
A Join Operator for Property Graphs

Giacomo Bergami
University of Bologna

CSE Department
Bologna, Italy

giacomo.bergami2@unibo.it

Matteo Magnani
Uppsala University

Department of Information
Technology

Uppsala, Sweden
matteo.magnani@it.uu.se

Danilo Montesi
University of Bologna

CSE Department
Bologna, Italy

danilo.montesi@unibo.it

ABSTRACT
In the graph database literature the term “join” does not re-
fer to an operator combining two graphs, but involves path
traversal queries over a single graph. Current languages ex-
press binary joins through the combination of path traversal
queries with graph creation operations. Such solution proves
to be not efficient.

In this paper we introduce a binary graph join opera-
tor and a corresponding algorithm outperforming the solu-
tion proposed by query languages for either graphs (Cypher,
SPARQL) and relational databases (SQL). This is achieved
by using a specific graph data structure in secondary mem-
ory showing better performance than state of the art graph
libraries (Boost Graph Library, SNAP) and database sys-
tems (Sparksee).

Keywords
Graph Database, Property Graph, Join, Partition Hash Join

1. INTRODUCTION
Despite the term “join” appearing in the graph database

literature, such operator cannot be used to combine two
distinct graphs, as for table joins in the relational model.
Such joins are path joins running over a single graph [1]:
they are used for graph traversal queries [13] where vertices
and edges are considered as relational tables [25, 16]. The
result of such path joins cannot be directly used to com-
bine values from different sources (e.g. join two distinct
vertices appearing in different graphs alongside with their
values), and hence supplementary graph operations are re-
quired. SPARQL allows to access multiple graph resources
through named graphs and performs graph traversals one
graph at a time through path joins [12, 3, 27]. At this point
the CONSTRUCT clause is required if we want to finally com-
bine the traversed paths from both graphs into a resulting
graph. Similarly, Cypher’s CREATE clause has to be used
to generate new vertices and edges from graph patterns ex-
tracted through the MATCH...WHERE clause, and intemedi-

©2017, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2017 Joint Conference (March 21, 2017,
Venice, Italy) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

ate results are merged with UNION ALL. While current graph
query languages allow to express our proposed graph join
operator as a combination of the aforementioned operators,
our study shows that our specialized graph join algorithm
outperforms the evaluation of the graph join with existing
graph and relational query languages.

As for relational databases, they solve common graph
queries efficiently, so graph database management systems
rely either on relational database engines [1, 21, 11] or on col-
umn store databases [25, 7]. Moreover, relational databases
already have efficient implementations for (equi) join algo-
rithms [23]. We want to show that graph joins over the
relational data model are not inefficient. Before all, let us
see an example of a graph join query:

Example 1. Consider an on-line service such as Research-
Gate (Figure 1a, or Academia.edu) where researchers can
follow each others’ work, and a citation graph (Figure 1b).
Now we want to “return the paper graph where a paper cites
another one iff. the first author 1Author of the first paper
follows the 1Author of the second. (Figure 1c)”. The Re-
searchGate graph does not contain any edge regarding the
references, while the Reference graph does not contain any
information pertaining to the follow relations. This demands
a join between the two graphs: as a first step we join the
vertices together as in the relational model (vertices are con-
sidered as tuples using Name = 1Auth as a vertex equi-join
predicate, θ) and then combine the edges from both graphs.
Accordingly to the query formulation, we establish an edge
between two joined vertices only if the source has a paper
citing the destination, and the user in the source follows the
user in the destination.

Let us now examine the graph join implementation within
the relational model: vertices and edges are represented as
two relational tables ([25], Figure 2a). In addition to the
attributes within the vertices’ and the edges’ tables, we as-
sume that each row (on both vertices and edges) has an
attribute id enumerating vertices and edges. Concerning
SQL interpretation of such graph join, we first join the ver-
tices (see the records linked by θ lines in Figure 2a). Then
the edges are computed through the join query provided in
Figure 2b: the root and the leaves are the result of the θ join
between the vertices, while the edges appear as the interme-
diate nodes. An adjacency list representation of a graph,
as the one proposed in the current paper, reduces the joins
within the relation solution to one (each vertex and edge is
traversed only once), thus reducing the number of required
operation to create the resulting graph. Other inefficiency



Name=Alice

{User}

Name=Carl

{User}

Name=Bob

{User}

Name=Dan

{User}

{Follows}

{Follow
s}

{Follow
s}

{Follows}

(a) ResearchGate graph, Follower relations.

Title=Graphs
1Author=Alice

{Paper}

Title=Join
1Author=Alice

{Paper}

Title=Projection
1Author=Carl

{Paper}

Title=OWL
1Author=Bob

{Paper}

Title=µ-calc
1Author=Dan

{Paper}

{Cites}

{C
ite

s}

{C
it
es

}

{Cites}

(b) Reference graph, citation relations. Each paper has a first author.

