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ABSTRACT
Graph databases with a custom non-relational backend pro-
mote themselves to outperform relational databases in an-
swering queries on large graphs. Recent empirical studies
show that this claim is not always true. However, these
studies focus only on pattern matching queries and neglect
analytical queries used in practice such as shortest path, di-
ameter, degree centrality or closeness centrality. In addition,
there is no distinction between different types of pattern
matching queries. In this paper, we introduce a set of ana-
lytical and pattern matching queries, and evaluate them in
Neo4j and a market-leading commercial relational database
system. We show that the relational database system out-
performs Neo4j for our analytical queries and that Neo4j is
faster for queries that do not filter on specific edge types.

1. INTRODUCTION
Application domains such as social media, biology, and

transportation planning produce large amounts of graph data.
Therefore, the management and processing of graph data
is gaining importance. As a result, there are several graph
databases such as Neo4j, DEX/Sparksee, and OrientDB. In
general, graph databases can be categorized into systems
using an existing relational database as a backend or systems
implementing a custom non-relational backend, which are
often called “native graph databases”. Although a relational
backend offers numerous advantages such as transactions,
reliable storage and access control, native graph databases at-
tract customers with the promise of outperforming traditional
relational databases. Recent empirical studies [4,9], however,
demonstrate that this promise is not always kept. Gubichev
and Then [4] show that several queries of their benchmark
timed out in Neo4j and DEX/Sparksee. While these studies
are a good starting point for comparing graph databases
with a relational and a custom non-relational backend, they
only focus on pattern matching queries and neglect analytical
queries such as shortest path and centrality measures.
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In this paper, we bridge this gap by defining a set of
analytical queries (Section 2). In addition, compared to re-
lated work, we introduce a more fine-grained categorization
of pattern matching queries including (i) paths that filter
on specifc node labels without restricting edge types, (ii)
paths that filter on specific edge types without restricting
node labels, (iii) paths that filter on node labels and edge
types, and (iv) paths containing cycles. This categoriza-
tion provides the basis to systematically breaking down the
reasons why one system is outperforming another system.
Since Neo4j is the most widely used native graph database,
we compare the execution times of Cypher queries in Neo4j
to the execution times of corresponding SQL queries in a
market-leading relational database system (Section 3). We
show that the relational database system outperforms Neo4j
for our analytical queries. We argue that analytical queries,
which access most or all nodes of the graph, benefit from the
more advanced disk and buffer management of the relational
database system and that there is room for improvement
in this respect in Neo4j. In contrast, we demonstrate that
Neo4j is more efficient for path queries that do not filter on
specific edge types. Section 4 summarizes related work and
Section 5 gives an outlook on future work.

2. QUERIES
We begin by introducing the set of queries that we use to

compare Neo4j to a relational database system. We catego-
rize our queries in analytical and pattern matching queries.
Analytical queries process large parts of the graph at a time,
whereas pattern matching queries access only small parts
of the graph in most cases. In order to formally define our
queries, we first have to introduce the property graph data
model on which Neo4j and its query language Cypher is
based [6].

Definition 1. Assume a domain V of nodes, a domain E of
directed edges, and a domain A of attributes. Additionally,
suppose a domain DA of atomic attribute values, a domain
DL of node labels, and a domainDT of edge types. A property
graph is a finite structure G = (V,E,A, λ, α, β, γ), where

• V ⊆ V is a finite set of nodes,

• E ⊆ E is a finite set of edges,

• A ⊆ A is a finite set of attributes,

• λ : E → V × V is a function assigning nodes to edges,



• α : (V ∪ E)× A→ DA is a partial function assigning
values to attributes of nodes and edges,

• β : V → P(DL) is a partial function assigning labels
to nodes, and

• γ : E → DT is a partial function assigning a type to
edges.

Besides the property graph data model, we also define the
notion of a path in a property graph.

Definition 2. Suppose the nodes v1, vn ∈ V . A path from
v1 to vn, denoted as v1 →∗ vn, is a sequence of nodes and
edges 〈v1, e1, v2, . . . , vn−1, en−1, vn〉, where ∀1 ≤ i ≤ n− 1 :
λ(ei) = (vi, vi+1).

