Recurring Retrieval Needs in Diverse and Dynamic
Dataspaces: Issues and Reference Framework

Barbara Catania, Francesco De Fino, Giovanna Guerrini
_ University of Genoa, Italy
{firstname.lastname}@dibris.unige.it

ABSTRACT

Processing information requests over heterogeneous
dataspaces is very challenging because aimed at guar-
anteeing user satisfaction with respect to conflicting
requirements on result quality and response time. In
[3], it has been argued that, in dynamic contexts pre-
venting substantial user involvement in interpreting
requests, information on similar requests recurring over
time can be exploited during query processing.

In this paper, referring to a graph-based modeling
of dataspaces and requests, we propose a preliminary
approach in this direction centered on the enabling
concept of Profiled Graph Query Pattern (PGQP) as
an aggregation of information on past evaluations of
a set of previously executed queries. The information
maintained in PGQP is not query results, as in mate-
rialized queries, but can include different kinds of data
and metadata.

1. INTRODUCTION

Motivations. The last years have been character-
ized by a tremendous growth of available informa-
tion, coming from information sources that are highly
heterogeneous in terms of structure, semantic rich-
ness, and quality. Sources can indeed contain unstruc-
tured data as well as data with well-defined structure,
strongly correlated and semantically complex but rel-
atively static data (e.g., Linked Open Data), highly
dynamic user-generated data. This information is,
however, a resource currently exploited much below
its potential because of the difficulties for the users
in accessing it. Users would like to find answers to
complex requests expressing relationships among the
entities of their interest, but they are able to specify
requests only vaguely because they cannot reasonably
know the format and structure of the data that encode
the information relevant to them.

As an example, consider a smart city explorer, that

2017, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2017 Joint Conference (March 21,
2017, Venice, Italy) on CEUR-WS.org (ISSN 1613-0073). Distri-
bution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0

is, a set of smart information services offered by a
municipality to users that, e.g., retrieves information
about attractions, points of interests, and shops. A
user might, for instance, ask for the authors of the fig-
urative artworks she is watching (i.e., they are located
close to her position), together with information about
other places where such authors are currently expos-
ing. In this specific context, data may come from dif-
ferent datasets, are heterogeneous and very dynamic,
as the user may quickly change her position or the en-
vironment itself (including data) might be different at
different instants of time.

Processing complex requests on diverse and dynamic
sources requires: (i) request interpretation; (ii) source
selection; (iii) actual processing of the request on the
relevant, and usually big in size, sources. The overall
process is costly and, nevertheless, it may not guar-
antee user satisfaction on the obtained result since
the request (i) could be incorrectly interpreted, (ii)
could be processed on inaccurate, incomplete, unre-
liable data, or (iii) could require a processing time
inadequate to its urgency.

To make processing time more adequate to the ur-
gency of the request, approximate query processing
approaches can be considered, by providing a fast an-
swer at the cost of a lower accuracy [4]. Additionally,
to improve the interpretation of the request, and re-
lated source selection, one possibility is to rely on user
involvement. Novel paradigms for exploratory user-
data interactions, that emphasize user context and
interactivity with the goal of facilitating exploration,
interpretation, retrieval, and assimilation of informa-
tion, are being developed. Such solutions, however,
do not seem adequate in dynamic contexts, character-
ized by urgent requests and by communication means
hampering user interaction.

Other innovative approaches should therefore be de-
vised, relying on different kinds of information for find-
ing possibly approximate answers to complex infor-
mation needs, even vaguely and imprecisely specified,
operating on the full spectrum of relevant content in
a dataspace of highly heterogeneous and poorly con-
trolled sources. In [3], to overcome difficulties related
to heterogeneity and dynamic nature, the exploitation
of additional information, in terms of user profile and
request context, data and processing quality, similar
requests recurring over time, is suggested.