Title=Graphs
1Author=Alice

Name=Alice

{User,Paper}

Title=Join
1Author=Alice

Name=Alice

{User,Paper}

Title=Projection
1Author=Carl

Name=Carl

{User,Paper}

Title=OWL
1Author=Bob

Name=Bob

{User,Paper}

Title=µ-calc
1Author=Dan

Name=Dan

{User,Paper}

{Follows,Cites}

{F
oll

ow
s,C

ite
s}

(c) First query: ResearchGate1∧Name=1AuthorReference

Title=Graphs
1Author=Alice

Name=Alice

{User,Paper}

Title=Join
1Author=Alice

Name=Alice

{User,Paper}

Title=Projection
1Author=Carl

Name=Carl

{User,Paper}

Title=OWL
1Author=Bob

Name=Bob

{User,Paper}

Title=µ-calc
1Author=Dan

Name=Dan

{User,Paper}

{Follows,Cites}

{Follows}

{F
ol

lo
w

s}

{Follow
s}

{Follows}

{F
oll

ow
s,C

ite
s}

{Cites}

{Cites}

(d) Second query: ResearchGate1∨Name=1AuthorReference

Figure 1: Example of a Graph Database for an Enterprise. Dotted edges remark edges shared between the two different joins.

VResearchGate

id Name `v
6 Alice {User}
7 Bob {User}
8 Carl {User}
9 Dan {User}

EResearchGate

id src dst `e
5 6 7 {Follows}
6 6 8 {Follows}
7 7 9 {Follows}
8 9 8 {Follows}

VReference

id Title Name `v
1 Graphs Alice {Paper}
2 Join Alice {Paper}
3 OWL Bob {Paper}
4 Project Carl {Paper}
5 µ-calc Dan {Paper}

EReference

id src dst `e
1 1 3 {Cites}
2 2 4 {Cites}
3 3 4 {Cites}
4 4 5 {Cites}

θ

θ
θ
θ

(a) Representing the operands’ vertices and edges with tables. The θ
join for the vertices only involves tables VResearchGate and Vprojects.

VResearchGate ./ VReference

EResearchGate

VResearchGate ./ VReference

on

on
EReference

VResearchGate ./ VReference

on

on

(b) SQL join query plan required to create edges for
ResearchGate1∧Name=1AuthorReference. The leaves acts as the
edges’ sources while the root as their destinations.

Figure 2: Graphically representing the relational join procedure required to evaluate the first query (Figure 1c).

considerations for graph query languages are provided in the
Related Work section (Section 6.1).

Example 1 showed only one possible way to combine the
operands’ edges, but we can even return edges pertaining
to both operands as in the following query: “For each paper
reveal both the direct and the indirect dependencies (either
there is a direct paper citation, or one of the authors follows
the other one in ResearchGate)”. The resulting graph (Fig-
ure 1d) has the same vertex set than the previous one, but
they differ on the final edges. This implies that our graph
join definition must be general enough to allow different edge
combinations: we refer to those as edge semantics, “es” for
shorthand. This paper provides two contributions:

• Graph join operator 1es
θ (Section 3), combining

both vertices (θ) and edges (es). A property graph
model (Section 2) is used as a data model of choice.

• Graph Conjunctive Equijoin Algorithm (Section
4): vertex buckets ordered by hash value are created
and the resulting graphs’ edges and vertices are pro-
duced at the same time. Our solution outperforms the
query evaluations in SPARQL, Cypher and SQL (Sec-

tion 5.2). Since the aforementioned algorithm relies on
an ad hoc secondary memory data structure, we tested
it over different graph libraries (Boost, SNAP) and low
level graph databases (Sparksee). Even in this case our
solution provide better results with large graphs (Sec-
tion 5.1).

2. PRELIMINARIES
We model the vertices’ and edges’ set as multisets (of

tuples) S of elements si, where si unequivocally identifies
the i-th occurrence of a tuple s in S. Each tuple associates
to each attribute a value: it is a function A 7→ V ∪ {NULL}
mapping each attribute in A to either a value in V or NULL (ε
is the empty tuple). We slightly change the property graph
definition in [16] in order to ease the join definition between
vertices and edges as later on required by the graph join:

Definition 1 (Property Graph). A property graph
is a tuple G = (V,E,Σv,Σe, Av, Ae, λ, `v, `e) where (a) V is
a multiset of nodes, (b) E is a multiset of edges, (c) Σv is
a set of node labels, (d) Σe is a set of edge labels, (e) Av is
a set of node attributes, (f) Ae is a set of edge attributes,



(g) λ : E → V ×V is a function assigning node pairs to edges,
(h) `v : V → P(Σv) is a function assigning a set of labels to
nodes, and (i) `e : E → P(Σe) is a function assigning a set
of labels to edges.

This is the baseline for our graph database:

Definition 2 (Graph Database). A graph database
is a collection of n distinct property graphs {G1, . . . , Gn}
represented as a single property graph D with n distinct con-
nected components. From now on we refer to each compo-
nent simply as graph. Each graph is identified by two func-
tions: V : {1, . . . , n} 7→ P(V ) determining the vertices V(i)
of the i-th graph and E : {1, . . . , n} 7→ P(E) determining the
edges E(i) of the i-th graph.

Example 2. Two edges ei and fj come from two dis-
tinct graphs, respectively Ga and Gb, within the same graph
database D. Edge ei connects vertex uh to vk (λ(ei) =
(uh, vk)), while fj connects u′h to v′k (λ(fj) = (u′h, v

′
k)).

Such edges store only the following values:

ei(Time) = 12:04, fj(Day) = Mon

and have the following labels:

`e(ei) = { Follow } , `e(fj) = { FriendOf }

For the multiset θ-join, we need a function ⊕ combining
two tuples for the relational join operator over multisets,
where ri⊕ tj is a valid multiset element (r⊕ s)i⊕j and i⊕ j
maps each integer pair (i, j) to a single number.