2.1 Analytical Queries
In this subsection, we formally define the set of analytical

queries that have been proposed in the graph benchmark of
Grossniklaus et al. [3]. Since the focus of this paper is to
compare Neo4j with a relational database system, we only
use queries that can be expressed in Cypher. Therefore, we
cannot cover all analytical graph queries that are used in
real world applications. For each query of this subsection, we
also derive the corresponding Cypher and SQL statements
that are based on the dataset of the LUBM [5] benchmark
(cf. Section 3). The tables and views that are used in the
SQL statements are described in the Appendix. Some of the
following queries are limited in the number of result tuples
because Neo4j is not able to execute these queries without
restricting the result size.

2.1.1 QA1: Node Degree
Query QA1 returns for each node v ∈ V its degree, which

is the number of ingoing and outgoing edges and formally
defined as follows:

deg(v) :=
∣∣{e|e ∈ E ∧ λ(e) = (x, y) ∧ (v = x ∨ v = y)}

∣∣.
Cypher

MATCH (n)--(m)
RETURN n, COUNT(m)

SQL

SELECT n.id, COUNT(*) AS degree
FROM nodes n LEFT JOIN rel all bidirectional r ON n.id = r.sID
GROUP BY n.id

2.1.2 QA2: Degree Centrality
Query QA2 returns for each node v ∈ V its degree cen-

trality, which is the number of ingoing and outgoing edges
normalized by the total number of nodes in the graph. For-
mally, the degree centrality of a node v is defined as follows:

CD(v) :=
deg(v)

|V | .

Cypher

MATCH (a)
WITH TOFLOAT(COUNT(*)) AS total
MATCH (n)-[e]-()
RETURN n, COUNT(e)/total AS centrality

SQL

SELECT n.id, CAST(COUNT(*) AS FLOAT)/
(SELECT COUNT(*) FROM nodes) AS degree centrality

FROM nodes n LEFT JOIN rel all bidirectional r ON n.id = r.sID
GROUP BY n.id

2.1.3 QA3: Connectedness
Query QA3 returns all pairs of nodes u, v ∈ V which are

connected by a path u→∗ v.

Cypher

MATCH (n), (m)
RETURN n, m, EXISTS((n)-[*]->(m)) AS is connected

SQL

SELECT a.id1, a.id2,
CASE WHEN tc.sID IS NULL THEN 0 ELSE 1 END AS connected

FROM (SELECT n.id AS id1, m.id AS id2 FROM nodes n
CROSS JOIN nodes m) AS a
LEFT JOIN transitive closure tc ON a.id1 = tc.sID
AND a.id2 = tc.dID

2.1.4 QA4: Shortest Paths
Suppose P (u, v) is a set containing all paths u→∗ v, where

u, v ∈ V , and length(p) is a function returning the number of
edges of a path p. A shortest path between two nodes u and
v is a path p where ∀p′ ∈ P (u, v) : length(p) ≤ length(p′).
The length of a shortest path between u and v is denoted as
δ(u, v). Query QA4 returns for all pairs of nodes u, v ∈ V a
shortest path between u and v.

Cypher

MATCH p = shortestPath((n)-[*]->(m))
RETURN n, m, p

SQL

SELECT *
FROM shortest path

2.1.5 QA5: Closeness Centrality
Query QA5 returns for each node v ∈ V its closeness

centrality which is defined as follows:

CC(v) :=
1∑

u∈V δ(v, u)
.

Cypher

MATCH p = shortestPath((n)-[*]-(m))
WHERE n <> m WITH n, p LIMIT 60000000
RETURN n, 1.0/SUM(LENGTH(p)) AS centrality

SQL

SELECT TOP 60000000 sID AS node,
1.0 / SUM(length) AS centrality

FROM (SELECT sID, dID, MIN(length) AS length
FROM shortest connection GROUP BY sID, dID
UNION ALL SELECT dID, sID, MIN(length) AS length
FROM shortest connection GROUP BY sID, dID) AS t

GROUP BY sID



2.1.6 QA6: Diameter
Query QA6 returns the diameter of the graph which is the

length of the longest shortest path between any two nodes
u, v ∈ V :

d := max
u,v∈V

δ(u, v).

Cypher

MATCH p = shortestPath((n)-[*]-(m))
WITH p LIMIT 40000000
RETURN p, LENGTH(p)
ORDER BY LENGTH(p) DESC

LIMIT 1

SQL

SELECT MAX(length)
FROM (SELECT TOP 40000000 *
FROM shortest connection) AS t

2.1.7 QA7: Grouping
Query QA7 returns for each existing value x of an attribute

a ∈ A the number of nodes v ∈ V where α(v, a) = x:

γ(a) := {(x, i) | v ∈ V ∧ a ∈ A ∧ x = α(v, a)

∧ i = |{u | u ∈ V ∧ α(u, a) = x}|}.