In this paper, we focus on similar requests recurring

over time for improving approximate processing of re-
quests that we assume already interpreted and rep-
resented according to a given formalism. Recurring
retrieval needs are very common in dynamic contexts,
such as, for instance, during or after an exceptional
event (environmental emergencies or flash mobbing
initiatives), in the context of users belonging to the
same community or that are in the same place, pos-
sibly at different times. The information needs are
widespread among different users, because induced by
the event, the interests of the community, and the
place, respectively. We aim at taking advantage of the
experience gained by prior processing in new searches
for limiting interpretation errors and response time,
thus reducing the possibility of producing unsatisfac-
tory answers.

Recurring retrieval needs have been considered in
query processing for a very long time in terms of ma-
terialized views (see, e.g., [7, 8]) The idea is to precom-
pute the results of some recurring queries as materi-
alized views, select some of such views (view selection
problem) and re-use them (view-based query process-
ing) for the execution of new requests. Unfortunately,
the usage of materialized views in the contexts de-
scribed above suffers of some problems: (i) views as-
sociate a result to a given query, however in the ref-
erence contexts we may be interested in associating
other or additional information (e.g., the set of used
data sources or, under pay-as-you-go integration ap-
proaches [6], query-to-data mappings); (ii) view up-
dates are very frequent in dynamic environments, re-
ducing the efficiency of the overall system; (iii) view-
based query processing techniques usually rely on a
precise semantics while heterogeneity tends to favour
approximation-based approaches.

Alternative usages of the concept of recurring re-
trieval needs in query processing have been recently
provided but, also in this case, precise query pro-
cessing is taken into account. For example, in [13],
common needs are used with the aim of expediting
the processing of graph queries against a database of
graphs, by reducing the number of subgraph isomor-
phism tests to be performed.

Contributions. This paper presents the preliminary
results of an on-going work aiming at exploiting in-
formation about similar requests recurring over time
in approximate query processing of requests executed
over diverse and dynamic dataspaces. We refer to a
graph-based representation of dataspaces, interpreted
as a collection of (possibly) schemaless data sources,
and on a graph-based language for modeling user re-
trieval needs, expressed as entity relationships queries
over such dataspaces. We propose a framework for
representing and managing (sets of) recurring user re-
quests, and for exploiting them in approximate query
processing. The proposed framework is based on the
concept of Profiled Graph Query Pattern (PGQP). Like
materialized views, each profiled graph query pattern
corresponds to a kind of index value associated with
information related to the past evaluation of the queries
it represents; however, differently from materialized
views, such information does not necessarily corre-

spond to previously computed results, rather it ranges
from query results to any other higher level informa-
tion collected during query processing (e.g., query-
to-data mappings). In specifying the framework, we
identify the need for PGQP-aware approximate query
processing techniques and PGQP management issues
raised by the framework. Each instantiation of the
framework will lead to the definition of a specific PGQP-
aware query processing approach for a given set of
information associated with PGQPs. Approximated
results can be generated for two main reasons: due
to the dynamic nature of the dataspace, information
associated with PGQPs may change between two dis-
tinct executions of the same query; PGQPs are se-
lected based on similarity criteria with respect to the
query at hand.

The paper finally proposes a specific instantiation
of the framework, in the context of which the various
components and concepts are formalized, and algo-
rithms for the most relevant tasks are specified. In
this instantiation, we formally define PGQPs but we
leave to future work the association of PGQPs with
information collected in prior executions.

Paper organization. The proposed framework is
presented in Section 2 and a specific instantiation of
the framework is defined in Section 3. Section 4 con-
cludes by discussing a number of open issues we are
investigating in this work-in-progress.

2. PGQP-BASED FRAMEWORK

The framework we propose is based on a graph-
based representation of dataspaces, interpreted as a
collection of (possibly) schemaless data sources, and of
user retrieval needs, expressed as entity relationships
queries over such dataspaces [14]. Specifically, we as-
sume to deal with data sources represented in terms
of partially specified graphs, where some information,
associated with nodes, may be unknown [2]. Similarly,
each request is represented in terms of a graph, speci-
fying entities and relationships of interest, which may
contain node variables, in order to characterize infor-
mation to be retrieved [2]. As an example, Figure 2
(a) presents a graph query @ corresponding to the in-
formation need “the authors of the figurative artworks
the user is watching (i.e., they are located close to her
position), together with such artworks, a biography of
the authors, and information about places in Genoa
where the authors are currently exposing their art-
works”. Notice that, since the user request is related
to her current position, it needs to be interpreted and
processed before such position changes.