Definition 3 (θ-Join). Given two (multiset) tables R
and S over a set of attributes A1 and A2, the θ-join R ./θ S
[4, 5] is defined as follows:

{ri ⊕ sj | ri ∈ R, sj ∈ S, θ(ri, sj),(ri ⊕ sj)(A1) = ri,

(ri ⊕ sj)(A2) = sj}

where (t ⊕ t′)(Ai) denotes the projection of the tuple t ⊕ t′
over Ai. If θ is the always true predicate, θ can be omitted
and, when also A1 ∩A2 = ∅, we have a cartesian product.

If we define ⊕ as a linear function (that is for each func-
tion H, H(ei⊕fj) = H(ei)⊕H(fj)), the θ-join also induces
the definition of `v, `e and λ for the joined tuples. As a con-
sequence, ⊕ must be overloaded for each possible expected
output from H (see Definition 7 in Appendix).

Example 3. By continuing the previous example, sup-
pose that the edge ei ⊕ fj comes from a graph join where
edges from Ga are joined to the ones in Gb in a resulting
graph, where also vertices uh ⊕ u′h and vk ⊕ v′k appear. So:

(ei ⊕ fj)(Time) = 12:04, (ei ⊕ fj)(Day) = Mon

By ⊕’s linearity, we have that the labels are merged:

`e(ei ⊕ fj) = `e(ei)⊕ `e(fj) = {Follow} ⊕ {FriendOf}
= {Follow,FriendOf}

And the result’s vertices are updated accordingly:

λ(ei ⊕ fj) = λ(ei)⊕ λ(fj) = (uh, vk)⊕ (u′u, v
′
k)

= (uh ⊕ u′h, vk ⊕ v′k)

Since all the relevant informations are stored in the graph
database, we represent the graph as the set of the minimum
information required for the join operation.

Definition 4 (Graph). The i-th graph of a graph da-
tabase D is a tuple Gi = (V(i), E(i), Aiv, A

i
e), where V(i) is

a multiset of vertices and E(i) is a multiset of edges. Fur-
thermore, Aiv is a set of attributes a ∈ Aiv s.t. there is at
least one vertex vj ∈ V(i) having vi(a) 6= NULL; Aie is a set
of attributes a′ ∈ Aie s.t. there is at least one edge ek ∈ E(i)
having ek(a′) 6= NULL.

3. GRAPH JOINS
As we discussed in the introduction, our graph join is

based on the combination of vertices and edges: Ga ./
es
θ Gb

expresses the join of graph Ga with Gb where (i) we first use
a relational θ-join among the vertices, and then (ii) we com-
bine the edges using an appropriate user-determined edge
semantics, es. This modularity is similar to the graph prod-
ucts defined in graph theory literature [14, 17], where instead
of a join between vertices they have a cross product, and dif-
ferent semantics are expressed as different graph products.
We now provide the graph join definition:

Definition 5 (Graph θ-Join). Given two graphs Ga =
(V,E,Av, Ae) and Gb = (V ′, E′, A′v, A

′
e), a graph θ-join is

defined as follows:

Ga ./
es
θ Gb = (V ./θ V

′, Ees, Av ∪A′v, Ae ∪A′e)

where θ is a binary predicate over the vertices and ./θ the
θ-join (Definition 3) among the vertices, and Ees is a sub-
set of all the possible edges linking the vertices in V ./θ V

′

expressed with the es semantics.

Given that graph join returns a property graph like the
graphs in input, property graphs are closed under the graph
join operator via the definition of ⊕ for the multiset θ-join.

3.1 Two possible “es” edge semantics
The result of the join between two graphs, ResearchGate

(Figure 1a) and References (Figure 1b), produces the same
set of vertices regardless of the edge semantics of choice. On
the other hand, edges among the resulting vertices change
according to the edge semantics. In the first one (Figure
1c) we combine edges appearing in both graphs and linking
vertices that appear combined in the resulting graph. We
have a Conjunctive Join, that in graph theory is known as
Kronecker graph product [26, 14]. In this case Ees is defined
with the “∧” es semantics as an edge join E∧ = E ./Θ∧ E′,
where the Θ∧ predicate is the following one:

Θ∧(eh, e
′
k) = (eh ∈ E ∧ e′k ∈ E′) ∧ λ(eh ⊕ e′k) ∈ (V ./θ V

′)2

(1)

We can also define a disjunctive semantics (Figure 1d),
having“∨”as es. In this case we want edges appearing either
in the first or in the second operand. This means that two
vertices, uh ⊕ u′h and vk ⊕ v′k, could have a resulting edge
ei ⊕ ε′j even if only λ(ei) = (uh, vk) appears in the first
operand and ε′ is a “fresh” empty edge λ(ε′j) = (u′h, v

′
k) not

appearing in Gb such that λ(ea ⊕ ε′b) = (uh ⊕ u′h, vk ⊕ v′k).
Consequently the disjunctive join can be represented as a full
outer join, where the edges either match in the conjunctive



semantics, or appear in the two distinct graph operands:

E∨ = E ./ Θ∧ E
′ (2)

4. ALGORITHM AND DATA STRUCTURE
We now outline our algorithm, GCEA, for θ equijoin pred-

icates, involving an equivalence between attributes or a con-
junction of such equivalences. This specific predicate choice
was driven by the fact that the most performant and imple-
mented relational database join is the equi-join [23]. More-
over we provide an implementation for conjunctive seman-
tics, since this task is more prone to be optimized than
the disjunctive one. Algorithm 1 for GCEA consists in
three parts: (i) vertex partitioning (bucketing) through an
hashing function (OperandPartitioning) (ii) graph seri-
alization on secondary memory (SerializeOperand), and
(iii) actual join algorithm over the graphs’ buckets (Par-
titionHashJoin). Relational partition hash-join undergo
the same phases, even if relational algorithms do not deal
with outgoing edges (lines 31-35 and Section 6). We allow
vertices with replicated values as in current graph databases
implementations (such as Titan and Neo4J). Consequently
ids enumerate the vertices within a single graph.