Cypher

MATCH (a:Course)
RETURN a.name, COUNT(a)

SQL

SELECT name.value, COUNT(*) AS count
FROM node label node LEFT JOIN name ON name.id = node.id
WHERE node.value = ’Course’
GROUP BY name.value
ORDER BY count DESC

2.2 Pattern Matching Queries
In the following, we define the types of pattern matching

queries used in our evaluation. We categorize our queries in
paths that filter on specific node labels without restricting
edge types (QP1), paths that filter on specific edge types
without restricting node labels (QP3), paths that filter on
node labels and edge types (QP4), and paths containing
cycles (QP2). This categorization provides a way to deter-
mine how efficient Neo4j and the relational database system
can filter on specific node labels or edge types. For each
pattern matching query type, we derive Cypher and SQL
statements. However, in this subsection we only present the
actual code of queries with patterns of length 1 (denoted as
QPx,1 in Section 3, where x is the query type). The queries
with longer patterns used in the evaluation are found in the
appendix.

2.2.1 QP1: Paths filtering on node labels
The first type of pattern matching queries in our evaluation

are paths filtering on specific node labels. This query type is
illustrated below, where l1, . . . , ln ∈ DL are labels.

. . . lnl1

Note that we do not restrict the edge direction. Both
outgoing and ingoing edges are matched by the pattern
above.

Cypher

MATCH (a:University)--(b:FullProfessor)
RETURN a, b

SQL

SELECT n1.id, n2.id
FROM rel all bidirectional r
INNER JOIN node label n1 ON n1.id = r.sID
INNER JOIN node label n2 ON n2.id = r.dID

WHERE n1.value = ’University’ AND n2.value = ’FullProfessor’

2.2.2 QP2: Cycles
Queries of type QP2 extend queries of type QP1 with

cycles.

. . . lnl1

Cypher

MATCH (a:UndergraduateStudent)--(b:FullProfessor)
--(c:Department)--(a)

RETURN a,b,c

SQL

SELECT n1.id, n2.id, n3.id
FROM rel all bidirectional r1
INNER JOIN node label n1 ON n1.id = r1.sID
INNER JOIN node label n2 ON n2.id = r1.dID
INNER JOIN rel all bidirectional r2 ON r2.sID = n2.id
INNER JOIN node label n3 ON n3.id = r2.dID
INNER JOIN rel all bidirectional r3 ON n3.id = r3.sID

WHERE n1.value = ’UndergraduateStudent’
AND n2.value = ’FullProfessor’
AND n3.value = ’Department’
AND r3.dID = n1.id

2.2.3 QP3: Paths filtering on edge types
Queries of type QP3 return paths with specific edge types

as it is shown in the figure below, where t1, . . . , tn ∈ DT are
edge types.

. . .
t1t2

Cypher

MATCH (a)-[:teacherOf]->(b)<-[:takesCourse]-(c)
RETURN a, b, c

SQL

SELECT n1.id AS teacher, n2.id AS course, n3.id AS student
FROM nodes n1, rel teacherOf rto, nodes n2,

rel takesCourse rtc, nodes n3
WHERE n1.id = rto.sID AND rto.dID = n2.id
AND n2.id = rtc.dID AND n3.id = rtc.sID



2.2.4 QP4: Paths filtering on node labels and edge
types

Queries of type QP4 are a combination of queries of type
QP1 and of type QP3.

. . . l1l2
t1t2

Cypher

MATCH (a:FullProfessor)-[:teacherOf]->(b:Course)
<-[:takesCourse]-(c:UndergraduateStudent)

RETURN a, b, c

SQL

SELECT a.id, b.id, c.id
FROM node label a, rel teacherOf r1, node label b,

rel takesCourse r2, node label c
WHERE a.value = ’FullProfessor’ AND b.value = ’Course’
AND c.value = ’UndergraduateStudent’ AND a.id = r1.sID
AND r1.dID = b.id AND b.id = r2.sID AND r2.dID = c.id

3. EVALUATION
Having presented the queries used in our performance

evaluation, we now present the experimental setup and the
obtained results.