For representing and managing (sets of) recurring
user requests, the framework relies on the enabling
concept of Profiled Graph Query Pattern (PGQP). Each
PGQP corresponds to a graph, associated with data or
metadata related to the past evaluation of the queries
it represents. Such information does not necessar-
ily correspond to previously computed results, thus,
PGQPs do not necessarily correspond to materialized
views. Rather, any kind of metadata collected dur-
ing query processing, as the set of used data sources,

PGQOP-aware query processing

PGQP-based O—'¢ 1
= query decomposition

PGQAP-based Partial result
—T* processing ’ R,
- Result
PGOP-based | —— pyria) result e
s processing fusion
Ry
Standard
P R e
'+l

1 Final result

_ Information about
processing

Figure 1: PGQP-based framework

query-to-data mappings under pay-as-you-go integra-
tion approaches [6], or result quality information, can
be considered. As an example, Figure 2 presents a
graph query @ and two PGQPs ¢1 and ¢2.

Independently from the information associated with
PGQPs, the proposed framework aims at addressing
three main problems which can be stated as follows
(see Figure 1 for an overall picture).

PGQP-based query decomposition. Given a query
Q@ and a set S of PGQPs, defined in terms of graph
queries, determine whether it is possible to rely on S
for executing Q). This is possible if @) can be approx-
imated by a new query, obtained by composing a set
of @ subgraphs, which best match PGQPs, with the
portion of @ which cannot be represented in terms of
S. More formally, we look for a subgraph Qsus of Q,
a PGQP subset Sc C S, and a fusion operator € such
that @ can be rewritten in a new approximate query
Qo = 0({Qos,|¢i € Sc}, Qsub), where Qg, denotes the
(sub)graph of @ for which an approximate match with
(a subgraph of) ¢; exists, and Q, satisfies some op-
timality criteria. That is, PGQPs in Sc are selected
according to a similarity function 6 which quantifies
how close the query graph and each PGQP are.

With reference to Figure 2, various decompositions
of @ are possible based on ¢ and ¢2. Assuming ¢
is more similar to @ than ¢2, the decomposition of Q
can return: (i) Sc = {¢1}; (i) Qsup defined as shown
in Figure 2(a); (iii) € defined as the join between the
partial results of Q4, (tuples for variables 7a, ?m, ?b)
and Qsub (tuples for variables ?a,?b). Notice that, by
interpreting PGQPs as views, traditional view selec-
tion algorithms would not have selected any PGQP,
due to the approximate matches between “Genoa’” and
“GE” and “Figurative” and “Figurative Art”. Note
that, even if in this example g, totally matches ¢1,
partial matches are also possible.

PGQP-aware query processing. In order to opti-
mize @, evaluation, we can rely on information asso-
ciated with PGQPs in Sc. More precisely, each graph
query @4, can be executed taking into account in-
formation related to its prior execution, that is, in-
formation associated with ¢; in S. To this aim, spe-

cific PGQP-based processing algorithms should be de-
signed, depending on the information associated with
PGQPs. On the other hand, query Qsu», which repre-
sents the residual part of @), has to be executed based
on a traditional graph query processing algorithm (see,
e.g. [17]). At the end of the processing, all partial re-
sults are merged through the fusion operator 6 and
the result is returned to the user.

Referring to Figure 2(a), Q¢, is processed using in-
formation associated with ¢1 while Qsup is processed
by a traditional query processing algorithm.

PGQP set update. For each graph query @, exe-
cuted by the system without taking into account
PGQPs, information related to its processing is col-
lected (depending on the aim of the approach) and
used, together with @, for updating the set of avail-
able PGQPs at the end of the processing.

As an example, Figure 2(d) shows PGQP ¢1 ex-
tended with the part of the query executed by a tra-
ditional query processing algorithm.