As a first step, the hashing function h is inferred from
θ (line 2): if θ(u, v) is a binary predicate between distinct
attributes from u and v, then h is defined as a linear com-
bination of hash functions over the attributes of either u or
v. When no h could be inferred from θ, then h is a constant
function.

Algorithm 1 Graph Conjunctive EquiJoin Algorithm
(GCEA)

1: procedure ConjunctiveJoin(G,G′, θ)
2: hashFunction = generateHash(θ);
3: omap1 = OperandPartitioning(G,hashFunction)
4: omap2 = OperandPartitioning(G′,hashFunction)

5: G1 = SerializeOperand(G,omap1)

6: G2 = SerializeOperand(G′,omap2)

return PartitionHashJoin(G1, G2, θ)

7:
8: procedure SerializeOperand(G,omap):
9: File VertexIndex = Open();

10: VertexVals= Open(), HashOffset= Open();
11: ulong offset = HashOffset = 0;
12: for each h ∈Keys(omap) do . Ordered maps have ordered keys.
13: HashOffset.Write({h,HashOffset});
14: for each id ∈omap[h] do
15: v = G.V [id];
16: v.hash = h; v.offset = VertexVals;
17: VertexIndex.Write({v.id, h, offset});
18: ulong offsetNext = VA.Write(serialize(v));
19: offset+=offsetNext; HashOffset+=offsetNext;

return (VertexIndex,VertexVals,HashOffset,G.Av ,G.Ae)

20:
21: procedure PartitionHashJoin(G1, G2, θ):
22: θ′(u, u′) := θ(u, v) ∧ (u⊕ u′)(Av) = u ∧ (u⊕ u′)(A′v) = u′;
23: Θ′(e, e′) := (e⊕ e′)(Ae) = e ∧ (e⊕ e′)(A′e) = e′

24: HI = IntersectHashes(HashOffset1,HashOffset2).iterator();
25: File AdjF ile = Open();
26: while HI.hasNext() do
27: h = HI.next();
28: for each u ∈ VertexVals1[h.offset1], u′ ∈ VertexVals2[h.offset2] do
29: if θ′(u, u′) then
30: AdjFile.Write(V={u⊕ u′},)
31: HIout= IntersectHashes(outV (u),outV ′ (u′)).iterator();
32: while HIout.hasNext() do
33: hout = HIout.next();
34: for each edge e ∈ outV (u)[hout.offset1], e′ ∈

outV ′ (u′)[hout.offset2] do
35: if θ′(e.outvertex, e′.outvertex) and Θ′(e, e′) then
36: AdjFile.Write(E={e⊕ e′})

OperandPartitioning performs a vertex bucketing in
main memory: its outcome is an ordered map, where each
vertex v is stored in a collection omap[h(v)], where h is the
aforementioned hashing function. For each operand Gi, the

omapi construction takes at most
∑|V(i)|
j=0 log(j) time, where

|V(i)| is the multiset vertex size. Such time complexity is

bounded by |V(i)| ≤
∑|V(i)|
j=0 log(j) < |V(i)|2 where |V(i)| �

1.
SerializeOperand stores the operand in secondary mem-

ory: both buckets (line 12) and vertices (line 14) are already
sorted by hash value, and hence such data structures are ac-
cessed linearly. Figure 3c depicts a serialized representation
of the graph in Figure 3b: all the labels and the edge values
are not serialized but are still accessible through the origi-
nal graph G via id. Buckets are represented by HashOffset
providing both the bucket value and the pointer to the first
vertex of the bucket stored in VertexVals. VertexVals stores
vertices alongside with their adjacency list, where vertices
are sorted by hash value and are represented by id and hash
value. VertexIndex allows to find the vertices stored in Ver-
texVals in constant time: each record is ordered by vertex
id, has a constant size and contains the pointer to where the
vertex data is stored in VertexVals. Even the outgoing edges
are stored by the destination vertex’s hash value. Given ki
the size of Keys(omapi), this phase takes 3ki + |Gi| time,
where 2ki is the omap visit cost, ki is the omap serialization
as HashOffset and |Gi| is the time to serialize the graph as
V Ai.

The last step performs the actual conjunctive join over
the serialized graph (PartitionHashJoin): the data struc-
ture is accessed from secondary memory through memory
mapping. Line 24 prepares the intersection: while perform-
ing a linear scan over the buckets, the HI iterator checks
if both operands have a bucket with the same hash value
(line 26), then the common hash value is extracted (line
27) and the two buckets accessed (line 28), then the com-
position u ⊕ u′ between the vertices is performed (line 30).
Next, differently from the relational join, the adjacent ver-
tices for both operands are visited. Similarly to line 24,
the hash-sorted edges induce a bucketing (line 31), and then
we check if the destination vertices meet the join conditions
alongside with the to-be-joined edges (line 35). Please note
that, as stated out in Definition 5, edges are not filtered by
θ predicate. Furthermore, the resulting graph is stored in a
bulk graph where only the vertices id from the two graph
operators appear as pairs. This last operation takes time
k1 + k2 +

∑
h∈HI

(
bh1 · bh2 + outh1 · outh2

)
where bhi is the size

of the h bucket for the i-th operand, while outhi is the out-
going vertices’ size for all the vertices within the h bucket
for the i-th operand.

