 78 1.00 0.67 0.75 0.75 0.67 1.00
2 7 1.00 0.60 1.00 1.00 1.00 0.33
3 15 0.80 0.60 1.00 1.00 0.75 0.33

Averaged 100 0.97 0.65 0.81 0.81 0.70 0.85

Table 4: Averaged Precision-Recall model for 100 testrows and the
three occurent clusterings of users in Figure 1.

In Table 4 the test series show the Precision and Recall
scores for two more clusterings and the frequency in the test
series of 100 clusterings, which get averaged. Finally in this

case there is one very present clustering (1), which is a very
satisfying clustering as mentioned in Section 4. Both other
clusterings have very high scores for Precision. The scores
for Recall especially for the third cluster for the clustering 2
and 3 are very low, which shows that only a few users based
on the k-means approach were assigned to this cluster.

6. SUMMARY & CONCLUSION
We presented a novel Pareto-dominance based clustering

framework on Pareto-frontiers. Our framework provides
several reasons for using this to manage large confusing sets
of tuples with explicitly different domains. First, one can
influence the result of the clustering by attaching weight to
a more important dimension in order to cluster at least over
one dimension at the appearance of Pareto-optima. Second,
tuples can now be clustered over better-than relationships
in order to avoid adjustments for utilization in different
uses cases. Third, our preliminary benchmarks show that
a Pareto-dominant clustering can be realized in adequate
time. The quality of our approach is satisfying, because the
stable clusters distinguish from them of the basic k-means
clustering, but are still as similar as possible, especially
regarding the affiliation of similar points w.r.t. the one-
dimensional clustering.

Future work includes the integration of multi-dimensional
clusters using Borda count. For more comprehensive bench-
marks, we want to investigate experiments on higher dimen-
sions. Furthermore experiments with ground truth data sets
and comparisons to other types of clusterings, e.g., agglom-
erative and density-based clusterings are scheduled aswell.
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