3.1 Experimental Setup
All experiments presented in this paper were performed

on a Mac Pro with a 3.5 GHz 6-Core Intel Xeon E5 pro-
cessor with 64 GB main memory. In our evaluation, we
compared Neo4j Version 3.0.3 with a market-leading commer-
cial database system. Due to license terms, the commercial
system is referred to as “RDBMS”. Neo4j and RDBMS are
installed on a 64-bit Windows 8.1 virtual machine with 32
GB of main memory. Both database systems run in their
standard configuration. The data sets used in our evalu-
ation were generated by the data generator of the LUBM
benchmark [5]. We generated a data set with one university
(LUBM-1) and a data set with two universities (LUBM-2).
To store the graph in RDBMS, we used the decomposed stor-
age model (DSM) described by Sakr et al. [10]. All runtime
measurements were repeated five times in random order. The
reported averages discard the smallest and the largest value.

Figure 1 shows the runtimes of our queries on the LUBM-
1 data set, whereas Figure 2 shows the runtimes of our
queries on the LUBM-2 data set. In our first experiments,
we have noticed that the performance of specific query types
in RDBMS heavily depends on how efficiently edges can
be retrieved. Therefore, we created two different schemata
in RDBMS that are both based on the decomposed storage
model. Schema“A”has tables for each edge type. In addition,
a view is computed containing edges of all types. In contrast,
Schema “B” has a table containing edges of all types. In
addition, there are views for each edge type. In the following,
RDBMS with Schema A is denoted as “RDBMS A” and
RDBMS with Schema B is denoted as “RDBMS B”. We
use the term “RDBMS” to refer to both RDBMS A and
RDBMS B.

3.2 Results
We first present the results obtained on data set LUBM-1.

Figure 1(a) shows that for most of the analytical queries
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Figure 1: Runtimes of queries on LUBM-1.
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Figure 2: Runtimes of queries on LUBM-2.

RDBMS is several orders of magnitude faster than Neo4j.
The largest difference can be seen for query QA5 which
computes the closeness centrality where RDBMS B is over
1500× faster than Neo4j. The computation of the shortest
path is almost 10× faster in RDBMS B than in Neo4j. At a
first glance, this is surprising since computing the shortest
path is a core functionality of Neo4j and is also provided
as a construct in the Cypher query language. Figure 1(b)
gives the runtimes of our pattern matching queries that
filter specific node labels without restricting edge types. The
largest difference in the runtime of Neo4j and RDBMS can be
observed for query QP1,4 which contains the largest number
of edges of all queries in (b). We can also see that the
queries QP1,1 and QP1,3 are faster in RDBMS B than in
Neo4j. The runtimes of cyclic pattern matching queries that
filter specific node labels without restricting edge types are
shown in Figure 1(c). It can be seen that Neo4j outperforms
RDBMS. For all queries of Figure 1(c), Neo4j is almost
an order of magnitude faster than RDBMS. The runtimes
of pattern matching queries on filtering specific edge types
without restricting node labels are given in Figure 1(d).
In contrast to the previous pattern matching query types,
RDBMS answers queries of this type more efficiently than
Neo4j. This is due to the fact that each relationship type has
its own table (or view) in RDBMS. Finally, Figure 1(e) plots
the runtimes of pattern matching queries that filter on node
labels and edge types. As before, RDBMS B outperforms
Neo4j and RDBMS A.

Moving on to data set LUBM-2, Figure 2(a) shows the run-
time of our analytical queries. In Neo4j, only query QA1 and
QA2 could be executed in reasonable time. The other queries
were aborted after 24 hours or ran out of memory (denoted
by  in Figure 2(a)). The runtimes of our pattern matching
queries that filter specific node labels without restricting edge
types are given in Figure 2(b). For query QP1,3 RDBMS A
is faster than Neo4j, otherwise Neo4j outperforms RDBMS.
Figure 2(c) plots the runtimes of cyclic pattern matching
queries that filter specific node labels without restricting
edge types. As for the results obtained on the LUBM-1 data
set (Figure 1(c)), Neo4j is consistently faster than RDBMS
for this type of pattern matching query. The runtimes of
pattern matching queries filtering specific edge types without
restricting node labels that are plotted in Figure 2(d) show
that RDBMS consistently outperforms Neo4j for this type of
query. Finally, the runtimes of pattern matching queries that
filter on node labels and edge types are shown in Figure 2(e).
For these queries, RDBMS A consistently outperforms Neo4j.