Such algorithm could be also extended to the disjunctive
semantics as follows: all the edges discarded from the inter-
section in line 30 for u ⊕ u′ should be considered, either if
they come from the left operand or from the right one. Be-
tween all such edges, we consider only those e′ that have a
destination vertex ν which hash value appears in HI. More-
over it has to satisfy the binary predicate θ jointly with an-
other vertex ν′, coming from the opposite operand. Hence
we establish (e.g.) an edge (u⊕ u′, ν ⊕ ν′) having the same
values and attributes of e′ and the same set of labels.



node size outgoing offset id M length(val[1]) . . . length(val[M-1]) val[1] . . . val[M] length(out) outvertex[1] hash[1] edgeid[1] . . .

Id Hash offset value offset

VertexVals

VertexIndex HashOffset

values out

(a) Data structures used to implement the graph in secondary memory. Each data structure represents a different file.

G1 v0

v2 v1

eo

e1

User MsgTime1

v0 Alice 1

v1 Bob 3

v2 Carl 2

(b) G1

16

v0

15 0 2 5 1 ‘Alice’ ‘1’

values

0

out = {}

18

v2

14 2 2 4 1 ‘Carl’ ‘2’

values

1 1 h2 0

out = {e0}

17

v1

13 1 2 3 1 ‘Bob’ ‘3’

values

1 0 h1 1

out = {e1}

h1

h1

h2

h2

0

v0

h1 1

v1

h2 2

v2

h1

VertexVals

VertexIndex HashOffset

(c) Using the graph schema in Figure 3a for representing G1 in secondary memory. v0 and v2 belong to a
different bucket from v1 only for illustrative purposes.

Figure 3: Graph representation in secondary memory.

5. EXPERIMENTAL EVALUATION
Through the following experiments we want to prove that

(i) both hash buckets and memory mapping for the graph
join operands provide better results for GCEA, (ii) which
outperforms the query plans for other query languages (both
graph and relational). For the first case we have to use graph
libraries or graph databases where transactions and logging
can be disabled, while for the second we choose state of the
art graph databases implementing specific query languages.

In order to do so we choose the simplest graph repre-
sentation that provides better performances for all the ad-
dressed languages: we choose a graph where only vertices
contain values and where labels are stored in both vertices
and edges. We created our data using the LiveJournal Graph
[19] containing 4,847,571 unlabelled vertices and 68,993,773
unlabelled edges. Each vertex represents a user which is
connected to each of its friends by an edge. Since no data
values are given within the datasets, we enriched the graph
using the guidelines of the LDBC Social Network Bench-
mark protocol [10], and hence associated to each user an IP
address, an Organization and the year of employment1. For
each experiment, the input data were obtained by starting
a random walk from the same vertex but using a different
seed for the graph traversal. New data sets were obtained
incrementally by visiting each time a number of vertices that
is a power of 10, from 10 to 106.

We performed our tests over a MacOsX with a 2.2 GHz
Intel Core i7 processor and 16 GB of RAM at 1600 MHz,
and an SSD Secondary Storage with an HFS file system.
We evaluate the graph join using as operands two distinct
sampled subgraphs with the same vertex size (|V |), where

the θ predicate is the following one: θ(u, v)
def
= u.Y ear1 =

v.Y ear2∧u.Organization1 = v.Organization2. Such pred-
icate does not perform a perfect 1-to-1 match with the graph
vertices, thus allowing to test the algorithm with different
multiplicities values. We tested the algorithm with the con-

1More informations regarding our proposed solutions are
available at http://smartdata.cs.unibo.it/?page id=798.

junctive semantics, having a subset of the operations of the
disjunctive one.

5.1 Evaluating Data Structures
We benchmark our solution with graph data models where

database transactions either do not exist or can be disabled.
We first consider two graph libraries accessing graphs in
main memory; we tested the Boost Graph Library 1.60.0
with the most efficient configuration for graph traversals
tasks, vec [24], and Snap 3.0 [20] considering the attributes
only over the vertices (TNodeNet<TAttr>). Then we con-
sider the Sparksee∗ graph database [9]: transactions were
disabled in the configuration file, as well as logging, rollback
and recovery facilities. Concerning the graph database man-
agement implementation, no assumptions can be made as
it is closed source.

We implemented our graph join algorithm for all the afore-
mentioned libraries. We used the standard graph library
methods to store the graph in secondary memory (serial-
ization or graph database storage) and extended the Par-
titionHashJoin by doing a preliminary vertex bucketing
phase: buckets are not supported and vertices cannot be
sorted by hash value.

Join Evaluation Time. In this case we evaluate two as-
pects: (i) the join algorithm running time and (ii) the time
required to create the solution and store it in secondary
memory.

Table 4a provides the cost of performing the sole join al-
gorithm excluding the result storing time. All the competi-
tors’ graphs were joined through GCEA and vertices with
the same hash were put in the same bucket in main memory.
It must be emphasised that both Boost and SNAP operands
were loaded in primary memory, while our operands were ac-
cessed in secondary memory through memory mapping. The
table shows how all the other data structures had a worse
performance due to the initial cost of the bucket creation
and sorting. We must also remark that this result justifies
the need of our data structure for the proposed algorithm.



