
Detecting and Diagnosing Syntactic

and Semantic Errors in SPARQL Queries

Jesús M.

Almendros-Jiménez

Dept. of Informatics

University of Almería, Spain

jalmen@ual.es

Antonio Becerra-Terón

Dept. of Informatics

University of Almería, Spain

abecerra@ual.es

Alfredo Cuzzocrea

DIA Department

University of Trieste and

ICAR-CNR, Italy

alfredo.cuzzocrea@dia.units.it

ABSTRACT
In this paper we present a tool to syntactically and seman-
tically validate SPARQL queries. With this aim, we extract
triple patterns and filter conditions from SPARQL queries
and we use the OWL API and an OWL ontology reasoner in
order to detect wrong expressions. Given an ontology and
a query, the tool reports di↵erent kinds of programming er-
rors: wrong use of vocabulary, wrong use of resources and
literals, wrong filter conditions and wrong use of variables
in triple patterns and filter conditions. When the OWL on-
tology reasoner is used the tool reports a diagnosis.

Keywords
SPARQL; RDF; OWL; Debbuging

1. INTRODUCTION
The Semantic Web has adopted SPARQL [6] as query lan-

guage. While SPARQL queries are usually simple, and the
SPARQL (SQL-like) syntax can be easily learned, it does not
mean that SPARQL programmers can make no mistakes. It
can happen for several reasons.

Firstly, from the database perspective, SPARQL data have
(in most of cases) a sophisticated schema. The schema de-
fines an ontology of concepts and relationships modeled in
RDF and OWL. RDF data have a simpler schema, but the
RDF model is a graph, and the programmer needs to work
with paths and nodes from this graph. However, the pro-
grammers are more used to handle table-like data structures,
typical in relational databases and SQL data. OWL data
(RDF-like enriched data) have a very rich data schema, and
OWL data handle concepts and properties, representing re-
lationships. Concept definitions in OWL can be sophisti-
cated, involving complex subconcept and equivalence rela-
tionships, and property definitions can be equipped with a
rich semantics, enabling inverse, (a)symmetric, (ir)reflexive,
(non) functional and transitive relationships. Secondly, the
SPARQL programmer can ignore the (complete) structure

2017, Copyright is with the authors. Published in the Workshop Proceed-

ings of the EDBT/ICDT 2017 Joint Conference (March 21, 2017, Venice,

Italy) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is

permitted under the terms of the Creative Commons license CC-by-nc-nd

4.0

of data, or even knowing this structure, he/she can be frus-
trated when the answer is empty or incomplete, mainly due
to filter conditions that make the query unsatisfiable or too
restrictive. Query unsatisfiability can be also consequence
of the rich mechanisms for defining concepts and proper-
ties, where the program can require inconsistent queries. A
query can be called inconsistent when matching of variables
is incompatible with ontology consistency. In general, the
missing-answer problem is a consequence of query unsatisfia-
bility and, in particular, of query inconsistency. Finally, ana-
lyzing the main SPARQL implementations we have found
that debugging mechanisms are missing. SPARQL inter-
preters are usually equipped with syntactic analysis limited
to grammar checking.

SPARQL programming errors can be due to several rea-
sons. Firstly, queries can include wrongly typed expressions
which mainly occur in triple patterns. The most typical case
is when triple patterns are incorrectly instantiated:

?x :age "Alice"

Here age has range xsd:integer, and thus “Alice” is not a
suitable value. Combining triple patterns more typing errors
can be found. For instance:

?x :father ?y . ?x :born ?y

in which assuming that father range is person, and born
range is country, then ?y cannot be bounded, and thus the
answer will be empty. This also happens when variables are
bounded to literals and resources at the same time:

?x rdf:type :human . ?y :age ?x

However, there are cases not forbidden (in general) by
ontologies. The same resource can be both an individual
and a concept. Thus, the following pattern is well-typed:

?x rdf:type ?x

Not only variables can be wrongly typed, also concepts,
properties and individuals can occur in wrong positions. For
instance, with RDF and OWL vocabularies we can express
queries like the following:

?x rdf:type rdf:type . ?x owl:SymmetricProperty ?y

Unfortunately, existing SPARQL implementations do not
check types for triple patterns. In fact, they do not check the
vocabulary of concepts, properties and individuals either,
and wrong spelling (for instance “fahter” instead of “father”)
leads to empty answers without any warning:

?x :fahter ?y



Some cases correspond to inconsistent queries, in which
matching of variables is incompatible with ontology consis-
tency. Inconsistent queries are well-typed but variable bind-
ing is not possible from the ontology definition. For instance,
assuming father relation is irreflexive, a wrong triple pattern
is:

?x :father ?x

Even when answering this question against a consistent
ontology is not possible, and thus the answer will be empty,
existing SPARQL implementations are not able to detect it.
In some cases, the inconsistency is not trivial and ontology
reasoning has to be used. For instance, let us consider the
following triples:

?x :father ?y . ?y rdf:type ?z .
?z rdfs:subClassOf :motorcycle

Here, in order to detect the inconsistency of the query,
we have to reason that father has range person and person
is not a subclass of motorcycle. This is also the case of the
following triples:

?x rdf:type :mammal . ?x rdf:type :motorcycle

in which mammal and motorcycle are disjoint and, there-
fore, the user should be warned. Some cases depend on the
cardinality, for instance:

?x father ?y . ?x father ?z . ?y age 30 . ?z age 45

Here father and age properties are functional, and thus
none of the variables can be bound. More complex cases
involve filter conditions, for instance:

SELECT ?x
WHERE { ?x :father ?y . ?x :father ?z

FILTER (?y != ?z) }

in which the Boolean expression ?y != ?x contradicts the
functional property of father.

In this paper, we present a tool to validate SPARQL
queries. With this aim, we extract triple patterns and filter
conditions from SPARQL queries and we use the OWL API
and an OWL ontology reasoner in order to detect wrong
expressions. Given an ontology and a query, the tool re-
ports di↵erent kinds of programming errors: wrong use of
vocabulary, wrong use of resources and literals, wrong filter
conditions and wrong use of variables in triple patterns and
filter conditions. When the OWL ontology reasoner is used,
the tool reports a diagnosis. The tool has been implemented
in XQuery, and it uses the SPARQL to SPIN 1 transforma-
tion to get the SPARQL code in XML format. Once the code
is transformed, an XQuery function traverses the SPARQL
code in order to extract triple patterns and filters. Next,
the validation process is carried out by calling the OWL
API as well as the OWL reasoner HermiT from XQuery,
which reports a diagnosis of inconsistent queries. The cur-
rent implementation covers the cases of triple patterns and
filters in SELECT, ASK, CONSTRUCT, DESCRIBE, and
OPTIONAL triple patterns.
While programming errors have been studied in SQL [1,

4, 2], as far as we know, the same topic has not studied
for SPARQL yet, (except in a recent work [8] in which au-
thors study satisfiability of FILTER conditions). We have
tested the best state-of-art SPARQL implementations (see
Table 1) and we have found that they are not equipped with

1http://spinrdf.org/

type checking and debugging facilities. Only benchmarking
datasets [7, 3] are publicly available to analyze the perfor-
mance of SPARQL implementations. There are also works
about analysis of data [5], but less attention has been paid to
SPARQL code. Thus, our work opens up a promising line of
research, and our work can be seen as a first approximation
to the solution.

2. VALIDATION OF SPARQL QUERIES
For the validation process, we distinguish between syntac-

tic and semantic validation, by using the OWL API and the
OWL Reasoner, respectively. Type checking is carried out
by the OWL API and the OWL Reasoner, and thus it can be
considered as both syntactic and semantic checking. Incon-
sistency of queries is only detected by the OWL Reasoner,
and thus it is considered as semantic checking.

2.1 Syntactic Validation of SPARQL Queries
The syntactic validation uses the OWL API in order to

carry out the following kinds of validation: (a) Wrong use
of vocabulary, (b) Wrong use of resources and literals and
(c) Wrong filter conditions. We analyze triple patterns s p
o, where s is a subject, p is a property, and o is an object.
In addition, we analyze filter conditions l op r, where op
can be one of <, >, >=, <=, =, !=, and l and r are the
left and right hand side of the operation, respectively. We
assume that individuals, properties and concepts can share
the same name, and also that object and data properties can
have the same name2. In order to carry out the syntactic
validation, we propose the following rules, expressing the
cases in which a syntactic error (i.e. (a), (b) and (c)) is
found. We also assume an input ontology with namespace
ns. Finally, except when it is specified, s, p and o (and
l, r) can be variables or ontology items (i.e., individuals,
properties and concepts).