3.3 Discussion and Limitations
To conclude this section, we summarize our results and

discuss limitations of our evaluation. We have shown that
RDBMS outperforms Neo4j for our analytical queries. For
most of the analytical queries, RDBMS is several orders of
magnitude faster than Neo4j. A possible reason for this result
is the fact that the analytical queries have to access most or all
nodes of the graph. Therefore, they profit from the advanced
disk and memory management of relational database systems.
We also showed that RDBMS A and RDBMS B both perform
badly for queries that need to join the whole edge table (or
view) multiple times for longer patterns. For queries with
cycles, the performance is even worse. However, if we only
query specific edge types, RDBMS outperforms Neo4j as
can be seen in Figure 1(d) and Figure 2(d). Comparing



RDBMS A with RDBMS B on LUBM-1, we can observe that
for queries that filter on specific edge types RDBMS B is more
efficient than RDBMS A. However, for queries with longer
patterns that do not filter on specific edge types RDBMS A
outperforms RDBMS B. As for LUBM-1, there is again no
clear winner on LUBM-2.

Since the work presented in this paper is only the first
step towards a more extensive empirical study, it has some
shortcomings and open issues. First, we only use the de-
composed storage model [10] to map a property graph to
relations. Since the choice of the graph-to-relation mapping
strongly impacts the performance of queries, we need to
evaluate alternative mappings such as the hybrid schema
described by Sun et al. [11]. Second, the performance of a
query also depends on the characteristics of the graph, e.g.,
the number of distinct labels or average node degree. Hence,
further data sets with different graph characteristics need to
be evaluated. Finally, pattern matching queries that filter
on specific attribute values should be included as our current
queries filter on node labels and edge types only.

4. RELATED WORK
There are several empirical studies on the query perfor-

mance of graph database systems. To the best of our knowl-
edge, none of these studies cover analytical queries formulated
in a declarative graph query language. The work of Vick-
nair et al. [12] benchmarks Neo4j and MySQL. The authors
define three simple traversal queries and queries counting the
number of nodes with a specific value. Ciglan et al. [2] im-
plement graph traversal operations in Neo4j, DEX/Sparksee,
OrientDB, NativeSail, and SGDB, and compare their per-
formance. Grossniklaus et al. [3] benchmark Neo4j and a
relational database system by implementing a set of analyti-
cal queries using the Neo4j API and SQL. Welc et al. [13]
evaluate the performance of computing the shortest path in
Neo4j, Oracle and the Green-Marl language infrastructure.
Angles et al. [1] benchmark graph databases in the context
of social networks. They define a set of pattern matching
and reachability queries that are often used to analyse social
networks. Jouili and Vansteenberghe [7] use traversal and
shortest path queries to benchmark Neo4j, DEX/Sparksee,
OrientDB and Titan. McColl et al. [8] evaluate open-source
graph databases using implementations of the graph algo-
rithms shortest path, connected components and PageRank.
Pobiedina et al. [9] evaluate pattern matching queries in
Neo4j (Cypher), PostgreSQL (SQL), Jena TDB (SPARQL)
and Clingo (ASP).

5. CONCLUSION AND FUTURE WORK
In this paper, we defined a set of analytical and pattern

matching queries in Cypher and SQL, and evaluated them in
Neo4j and a market-leading commercial relational database
system. We showed that the relational database system
outperforms Neo4j for our analytical queries and that Neo4j
is faster for queries that do not filter on specific edge types.

As future work we plan to build on this initial study
in order to better understand the implications of different
backends on graph query performance. First, we will study
the influence of different graph-to-relation mappings on the
performance of relational backends. Additionally, we will
include further data sets with different graph characteristics
and pattern matching queries that filter on attribute values.
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APPENDIX
A. TABLES AND VIEWS

Below, we introduce the tables and views that were created
for Schema A and Schema B in order to store a property
graph in a relational database system. A node has a unique
id and is stored in the node_label relation with its corre-
sponding labels. Therefore, for each label of a node, there is
an entry in the node_label table. For each attribute, there is
a relation containing entries of the node id and the attribute
value. The node_label table and each attribute table have a
clustered index on the node id. In Schema A, there is a table
for each edge type containing the edge id and the ids of the
source and target nodes. The edge tables have a clustered
index on the id of the source and target node. In Schema B,
there is a table containing edges of all types. This table has
a clustered index on the id of the source and target node as
well as an unclustered index on the column indicating the
edge type. In addition, we create the following views, where
the prefix “rel ” denotes an edge table (or view). However,
in Schema B we have a table rel_all instead of a view.