Operands Size GCEA running time, result creation excluded GCEA result creation time
Left (|V |) Right (|V |) Proposed Boost SNAP Sparksee Proposed Boost SNAP Sparksee

10 10 0.19 ms 0.09× 0.23× 9.42× 0.0010ms 17.00× 36.40× 738.33×
100 100 0.18 ms 0.85× 1.72× 24.96× 0.0023ms 5.39× 17.04× 290.14×

1 000 1 000 0.31ms 5.68× 14.93× 88.42× 0.0036ms 7.72× 14.67× 215.65×
10 000 10 000 1.90ms 11.13× 26.83× 156.42× 0.3706ms 4.60× 7.61× 15.67×

100 000 100 000 32.31ms 8.73× 19.33× 81.05× 39.3428ms 4.20× 5.80× 11.70×
1 000 000 1 000 000 332.60ms 15.42× 33.15× 171.54× 3 207.8738ms 5.76× 12.29× 15.50×

(a) Performing GCEA when all operands are already loaded.

Size (|V |) Proposed Boost SNAP Sparksee

10 0.23 ms 0.68× 0.98× 7.73×
100 0.50ms 1.60× 5.22× 11.76×

1 000 3.38ms 1.68× 6.94× 13.47×
10 000 34.26ms 1.52× 7.25× 13.84×

100 000 355.96ms 1.47× 6.27× 14.73×
1 000 000 3 518.47ms 1.89× 6.10× 17.79×

(b) Graph operand creation+storing time.

Figure 4: Benchmarking results for the LiveJournal database over C++ graph libraries and low level databases.

Operands Size Result Join Time (C/C++) (ms) Join Time (Java) (ms)
Left (|V |) Right (|V |) Size (|V |) Size (|E|) Virtuoso PostgreSQL GCEA (C++) Neo4J GCEA (Java)

10 10 5 2 4.99 11.29 0.53 211.45 24.97
102 102 16 4 4.94 22.82 0.93 222.87 32.70
103 103 251 55 4.55 22.92 4.35 448.97 117.58
104 104 2 734 680 117 712.00 183.90 40.42 3 149.90 1 150.37
105 105 26 803 7 368 >4H 7 150.74 411.78 241 026.79 17 178.49
106 106 151 212 99 558 >4H 99 683.91 3 966.72 >4H 178 066.80

Figure 5: Graph Join Running Time. Each data management system is grouped by its graph query language implementation.

The same table provides the time required to store the re-
sults as an adjacent list in secondary memory using the de-
fault graph library representation (non-labelled vertices and
edges, default serialization). In this case our solution always
outperforms the other graph libraries and databases.

Operand creation time. We consider the graph creation
time in main memory and the cost of storing it in secondary
memory per operand (Table 4b). For both Boost and SNAP
the default serialization methods are performed, while for
Sparksee∗ we simply closed the database. In this case our
solution outperforms all the competitors.

5.2 Join Execution Time
This last experiment compares the interpretation of query

plans for both relational and graph databases with GCEA.
The opponents’ query plans are discussed in Section 6.1.

We used default configurations for both Neo4J and Post-
greSQL, while we changed the cache buffers configurations
for Virtuoso (as suggested in the configuration file) for 16GB
of RAM. We kept the default multithreaded query execu-
tion plan. Cypher queries were sent using the Java API
but the graph join operation was performed only in Cypher
through the execute method of an GraphDatabaseService

object. PostgreSQL queries were evaluated directly through
the psql client and benchmarked using both explain ana-

lyze and \timing commands. Virtuoso was benchmarked
through iODBC connection evoked in C using Redland RDF
library: no HTTP connections were used and only the librdf_-
model_query_execute function was involved in the graph
join operation. Neo4J graphs were fine tuned by indexing
the attributes Organization and Year involved in the query
and, since Cypher language does not allow to access to dif-

ferent graphs, both graph join operands were stored within
the same graph. Virtuoso triples were not indexed, as a de-
fault set of indices are defined during the graph creation,
and data is automatically indexed. All the aforementioned
conditions do not degrade the query evaluations.

Table 5 represents the result of such benchmarks. The
competitors’ join time is made up only by the query eval-
uation time, while our proposed implementation considered
the whole GCEA algorithm, and hence both the partition-
ing phase, the operands’ serialization and the actual join
execution were considered. As a result our solutions always
outperform the competitors’ query plans within their own
language implementation.

6. RELATED WORK
At the time of writing, the only field where a binary graph

operation is discussed is Discrete Mathematics. Such op-
erations are defined over either finite graphs or finite graphs
with cycles, and are named graph products [14]. Every graph
product produces a graph whose vertex set is defined as a
cartesian product between the vertices’ sets producing pair
of vertices, while the edge set changes accordingly to the dif-
ferent graph product definition. Consequently the Kroneker
Graph Product [26] is defined as follows:

G×G′ = (V × V ′,
{

((g, h), (g′, h′)) ∈ V × V ′
∣∣ (g, g′) ∈ E, (h, h′) ∈ E′

}
)

while the cartesian graph product [18] is defined as follows:

G�G′ = (V × V ′,
{

((g, h), (g′, h′)) ∈ V × V ′
∣∣ (g = g′, (h, h′) ∈ E′) ∨ (h = h′, (g, g′) ∈ E)

}
)

Other graph products are lexicographic product and strong
product [14, 17]. This definition has two issues: (i) the
resulting vertex set is not made of single vertices but of pair
of vertices, and hence (ii) those graph product definitions are



not tailored for graphs with embedded data (i.e. property
graphs, triple stores).