Syn-1(a) s p ns:k where k does not belong to ns vocabu-
lary. ns can be also rdf/rdfs/owl.

Syn-2(a) s ns:k o where k is not a property of ns. ns can
be also rdf/rdfs/owl.

Syn-3(a) ns:k p o where k does not belong to ns vocabu-
lary. ns can be also rdf/rdfs/owl.

Syn-4(b) s ns:k o where o is a resource, k is a data property
and it is not an object property of ns.

Syn-5(b) s ns:k o where o is a literal, and k is not a data
property and it is an object property of ns.

Syn-6(b) s p o where p is a literal.
Syn-7(b) s p o where s is a literal.
Syn-8(c) l op r, where l and r are literals of di↵erent type.
The syntactic rules can be checked by using the ontol-

ogy signature: the full vocabulary (rules Syn-1, Syn-3), the
property vocabulary (rules Syn-2, Syn-4, Syn-5), as well as
the syntactic form of the triple pattern components (rules
Syn-6, Syn-7 and Syn-8). Let us remark that Syn-6 and Syn-
7 are already wrong according to the the SPARQL grammar
(and thus they are usually checked by SPARQL implemen-
tations), but we have included them for completeness.

2.2 Semantic Validation of SPARQL Queries
The semantic validation uses an OWL ontology reasoner

2In general, ontology profiles do not consider object and
data properties disjoint, while it happens in, for instance,
OWL DL.



Name URL
ARQ SPARQL Jena https://jena.apache.org/documentation/query/
Protégé SPARQL Tab http://protegewiki.stanford.edu/wiki/SPARQL Query
Twinkle: SPARQL Tools http://www.ldodds.com/projects/twinkle/
Virtuoso SPARQL Query Editor http://dbpedia.org/sparql
SPARQLer - General purpose processor http://www.sparql.org/sparql.html
Redland Rasqal RDF Query Demonstration http://librdf.org/query
OpenUpLabs http://openuplabs.tso.co.uk/sparql
wordnet.rkbexplorer.com http://wordnet.rkbexplorer.com/sparql/
DBPedia SNORQL http://dbpedia.org/snorql/
SPARQL editor | The British National Bibliography http://bnb.data.bl.uk/flint-sparql
YASGUI SPARQL Editor http://cliopatria.swi-prolog.org/yasgui/index.html
SPARQL Carsten Editor http://sparql.carsten.io/

Table 1: SPARQL implementations

in order to detect wrongly typed and inconsistent queries.
With this aim, the main idea is to consider the variables
occurring in triples and filter conditions as individuals of
the ontology to be queried. In other words, each variable
?x becomes in ns:x where ns is the namespace of the on-
tology. Additionally triple patterns in which ?x occurs, be-
come property and concept assertions about ns:x, and fil-
ter conditions in which ?x occurs become owl:sameAs and
owl:di↵erentFrom assertions. A new ontology is built from
the original one in which these property and concept asser-
tions, extracted from triple patterns and filter conditions,
are added. Assuming the original ontology is consistent, the
ontology reasoner is used to detect the consistency of this
new ontology. In case the new ontology is inconsistent, the
SPARQL query is wrongly typed or inconsistent.

Next, we will give rules for constructing these property
and concept assertions from triple patterns and filter condi-
tions. In order to use the ontology reasoner, there are ad-
ditional modifications in the original ontology. (1) Firstly,
concepts for which it is known that the intersection is empty
have to be explicitly defined as disjoint. (2) Secondly, two
additional concepts are included in the ontology: DR and
DT. They represent ontology resources and literals (i.e.,
datatypes), respectively. They are declared as disjoint. DT
has to be also disjoint with the rest of concepts. (3) Thirdly,
additional concepts DTinteger, DTstring, etc., are included
in the ontology for each datatype. They are declared as dis-
joint (except for compatible datatypes). They are defined
as subclasses of DT.

Concept disjointness is extensively used by type checking
and thus it is crucial to declare. In practice, it is enough
to declare primitive sibling concepts as disjoint. Datatypes
have to be converted into concepts (disjoint with the rest
of concepts) in order to use the OWL Reasoner and detect
wrongly typed expressions. Let us also remark that (2) and
(3) do not depend on the ontology to be queried.