CREATE VIEW nodes (id) AS
SELECT DISTINCT id FROM node label

CREATE VIEW rel all (sID, dID) AS
SELECT sID, dID FROM rel advisor
UNION ALL

SELECT sID, dID FROM rel doctoralDegreeFrom
UNION AL

SELECT sID, dID FROM rel headOf
UNION ALL

SELECT sID, dID FROM rel mastersDegreeFrom
UNION ALL

SELECT sID, dID FROM rel memberOf
UNION ALL

SELECT sID, dID FROM rel publicationAuthor
UNION ALL

SELECT sID, dID FROM rel subOrganizationOf
UNION ALL

SELECT sID, dID FROM rel takesCourse
UNION ALL

SELECT sID, dID FROM rel teacherOf
UNION ALL

SELECT sID, dID FROM rel teachingAssistantOf
UNION ALL

SELECT sID, dID FROM rel undergraduateDegreeFrom
UNION ALL

SELECT sID, dID FROM rel worksFor

CREATE VIEW rel all bidirectional (sID, dID) AS
SELECT sID, dID FROM rel all
UNION ALL

SELECT dID AS sID, sID AS dID FROM rel all

CREATE VIEW transitive closure AS
WITH BacktraceCTE(sID, parent, dID, length) AS
(SELECT sID, NULL, dID, 1
FROM dbo.rel all
UNION ALL
SELECT b.sID, b.dID, r.dID, b.length + 1
FROM BacktraceCTE AS b
INNER JOIN dbo.rel all AS r ON b.dID = r.sID)

SELECT sID, parent, dID, length FROM BacktraceCTE

CREATE VIEW shortest connection AS
SELECT DISTINCT t.* FROM dbo.transitive closure t
INNER JOIN (SELECT sID, dID, MIN(length) as minLength
FROM dbo.transitive closure GROUP BY sID, dID) m
ON m.sID = t.sID AND m.dID = t.dID AND m.minLength = t.length

CREATE VIEW shortest path AS WITH
ShortestPathCTE (sID, dID, step from, step to) AS (
SELECT sID, dID, parent, dID FROM dbo.shortest connection
UNION ALL
SELECT t.sID, t.dID, coalesce(s.parent, t.sID) AS step from,

t.step from AS step to
FROM ShortestPathCTE t
INNER JOIN shortest connection s
ON s.dID = t.step from AND s.sID = t.sID

) SELECT sID, dID,
coalesce(step from, sID) AS step from, step to
FROM ShortestPathCTE

B. PATTERN MATCHING QUERIES
B.1 Paths restricted on node labels
QP1,2 Cypher
MATCH (a:University)--(b:FullProfessor)--(c:Department)
RETURN a, b, c

QP1,2 SQL
SELECT n1.id, n2.id, n3.id FROM rel all bidirectional r1
INNER JOIN node label n1 ON n1.id = r1.sID
INNER JOIN node label n2 ON n2.id = r1.dID
INNER JOIN rel all bidirectional r2 ON r2.sID = n2.id
INNER JOIN node label n3 ON n3.id = r2.dID

WHERE n1.value = ’University’ AND n2.value = ’FullProfessor’
AND n3.value = ’Department’

QP1,3 Cypher
MATCH (a:University)--(b:FullProfessor)--(c:Department)
--(d:UndergraduateStudent)

RETURN a, b, c, d

QP1,3 SQL
SELECT n1.id, n2.id, n3.id, n4.id FROM rel all bidirectional r1
INNER JOIN node label n1 ON n1.id = r1.sID
INNER JOIN node label n2 ON n2.id = r1.dID
INNER JOIN rel all bidirectional r2 ON r2.sID = n2.id
INNER JOIN node label n3 ON n3.id = r2.dID
INNER JOIN rel all bidirectional r3 ON n3.id = r3.sID
INNER JOIN node label n4 ON n4.id = r3.dID

WHERE n1.value = ’University’ AND n2.value = ’FullProfessor’
AND n3.value = ’Department’
AND n4.value = ’UndergraduateStudent’

QP1,4 Cypher
MATCH (a:University)--(b:FullProfessor)--(c:Department)
--(d:UndergraduateStudent)--(e:Course)