6.1 (Graph) Query Languages
In this section we describe how a graph join is imple-

mented for property graph databases and RDF triplestores.
The reason is twofold: we want both to show that graph joins
can be represented in different data representations, and to
detail how our experiments in Section 5 were performed.

Property Graph and Cypher. Property graphs are, to the
best of our knowledge, the more general graph data model
representation because they consider both vertices and edges
as multi-labelled tuples. It is necessary to compare the per-
formances of our algorithm with query languages running on
top of property graph databases because our physical model
generalizes property graphs. Among the Property Graph
databases we do not consider SQLGraph [25] because there
is no existing implementation and, most importantly, the
Gremlin query language allows only to perform graph traver-
sal queries returning bag of values. We choose to perform
our tests over Neo4J using Cypher as a query language, be-
cause Neo4J allows to extend the built-in query plans with
ad hoc solutions [16], eventually allowing an implementation
of our algorithm in a future.

Cypher uses a pipe query evaluation model allowing to re-
fine queries in further steps. Regarding the implementation
of the graph conjunctive join operator in Cypher, Value-
HashJoins are performed between vertices coming from dif-
ferent graph operands, and hash values are either evaluated
at run time, or depend on attributes’ values indexings. This
choice supports the experimental evidence of Cypher having
a better scalability than SPARQL, where RDF graphs can-
not be indexed by values (see the next paragraph). Once
the Cypher query is transformed into a pipe-based query
plan, most of the pipes’ sources appear to be NodeByLa-
belScan and AllNodeScan: this means that all the graph’s
vertices (with a given label) are considered in the first steps
of computation. As a result the query plan scans more data
than it should to provide the final result. In our algorithm
this drawback does not occur because we directly access the
data per buckets on both graph operands, avoiding to con-
sider any vertices’ combinations that will not appear in the
final result.

RDF triplestores and SPARQL. Triplestore systems store
the graph informations as triplets, (source, property, desti-
nation), where source and destination are two vertices, and
property is the edge linking them. Such property could even
appear as a source vertex whenever additional information is
provided [8]. [8] shows that property graphs can be entirely
mapped into RDF triplestore systems as follows:

Definition 6 (Property Graph over Triplestore).
Given a property graph G = (V,E,Av, Ae), each vertex vi ∈
V induces a set of triples (vi, α, β) for each α ∈ Av such that
vi(α) = β having β 6= NULL. Each edge ej ∈ E induces a set
of triples (s, ej , d) such that λ(ej) = (s, d) and another set
of triples (ej , α

′, β′) for each α′ ∈ Ae such that ej(α
′) = β′

having β′ 6= NULL. Each property graph G is stored as a
distinct named graph.

This allows us to query each property graph with SPARQL
query language, specifically targeted for triplestores, through

their RDF representation. We took this query language
into account for our benchmarks because it is well consoli-
dated: a lot of research has been carried out [22] and efficient
query plans have been implemented [15], even when multiple
graphs are took in input. These results involve the interpre-
tation and the execution of “optional joins” paths [2], thus
allowing to check whether the graph conjunctive join condi-
tions are not met for the outgoing edges. Such performances
quickly degrade due to both the sparsity of the data repre-
sentation requiring to perform more path joins than the ones
required for the property graph model, and to the CONSTRUCT
clauses are not included in the SPARQL algebra optimiza-
tions. However, CONSTRUCT is required for produce a graph
as a final outcome of our graph join query. Moreover RDF
triplestores as Virtuoso prefer to index triplets per patterns
and do not allow triplet indexing by values. Within our
tests, we also took into account that both input and output
met the requirements of Definition 6.

7. CONCLUSIONS
This paper defines for the first time a graph join operator.

A graph algorithm is proposed for the conjunctive semantics,
outperforming the implementations on different languages.
By comparing the execution of our algorithm with our graph
data structure with other ones provided by graph libraries,
we also show that our choice of sorting the vertices per hash
value (required for the partition hash join) allows to have
better performances during the overall execution of the join
algorithm.

Some results have been omitted for lack of space. First,
we could prove that our operator is both commutative and
associative. This result could be proved both for the vertices’
and edges’ tuples, and for their labels. Such are relevant
properties when such operators are used for data integration
tasks. The bucketing approach allows even to implement the
graph join through a map-reduce approach. Last, we could
extend our algorithm to support ≤ predicates in θ over one
attribute having partially ordered values [6]: since our data
structure is already ordered by hash value, we could just use
a monotone hashing function h w.r.t such attribute.

8. REFERENCES
[1] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré.

Emptyheaded: A relational engine for graph
processing. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16,
pages 431–446, New York, NY, USA, 2016. ACM.

[2] M. Atre. Left Bit Right: For SPARQL Join Queries
with OPTIONAL Patterns (Left-outer-joins). In
SIGMOD Conference, pages 1793–1808. ACM, 2015.

[3] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler.
Matrix ”bit” loaded: A scalable lightweight join query
processor for rdf data. In Proceedings of the 19th
International Conference on World Wide Web, WWW
’10, pages 41–50, New York, NY, USA, 2010. ACM.

[4] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone.
Database Systems - Concepts, Languages and
Architectures. McGraw-Hill, 1 edition, 1999.

[5] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Basi
di dati. Modelli e linguaggi di interrogazione.
McGraw-Hill, Milan, 3 edition, 2009.