The semantic validation covers the following cases: (a)

Wrong use of variables in triple patterns and (b) Wrong use
of variables in filter conditions. We have the following (non
overlapping) rules that express which concept and property
assertions are added to the original ontology. We assume
that triples are syntactically correct according to previous
syntactic rules, and variables ?x are always added as ns:x to
the ontology. Except when it is specified, s, p and o (and
l, r) can be variables or ontology items (i.e., individuals,
properties and concepts).
Sem-1(a) s ns:k o, where ns is not rdf/rdfs/owl and k is

an object property of ns (thus o is not a literal). In this case
s ns:k o is added to the ontology.

Sem-2(a) s ns:k ?w, where ns is not rdf/rdfs/owl, k is a
data property of ns and it is not an object property of ns.
In this case ?w rdf:type DTt is added to the ontology, for
each range t of ns:k. Additionally s rdf:type D is added for
each domain of ns:k.

Sem-3(a) s ns:k l, where ns is not rdf/rdfs/owl, and l is a
literal (thus ns:k is a data property). In this case s ns:k l is
added to the ontology.

Sem-4(a) s ns:k o, where ns is not rdf/rdfs/owl, and k is
both an object and a data property of ns (o is not a literal,
otherwise this is the previous case). In this case s rdf:type
D is added for each domain of ns:k.

Sem-5(a) s ns:k l, where ns is rdf/rdfs/owl and l is a literal.
In this case s rdf:type DR is added to the ontology.

Sem-6(a) s ns:k ?w, where ns is rdf/rdfs/owl and k is
a data property of ns. In this case s rdf:type DR and ?w
rdf:type DT are added to the ontology.

Sem-7(a) s ns:k o, where ns is rdf/rdfs/owl, and k is an
object property of ns. In this case s rdf:type DR and o
rdf:type DR are added to the ontology.

Sem-8(a) s ?v o. In this case ?v rdf:type DR is added to
the ontology.

Sem-9(b) ?l op v where v is a literal of type t. In this case
?l rdf:type Dt is added to the ontology.

Sem-10(b) v op ?r where v is a literal of type t. In this
case ?r rdf:type Dt is added to the ontology.

Sem-11(b) ?l = ?r. In this case ?l owl:sameAs ?r is added
to the ontology.

Sem-12(b) ?l != ?r. In this case ?l owl:di↵erentFrom ?r
is added to the ontology.

Sem-13(b) ?l op ?r, where op is one of >,>=,<,<=. In
this case ?l rdf:type DT and ?r rdf:type DT are added to the
ontology.

Sem-1 is the most used triple pattern. In this case either o
is ?w or an ontology item ns:i. In the first case, ?w is added
as resource and, in the second one, ns:i is (again) added as
resource. In the case Sem-2, given that ?w will be bounded
to a literal, the type ?w as well as the type of s are added.
Each range of k to ?w and each domain of k to s are added.
Sem-3 is similar to the case Sem-1, adding the literal as value
of the property k. When k is both data and object property
(i.e., case Sem-4) the type of ?w cannot be fixed, and thus
only the domain of k to s is added. The special cases of
rdf/rdfs/owl are handled by rules Sem-5, Sem-6 and Sem-
7. In this case terminological axioms are not added to the
ontology. Otherwise, the original semantics of the ontology
will be lost. Here the membership to DR and DT is used. In
the case Sem-8, o can be a resource or a literal, but none of
them gives additional information for ?v, since even when o



is a literal, ?v can be an object or a data property, because
object and data properties are not necessarily disjoint. In
case of filter conditions in which one of the sides is a literal
(Sem-9 and Sem-10), then the type of this literal is added
to the ontology for the other side. In the case of equalities
(Sem-11), owl:sameAs is used to identify elements in the
ontology. In case of inequalities (Sem-12), owl:di↵erentFrom
is used. Finally, in the case of numeric operators (Sem-13),
DT is added as type of both sides.

3. EXAMPLES
The following examples are cases of syntactically wrong

triple patterns and filter conditions for the ontology exam-
ple.