The framework described above can be instantiated
in several ways. As an example, consider an instan-
tiation targeted to source selection. In this case, the
information associated with PGQP ¢1 could be the
sources exploited during the past processing of the
queries it represents to retrieve the relevant informa-
tion. Thus, for instance, information relevant for ¢
may come from a dynamic data source s; contain-
ing information about art exhibitions of various artists
(left part of ¢1) and a static data source sz (such as
dbpedia) containing biographies of artists (right part).
An important difference with respect to the material-
ized view approach is thus that the selected PGQP is
not associated with query results (that would have re-
quired a frequent recomputation, given the dynamicity
of data sources, e.g., in art exhibits) but the sources
contributing data to the result. PGQP-based process-
ing would rely on this information for targeting to
these sources the execution of Q4,. As an effect of
the execution of @, a third data source s3 containing
museum catalogues with artwork positions is identi-
fied, and associated with the updated PGQP (shown
in Figure 2(d)).

(™

isin
GE)

(a)

exhibitionOf hasBiography
alazzo™)
(Ducale

© i @

Figure 2: Example PGQP: (a) graph query Q; (b) PGQP ¢1; (¢) PGQP ¢2; (d) PGQP ¢ after the update phase

3. A PRELIMINARY PGQP-AWARE
PROCESSING ALGORITHM

In this section, we select suitable models for datas-
paces and user requests, we formalize the concept of
PGQP and we discuss their use and management in a
preliminar instantiation of the framework.

3.1 Dataspace and User Requests

Data Space Representation. Under the reference
context, data spaces may contain redundant or even
missing information. Furthermore, the heterogeneous
nature of data leads to schemaless representations. To
take care of these features, we assume the data space
is represented in terms of a collection of graph pattern
databases, i.e., graphs where nodes can also be labeled
with variables, for representing situations in which the
node identity is not known [1]).

DEFINITION 1. Let N be a set of node labels. Let
Vhode be a set of node variables. Let X be an arbitrary
(finite or infinite) set of symbols. A Graph Pattern
Database over X is a pair m = (N, E) where: (i) N C
NUVpode is the finite set of nodes; (1) E C N X3 x N
is the set of edges.

The semantics of a graph pattern database corre-
sponds to all graphs which are instances of the pat-
tern and it is defined via homomorphisms. Given a
graph G = (N’,E’) and a graph pattern database

= (N, E), a homomorphism h : # — G is a mapping
h: N — N’ that maps labels and variables used in 7
to labels used in G such that:

1. hi(n) = n, for every node label n € N; and

2. for every edge (ni,e,n2) € E, there is a path
(h(n1),e,h(nz)) in G.

The semantics of a graph pattern w.r.t. the label-
ing alphabet ¥ is [[7]]s = {G over X|G = 7}, where
G [= 7 holds if a homomorphism h : 7 — G exists.

Graph Query Language. In this work, for the sake
of simplicity and for guaranteeing a tractable com-
bined and data complexity (fundamental requirements
for dealing with massive in size graph databases), we
consider graph queries specified as unions of acyclic

conjunctive queries and we denote with UACQ the re-
sulting language [1, 2]. Formally, an UACQ query Q
is the union of expressions Q1,...Qr where each Qp,
1 < h <k, is an expression of the form

Z") — /\ ($i7ai7yi)

1<i<m

ans(z1, ...,

such that the graph underlying @ is acyclic, m > 0,
each z; and y; is a node variable or a constant (1 <
it <m), each a; € X (1 < ¢ < m), and each z; is some
variable z; or y; (1 <i <mn,1<j<m). The query
Q is Boolean if ans(), i.e. n=0.

UACQ queries can always be interpreted as graph
(pattern) queries @ = (¢, Z) where € is the graph pat-
tern underlying @ and zZ = (21, ..., 2n)-

The semantics of a UACQ query Q = (¢, Z) when ex-
ecuted over a graph pattern database # = (N, E) can
be defined as the set of answers which are returned
for each instance of the graph pattern database. Ac-
cording to [2], we call them certain answers and we
compute them as:

certains(Q,m) = {v € N"|r = €[v/z]}

where, given two graph patterns w1 and 72, 71 &= 2
(m1 implies m2) if [[m1]]s C [[72]]=.