RETURN a, b, c, d, e

QP1,4 SQL
SELECT n1.id, n2.id, n3.id, n4.id, n5.id
FROM rel all bidirectional r1
INNER JOIN node label n1 ON n1.id = r1.sID
INNER JOIN node label n2 ON n2.id = r1.dID
INNER JOIN rel all bidirectional r2 ON r2.sID = n2.id
INNER JOIN node label n3 ON n3.id = r2.dID
INNER JOIN rel all bidirectional r3 ON n3.id = r3.sID
INNER JOIN node label n4 ON n4.id = r3.dID
INNER JOIN rel all bidirectional r4 ON n4.id = r4.sID
INNER JOIN node label n5 ON n5.id = r4.dID

WHERE n1.value = ’University’ AND n2.value = ’FullProfessor’
AND n3.value = ’Department’
AND n4.value = ’UndergraduateStudent’ AND n5.value = ’Course’

B.2 Cycles
QP2,2 Cypher
MATCH (a:UndergraduateStudent)--(b:AssociateProfessor)
--(c:GraduateStudent)--(d:Department)--(a)

RETURN a,b,c,d

QP2,2 SQL
SELECT n1.id, n2.id, n3.id, n4.id FROM rel all bidirectional r1
INNER JOIN node label n1 ON n1.id = r1.sID
INNER JOIN node label n2 ON n2.id = r1.dID
INNER JOIN rel all bidirectional r2 ON r2.sID = n2.id



INNER JOIN node label n3 ON n3.id = r2.dID
INNER JOIN rel all bidirectional r3 ON n3.id = r3.sID
INNER JOIN node label n4 ON n4.id = r3.dID
INNER JOIN rel all bidirectional r4 ON n4.id = r4.sID

WHERE n1.value = ’UndergraduateStudent’
AND n2.value = ’AssociateProfessor’
AND n3.value = ’GraduateStudent’
AND n4.value = ’Department’ AND r4.dID = n1.id

QP2,3 Cypher
MATCH (a:UndergraduateStudent)--(b:Course)
--(c:AssociateProfessor)--(d:UndergraduateStudent)
--(e:Course)--(a) WHERE b <> e AND a<>d

RETURN a,b,c,d,e

QP2,3 SQL
SELECT n1.id, n2.id, n3.id, n4.id, n5.id
FROM rel all bidirectional r1
INNER JOIN node label n1 ON n1.id = r1.sID
INNER JOIN node label n2 ON n2.id = r1.dID
INNER JOIN rel all bidirectional r2 ON r2.sID = n2.id
INNER JOIN node label n3 ON n3.id = r2.dID
INNER JOIN rel all bidirectional r3 ON n3.id = r3.sID
INNER JOIN node label n4 ON n4.id = r3.dID
INNER JOIN rel all bidirectional r4 ON n4.id = r4.sID
INNER JOIN node label n5 ON n5.id = r4.dID
INNER JOIN rel all bidirectional r5 ON n5.id = r5.sID

WHERE n1.value = ’UndergraduateStudent’ AND n2.value = ’Course’
AND n3.value = ’AssociateProfessor’
AND n4.value = ’UndergraduateStudent’ AND n5.value = ’Course’
AND r5.dID = n1.id AND n1.id != n4.id AND n2.id != n5.id

QP2,4 Cypher
MATCH (a:UndergraduateStudent)--(b:Course)
--(c:AssociateProfessor)--(d:UndergraduateStudent)
--(e:Course) --(f:AssistantProfessor)--(a)

WHERE b <> e AND a<>d
RETURN a,b,c,d,e,f

QP2,4 SQL
SELECT n1.id, n2.id, n3.id, n4.id, n5.id, n6.id
FROM rel all bidirectional r1
INNER JOIN node label n1 ON n1.id = r1.sID
INNER JOIN node label n2 ON n2.id = r1.dID
INNER JOIN rel all bidirectional r2 ON r2.sID = n2.id
INNER JOIN node label n3 ON n3.id = r2.dID
INNER JOIN rel all bidirectional r3 ON n3.id = r3.sID
INNER JOIN node label n4 ON n4.id = r3.dID
INNER JOIN rel all bidirectional r4 ON n4.id = r4.sID
INNER JOIN node label n5 ON n5.id = r4.dID
INNER JOIN rel all bidirectional r5 ON n5.id = r5.sID
INNER JOIN node label n6 ON n6.id = r5.dID
INNER JOIN rel all bidirectional r6 ON n6.id = r6.sID

WHERE n1.value = ’UndergraduateStudent’
AND n2.value = ’Course’ AND n3.value = ’AssociateProfessor’
AND n4.value = ’UndergraduateStudent’ AND n5.value = ’Course’
AND n6.value = ’AssistantProfessor’ AND r6.dID = n1.id
AND n1.id != n4.id AND n2.id != n5.id