(1) ?x :agex ?y
(2) ?x :age :jesus
(3) ?x :father 10
(4) FILTER (10 = "Alice")

The tool reports the following answers when the queries
are validated:

(1) The property ’agex ’ does not exists
(2) The property ’age ’ is not an object property
(3) The property ’father ’ is not a data property
(4) Wrong types in filter: string and integer

Case (1) illustrates the rule Syn-1 while (2) illustrates Syn-
4. The case (3) illustrates Syn-5, and case (4) illustrates the
rule Syn-8. (1), (2) and (3) use OWL API, while (4) can be
checked from the SPIN representation.

With regard to semantic errors, we illustrate the rule Sem-
1, with the following example of a SPARQL query:

SELECT ?x
WHERE { ?x :father ?x }

Here father is an object property and ?x is a variable.
Therefore the triple ?x :father ?x is added to the ontology.
Since father is irreflexive, it causes inconsistency, and the
tool (via the OWL reasoner) answers as follows:

Inconsistent query:
IrreflexiveObjectProperty (# father)

The rule Sem-1 is also applied to the following query:

SELECT ?x
WHERE { ?x :father ?y . ?x :born ?y }

in which ?y should be a person and and a country at the
same time. The tool answers (via the OWL reasoner) as
follows:

Inconsistent query:
DisjointClasses (# Person #DT #Country)
ObjectPropertyDomain (# father #Person)
ObjectPropertyRange (#born #Country)

Let us now consider the following example:

SELECT ?x
WHERE { ?x :age ?y . FILTER (?y = ’Alice ’)}

which illustrates the rules Sem-2 and Sem-9. Here ?y is
a variable in the range of a data property (which is not an
object property), and each range of the data property is
used for typing ?y, by rule Sem-2. In this case, ?y rdf:type
:DTinteger is added to the ontology, (also ?x rdf:type Per-
son is added). Now, by rule Sem-9, from ?y=’Alice’, then
?y rdf:type :DTstring is also added to the ontology. Since
DTinteger and DTstring are disjoint the tool answers as fol-
lows:

Inconsistent query:
DisjointClasses (# DTinteger #DTstring)

Let us now consider the following ASK query in order to
illustrate the rule Sem-3:

ASK { :james :age 20 }

Here, we would like to know whether james’s age is 20.
Let us suppose that james’s age has been set to 45 by the
ontology. Since age is a functional property, then the tool
will answer as follows, due to :james :age 20 has been added
to the ontology by rule Sem-3:

Inconsistent query:
FunctionalDataProperty (#age)

Let us now consider the following example in which rules
Sem-7 and Sem-9 are applied. Since ?y is used in the place
of a resource, then it cannot be used in a filter condition
with an integer.

SELECT ?x
WHERE { ?x rdf:type ?y . FILTER (?y = 10)}

The tool works as follows. From the condition ?y=10,
rule Sem-9 adds ?y rdf:type :DTinteger to the ontology; and
from ?x rdf:type ?y, rule Sem-7 adds ?y rdf:type :DR to the
ontology. Now, the answer of the tool is as follows:

Inconsistent query:
DisjointClasses (#DR #DT)
SubClassOf (# DTinteger #DT)

With regard to wrong use of variables in property posi-
tions, rules Sem-2 and Sem-8 allow us to detect the following
inconsistent query:

SELECT ?x
WHERE { ?x ?z ?y . ?t :age ?z }

since ?z rdf:type :DTinteger and ?z rdf:type :DR are added
to the ontology. Here, the answer of the tool is as follows:

Inconsistent query:
DisjointClasses (#DR #DT)
SubClassOf (# DTinteger #DT)

With regard to rule Sem-11, we can consider the following
example of SPARQL query:

SELECT ?x
WHERE { ?y :father ?z . FILTER (?y = ?z) . FILTER

(?y != ?z) }

Here, the filter conditions are incompatible. In this case,
?y owl:sameAs ?z and ?y owl:di↵erentFrom ?z are added to
the ontology by rules Sem-11 and Sem-12, respectively. In
this case, the answer of the tool is as follows:

Inconsistent query:
SameIndividual (#y #z )
DifferentIndividuals (#y #z)

The following example also illustrates rule Sem-12, in which
?y owl:di↵erentFrom ?z is added for the following query:

SELECT ?x
WHERE { ?x :father ?y .