3.2 Profiled Graph Query Patterns

A PGQP represents in a compact way a set of graph
queries executed in the past. In order to provide a for-
mal definition of PGQPs, we propose to consider union
as aggregate operator of the component queries and to
represent a PGQP as a UACQ query. Since PGQPs
are used for the approximate evaluation of queries, the
issue also arises of determining whether each PGQP
represents, in a reasonably good way, (a portion of) a
graph query @. If this is the case, ¢ becomes a candi-
date for the PGQP-aware processing of @) and we say
that Q matches the PGQP. PGQP candidates can be
selected through approzimate subgraph matching [12]
and the usage of a graph similarity function.

DEFINITION 2. Let Q1 = (N1, E1),Q2 = (N2, Es) €
UACQ. An Approximate Subgraph Match between Q1
and Q2 is a bijection mapping X : Ni ++ N5, where
N; C N;, i = 1,2. An Approzimate Subgraph Match-
ing Function is a function m that, for each pair of

Algorithm 1 PGQP-based query decomposition

Algorithm 2 PGQP set update

INPUT
Q: graph query
S ={$1,02,..., bn}: set of PGQPs
dm: a graph similarity function induced by an approxi-
mate subgraph matching function m
vs: minimum allowed graph similarity
ouTPUT
(Sc, Qsub), such that Sc C S and Q,yyp is a subgraph of

APP%OACH
Let ¢ € S such that 6, (Q, ¢r) = Mmaz1<i<ndm (Q, ¢i)
if 0,,(Q, ¢x) > vs then
return ({Q¢k }.Q - Qoy)
else

return ({}, Q)

Q1,Q2 € UACQ, returns an approximate subgraph
match from Q1 to Q2. A Graph Similarity Function
is a metric function § : UACQ x UACQ — [0, 1] such
that, for each Q1,Q2 € UACQ, §(Q1,Q2) quantifies
the similarity between Q1 and Q2. § is induced by an
Approzimate Subgraph Matching Function m (denoted
by 6m) if the value assigned to (Q1,Q2) quantifies the
similarity between subgraphs Q) and Q% involved in
the match m(Q1,Q2). a

PGQPs and PGQP matches can now be defined.

DEFINITION 3. A Profiled Graph Query Pattern ¢
is a graph query in UACQ. Let 6,, be a graph sim-
ilarity function induced by an approximate subgraph
matching function m. A graph query Q matches a
PGQP ¢, with similarity v € (0,1], if Im(Q,¢) = v.
Qs denotes the (sub)graph of Q involved in the match.
Q@ s a total match of ¢ if Qp = @, it is a partial match
otherwise. a

In the following, we assume that function d,, is pro-
vided by the system and used during PGQP-based
query decomposition and PGQP set update.

3.3 PGQP-based Query Decomposition

In the following, we present a preliminary PGQP-
based query decomposition approach, defined assum-
ing to: (i) select only one PGQP (thus, |Sc| = 1); (ii)
merge partial results thought relational operators.

Several approximate graph matching functions have
been proposed so far which can be used as basis for
defining similarity functions (see, e.g., [9, 10] for some
recent papers and [15] for a survey). A relevant exam-
ple, due to its flexibility, is represented by the Similar-
ity Flooding function [11]. Based on the intuition that
similar nodes have similar neighbors, node similar-
ity values are computed relying on information about
node neighbors through an iterative fixpoint compu-
tation. The selection metric, used in Selection Flood-
ing to identify the best mapping, can be used (after
normalization of values between 0 and 1) as a graph
similarity function. Details about PGQP definition in
terms of the Similarity Flooding function can be found
in [5].