B.3 Paths restricted on edge types
QP3,2 Cypher
MATCH (a)-[:teacherOf]->(b)<-[:takesCourse]-(c)
-[:advisor]->(d)

RETURN a, b, c, d

QP3,2 SQL
SELECT n1.id AS teacher, n2.id AS course, n3.id AS student,
n4.id AS advisor

FROM nodes n1, rel teacherOf rto, nodes n2,
rel takesCourse rtc, nodes n3, rel advisor ra, nodes n4

WHERE n1.id = rto.sID AND rto.dID = n2.id
AND n2.id = rtc.dID AND n3.id = rtc.sID
AND n3.id = ra.sID AND n4.id = ra.dID

QP3,3 Cypher
MATCH (a)-[:teacherOf]->(b)<-[:takesCourse]-(c)
-[:advisor]->(d)-[:mastersDegreeFrom]->(e)

RETURN a, b, c, d, e

QP3,3 SQL
SELECT n1.id AS teacher, n2.id AS course, n3.id AS student,
n4.id AS advisor

FROM nodes n1, rel teacherOf rto, nodes n2, rel takesCourse rtc,
nodes n3, rel advisor ra, nodes n4,
rel mastersDegreeFrom rmdf, nodes n5

WHERE n1.id = rto.sID AND rto.dID = n2.id
AND n2.id = rtc.dID AND n3.id = rtc.sID
AND n3.id = ra.sID AND n4.id = ra.dID
AND n4.id = rmdf.sID AND n5.id = rmdf.dID

QP3,4 Cypher
MATCH (a)-[:teacherOf]->(b)<-[:takesCourse]-(c)
-[:advisor]->(d)-[:mastersDegreeFrom]->(e)
<-[:doctoralDegreeFrom]-(f)
RETURN a, b, c, d, e, f

QP3,4 SQL
SELECT n1.id AS teacher, n2.id AS course, n3.id AS student,
n4.id AS advisor

FROM nodes n1, rel teacherOf rto, nodes n2, rel takesCourse rtc,
nodes n3, rel advisor ra, nodes n4, rel mastersDegreeFrom rmdf,
nodes n5, rel doctoralDegreeFrom rddf, nodes n6

WHERE n1.id = rto.sID AND rto.dID = n2.id
AND n2.id = rtc.dID AND n3.id = rtc.sID
AND n3.id = ra.sID AND n4.id = ra.dID
AND n4.id = rmdf.sID AND n5.id = rmdf.dID
AND n5.id = rddf.dID AND n6.id = rddf.sID

B.4 Paths restricted on node labels and edge
types

QP4,2 Cypher
MATCH (a:FullProfessor)-[:teacherOf]->(b:Course)
<-[:takesCourse]-(c:UndergraduateStudent)
-[:advisor]->(d:AssociateProfessor)

RETURN a, b, c, d

QP4,2 SQL
SELECT a.id, b.id, c.id, d.id
FROM node label a, rel teacherOf r1, node label b,
rel takesCourse r2, node label c, rel advisor r3, node label d

WHERE a.value = ’FullProfessor’ AND b.value = ’Course’
AND c.value = ’UndergraduateStudent’
AND d.value = ’AssociateProfessor’
AND a.id = r1.sID AND r1.dID = b.id AND b.id = r2.dID
AND r2.sID = c.id AND c.id = r3.sID AND r3.dID = d.id

QP4,3 Cypher
MATCH (a:FullProfessor)-[:teacherOf]->(b:Course)
<-[:takesCourse]-(c:UndergraduateStudent)
-[:advisor]->(d:AssociateProfessor)
-[:mastersDegreeFrom]->(e:University)

RETURN a, b, c, d, e

QP4,3 SQL
SELECT a.id, b.id, c.id, d.id, e.id
FROM node label a, rel teacherOf r1, node label b,
rel takesCourse r2, node label c, rel advisor r3, node label d,
rel mastersDegreeFrom r4, node label e

WHERE a.value = ’FullProfessor’ AND b.value = ’Course’
AND c.value = ’UndergraduateStudent’
AND d.value = ’AssociateProfessor’ AND e.value = ’University’
AND a.id = r1.sID AND r1.dID = b.id AND b.id = r2.dID
AND r2.sID = c.id AND c.id = r3.sID AND r3.dID = d.id
AND d.id = r4.sID AND r4.dID = e.id
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