[6] G. Bergami, M. Magnani, and D. Montesi. On joining
graphs. CoRR, abs/1608.05594, 2016.

[7] M. A. Bornea, J. Dolby, A. Kementsietsidis,
K. Srinivas, P. Dantressangle, O. Udrea, and
B. Bhattacharjee. Building an efficient rdf store over a
relational database. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 121–132, New York, NY,
USA, 2013. ACM.

[8] S. Das, J. Srinivasan, M. Perry, E. I. Chong, and
J. Banerjee. A tale of two graphs: Property graphs as
RDF in oracle. In Proceedings of the 17th
International Conference on Extending Database
Technology, EDBT 2014, Athens, Greece, March
24-28, 2014., pages 762–773, 2014.

[9] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó,
S. Gómez-Villamor, N. Mart́ınez-Bazán, and J. L.
Larriba-Pey. Survey of graph database performance on
the hpc scalable graph analysis benchmark. In
Proceedings of the 2010 International Conference on
Web-age Information Management, WAIM’10, pages
37–48, Berlin, Heidelberg, 2010. Springer-Verlag.

[10] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi,
A. Gubichev, A. Prat, M.-D. Pham, and P. Boncz.
The ldbc social network benchmark: Interactive
workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 619–630, New York, NY, USA,
2015. ACM.

[11] O. Erling and I. Mikhailov. Virtuoso: Rdf support in a
native rdbms. In R. D. Virgilio, F. Giunchiglia, and
L. Tanca, editors, Semantic Web Information
Management, pages 501–519. Springer, 2009.

[12] G. H. Fletcher and P. W. Beck. Scalable indexing of
rdf graphs for efficient join processing. In Proceedings
of the 18th ACM Conference on Information and
Knowledge Management, CIKM ’09, pages 1513–1516,
New York, NY, USA, 2009. ACM.

[13] J. Gao, J. Yu, H. Qiu, X. Jiang, T. Wang, and
D. Yang. Holistic top-k simple shortest path join in
graphs. IEEE Trans. on Knowl. and Data Eng.,
24(4):665–677, Apr. 2012.

[14] R. Hammack, W. Imrich, and S. Klavzar. Handbook of
Product Graphs, Second Edition. CRC Press, Inc.,
Boca Raton, FL, USA, 2nd edition, 2011.

[15] J. Huang, D. J. Abadi, and K. Ren. Scalable sparql
querying of large rdf graphs. PVLDB,
4(11):1123–1134, 2011.

[16] J. Hölsch and M. Grossniklaus. An algebra and
equivalences to transform graph patterns in neo4j.
Fifth International Workshop on Querying Graph
Structured Data, 2016.

[17] W. Imrich and S. Klavzar. Product Graphs. Structure
and Recognition. John Wiley & Sons, Inc., New York,
NY, USA, 2nd edition, 2000.

[18] W. Imrich and I. Peterin. Recognizing cartesian
products in linear time. Discrete Mathematics,
307(3-5):472–483, 2007.

[19] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural
cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

[20] J. Leskovec and R. Sosič. Snap: A general-purpose
network analysis and graph-mining library. ACM
Transactions on Intelligent Systems and Technology
(TIST), 8(1):1, 2016.

[21] M. Paradies, W. Lehner, and C. Bornhövd. Graphite:
An extensible graph traversal framework for relational
database management systems. In Proceedings of the
27th International Conference on Scientific and
Statistical Database Management, SSDBM ’15, pages
29:1–29:12, New York, NY, USA, 2015. ACM.

[22] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of sparql. ACM Trans. Database Syst.,
34(3):16:1–16:45, Sept. 2009.

[23] S. Schuh, X. Chen, and J. Dittrich. An experimental
comparison of thirteen relational equi-joins in main
memory. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 1961–1976, 2016.

[24] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost
Graph Library: User Guide and Reference Manual.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[25] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis,
G. Hu, and G. Xie. Sqlgraph: An efficient
relational-based property graph store. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, pages
1887–1901, New York, NY, USA, 2015. ACM.

[26] P. M. Weichsel. The kronecker product of graphs.
Proceedings of the American Mathematical Society,
13(1):47–52, 1962.

[27] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.
Triplebit: A fast and compact system for large scale
rdf data. Proc. VLDB Endow., 6(7):517–528, May
2013.

APPENDIX
Definition 7 (Concatenation). ⊕ : A×A 7→ A is a

lazy evaluated concatenation function between two operands
of type A returning an element of the same type, A. The con-
catenation function is a linear function such that, given any
function H with dom(H) = A, H(u⊕ v) = H(u)⊕H(v). ⊕
is defined for the following A-s:

• sets: it performs the union of the two sets: S ⊕
S′

def
= S ∪ S′

• integers: it returns the dovetail number associating

to each pair of integers an unique integer: i ⊕ j
def
=∑i+j

k=0 k + i

• functions: given a function f : A 7→ B and g : C 7→
D, f ⊕ g is the function returning f(x) if x ∈ dom(A),
and g(x) if x ∈ dom(C). NULL is returned otherwise.
Such function concatenation are used when ∀x ∈ A ∩
C.f(x) = g(x).

• pairs: given two pairs (u, v) and (u′, v′), then the pair
concatenation is defined as the pairwise concatenation

of each element, that is (u, v)⊕(u′, v′)
def
= (u⊕u′, v⊕v′).

Elements belonging to multisets are represented as pairs

of elements and integers, and hence si⊕tj
def
= (s⊕t)i⊕j.