According to Definition 3, each PGQP ¢ divides a
graph query @ into two subqueries, namely @4 and
Q@ — Q¢ (computed by removing from @ first edges in

INPUT
Q: graph query
S = {1, ¢2, ..., pn}: set of PGQPs
v.: maximum allowed transformation cost
OUTPUT
S: an updated set of PGQPs
APPROACH
Let ¢ € S such that C7(Q, ¢n) = mini<;i<nC7(Q, ¢i)
if (C7(Q, ¢n) < v.) then
on =T(Q,0n)
5=5\{6n}U{on)
else
S=8Su{Q}

return S

R4 and then all remaining non connected nodes be-
longing to Q). This consideration guides us in the
definition of a preliminary decomposition algorithm
(see Algorithm 1). Given a query @ and a set of
PGQPs S, the PGQP ¢ providing the highest simi-
larity value with respect to @ is selected and, if such
value is greater than a given threshold (thus, @ and ¢,
are close enough), the binary decomposition described
above is returned. Otherwise, no decomposition is ap-
plied.

3.4 PGQP Set Update

In order to update the PGQP store, we rely on a
graph transformation function.

DEFINITION 4. A Graph Transformation Function
is a function T : UACQ x UACQ — UACQ such
that, for each query Q and PGQP ¢, Q is a match of
T(Q,), based on 6,,. O

Transformation functions can be defined in terms
of a small set of operations, previously defined in the
context of the so called tree editing problem [16], which
at least contains node relabelling, deletion and inser-
tion. Each transformation function can be defined
by specifying which operations should be applied to
a given PGQP for each node and edge of the query
@ at hand, in such a way that @, after the trans-
formation, matches the resulting PGQP. An example
of graph transformation is the function that, given a
PGQP ¢ and a query Q, inserts into ¢ all nodes and
edges in Q — Q4 that have not been mapped into ¢
nodes by 0p,.

In order to identify the best transformation, a graph
cost function can be defined as follows.

DEFINITION 5. A Graph Cost Function for a trans-
formation function T is a function Ct : UACQ X
UACQ — R, which, for each graph query Q and PGQP
@, assigns a cost value to T(Q, ¢). a

Similarly to the tree editing problem, a graph cost
function quantifies the transformation effort by assign-
ing a cost to each applied editing operation. As an ex-
ample, given a graph query @ and a PGQP ¢, cost 1
can be assigned to the insertion of each new node and
new edge in ¢; a cost proportional to their distance
can be assigned to each node n in () which is mapped
into a node v' in ¢ by 6.

Algorithm 2 presents a simple approach for PGQP
set update based on the notions introduced above. In
particular, it updates the input set of PGQPs by first
selecting the PGQP leading to the lowest transforma-
tion cost for the input graph query Q. If such cost is
lower than a given threshold, the PGQP set is updated
by replacing the selected PGQP with the PGQP ob-
tained by the transformation. Otherwise, the PGQP
set is updated by inserting @ as a new PGQP.

ExAMPLE 1. Consider the graph query @ and the
PGQP set S = {¢1,¢p2} presented in Figure 2. Con-
sider the graph similarity function 6, induced by the
Similarity Flooding algorithm [11] (see [5] for details),
a minimum similarity threshold vs = 0.7, and a maz-
imum cost threshold v. = 3.

Q is processed as follows. Algorithm 1 first com-
putes the mapping and the similarity between Q) and
each ¢;, relying on 6. Partial approximate subgraph
matches can be generated from Q to both ¢1 and ¢2.
Assume the following graph similarities are computed:
0m(Q, ¢1) = 0.83 and 6, (Q, ¢2) = 0.40. PGQP ¢, is
selected because it is the most similar to Q. Since sim-
ilarity is greater than vs, decomposition is applied and
the pair ({Qg¢, }, Q@ — Qg,) is returned for processing.

At the end of the processing, Algorithm 2 is used
for updating the PGQP store. Suppose that CT(Q —
Qoy,P1) = 2.56 and C7(Q — Qgpy,P2) = 3. PGQP ¢1
is selected because of the lowest transformation cost.
Since the transformation cost is lower than v., PGQP
@1 is updated by inserting all nodes and edges in Q —
Qg¢, not mapped into ¢p1 nodes by dpm,. <&

4. OPEN ISSUES

The work reported in this paper represents just the
first step towards the design of approximate query pro-
cessing approaches for recurring retrieval needs. Sev-
eral issues still need to be investigated. Some of them
are discussed in what follows.