?x :father ?z . FILTER (?y != ?z) }

The answer of the tool is as follows:

Inconsistent query:
DifferentIndividuals (#y #z )
FunctionalObjectProperty (# father)

Finally, rule Sem-13 is illustrated by the following query,
in which ?y and ?z are compared by > and thus both ones
have type DT which is incompatible with Person (i.e., the
range of father):



SELECT ?x
WHERE { ?x :age ?y . ?u :father ?z .

FILTER (?y > ?z) }

Inconsistent query:
DisjointClasses (# Person #DT)
ObjectPropertyRange (# father #Person)

There are some cases in which inconsistency cannot be
detected. For instance, let us suppose the following query:

SELECT ?x
WHERE { ?x :age ?y . ?x :age ?z .

FILTER (?y != ?z) }

Here, even knowing that age is a functional property, we
cannot detect with the equality ?y != ?z that it cannot be
answered. It is due that owl:di↵erentFrom cannot be used
for literals in the OWL reasoner.

Acknowledgements

This work was supported by the EU (FEDER) and the
Spanish MINECOMinistry (Ministerio de Economı́a y Com-
petitividad) under grant CAVI-TEXTUAL TIN2013-44742-
C4- 4-R.

4. CONCLUSIONS AND FUTURE WORK
We have designed a tool for detecting and diagnosing

wrong SPARQL queries. A set of rules has been defined in
order to use the OWL API and an OWL reasoner to check
wrongly typed and inconsistent queries, reporting the details
of the diagnosis. The first question arising is the complete-
ness of the method. The defined rules cover a wide number
of cases, but a deeper study of completeness is required. In
particular, the last example of previous Section shows a lim-
itation of the approach. This limitation is imposed by the
ontology reasoner. There are also other limitations in filter
conditions. For instance, let us suppose that adult class is
defined as subclass of person (i.e., older than 18), and a filter
condition of a SPARQL query requests adults users whose
age is smaller than 10. In this case, the query is inconsis-
tent with the ontology, but it cannot still be detected. We
have only considered the case of equalities and inequalities
in FILTER conditions and sameAs/di↵erentFrom to check
them, but more cases of filter conditions3 can be considered.
We would like to implement a Java version of our tool, in-
tegrated with Jena ARQ SPARQL Engine. We also plan to
implement a Web tool for validating SPARQL code in which
the ontology URI or SPARQL endpoint can be specified.

5. REFERENCES
[1] Stefan Brass and Christian Goldberg. Semantic errors

in SQL queries: A quite complete list. Journal of
Systems and Software, 79(5):630–644, 2006.

[2] Benjamin Dietrich and Torsten Grust. A SQL Debugger
Built from Spare Parts: Turning a SQL: 1999 Database
System into Its Own Debugger. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, pages 865–870. ACM, 2015.

[3] Yuanbo Guo, Zhengxiang Pan, and Je↵ Heflin. LUBM:
A benchmark for OWL knowledge base systems. Web
Semantics: Science, Services and Agents on the World
Wide Web, 3(2):158–182, 2005.

3https://www.w3.org/TR/rdf-sparql-query/

[4] Muhammad Akhter Javid and Suzanne M Embury.
Diagnosing faults in embedded queries in database
applications. In Proceedings of the 2012 Joint
EDBT/ICDT Workshops, pages 239–244. ACM, 2012.

[5] Dimitris Kontokostas, Patrick Westphal, Sören Auer,
Sebastian Hellmann, Jens Lehmann, Roland
Cornelissen, and Amrapali Zaveri. Test-driven
evaluation of linked data quality. In Proceedings of the
23rd international conference on World Wide Web,
pages 747–758. ACM, 2014.

[6] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez.
Semantics and complexity of SPARQL. ACM
Transactions on Database Systems (TODS), 34(3):16,
2009.

[7] Michael Schmidt, Thomas Hornung, Georg Lausen, and
Christoph Pinkel. SPˆ 2Bench: a SPARQL
performance benchmark. In 2009 IEEE 25th
International Conference on Data Engineering, pages
222–233. IEEE, 2009.

[8] Xiaowang Zhang, Van Den Bussche Jan, and Francois
Picalausa. On the satisfiability problem for SPARQL
patterns. J. Artif. Int. Res, 56(1):403–428, 2016.