Framework instantiation. In this paper, we consid-
ered a simple notion of approximate subgraph match-
ing, defined by relaxing the notion of subgraph iso-
morphism. Other approaches can however be con-
sidered, which allow more flexible types of approxi-
mation (see, e.g., [15] for a survey). More effective
query decomposition approaches should also be de-
signed which increase the number of generated sub-
queries, together with specific optimality criterias; op-
timization approaches should be developed which take
into account the number and the shape of the identi-
fied subqueries for selecting the most efficient PGQP-
based execution plan.

Information associated with PGQPs. As already
discussed, several types of information can be associ-
ated with PGQPs. For each type of information, spe-
cific PGQP-based query processing algorithms should
be devised.

PGQP management. In this paper, we assumed to
deal with an initial set of PGQPs and we only prelim-
inarily discuss how to modify it taking into account a
new graph query execution. There are however sev-
eral further issues to be taken into account for PGQP
management, e.g., how to decide that a query is re-

current and should be indeed used for updating the
PGQP set? What about the tradeoff between the size
of the PGQP set, the query processing cost, and the
effectiveness (in terms of result quality) of the overall
query approach?

S. REFERENCES

[1] P. Barceld. Querying graph databases. In Proc.
of PODS, pp. 175-188. ACM, 2013.

[2] P. Barceld, L. Libkin, and J. L. Reutter.
Querying graph patterns. In Proc. of PODS, pp.
199-210. ACM, 2011.

[3] B. Catania et Al. Wearable queries: adapting
common retrieval needs to data and users. In
Proc. DBRank Workshop. ACM, 2013.

[4] B. Catania and G Guerrini. Approximate
queries with adaptive processing. Advanced
Query Processing, Intelligent Systems Reference
Library (36), pp. 237-269. Springer, 2013.

[5] B. Catania, F. De Fino, and G. Guerrini.
Recurring retrieval needs in diverse and
dynamic dataspaces: issues and reference
framework, extended version. Technical Report,
University of Genoa, Italy, 2016.

[6] A. Das Sarma, X. Dong, and A. Halevy.
Bootstrapping Pay-As-You-Go Data integration
systems.In Proc. of SIGMOD. ACM, 2008.

[7] W. Fan, X. Wang, and Y. Wu. Answering
pattern queries using views. IEEE Trans.
Knowl. Data Eng., 28(2):326-341, 2016.

[8] F. Goasdoué et Al. View selection in semantic
web databases. PVLDB, 5(2): 97-108, 2011.

[9] J. He et Al. Assessing single-pair similarity over
graphs by aggregating first-meeting
probabilities. Inf. Syst. 42: 107-122, 2014.

[10] D. Koutra et Al. DeltaCon: Principled
Massive-Graph Similarity Function with
Attribution. TKDD 10(3): 28, 2016

[11] S. Melnik, H. Garcia-Molina, and E. Rahm.
Similarity flooding: A versatile graph matching
algorithm and its application to schema
matching. In Proc. of ICDE, pp. 117-128. IEEE,
2002.

[12] Y. Tian and J.M. Patel. TALE: A Tool for
Approximate Large Graph Matching. In Proc. of
ICDE, pp. 963-972, 2008

[13] J. Wang, N. Ntarmos, and P. Triantafillou.
Indexing query graphs to speedup graph query
processing. In Proc. of EDBT, pages 41-52.
2016.

[14] G. Weikum. Data and knowledge discovery.
GRDI 2020, 2011.

[15] Y. Wu. Extending graph homomorphism and
simulation for real life graph matching. PhD
Thesis, 2010.

[16] K. Zhang and D. Shasha. Simple fast algorithms
for the editing distance between trees and
related problems. SIAM Journal on Computing,
18(6):1245-1262, 1989.

[17] P. Zhao, J. Han. On graph query optimization
in large networks. PVLDB, 3(1): 340-351, 2010.

