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Abstract. The paper is devoted to filtering algorithms of satellite im-
ages. Inadvisability of applying the simplest mathematical models of ran-
dom fields with non-uniform filtering material is shown. We consider the
comparative analysis of effectiveness of the filtering and calculate the
gain of the proposed algorithm. In addition, we have sufficient by ad-
equate enough satellite image restore when applying doubly stochastic
models. Restoration algorithm that can easily be implemented from dif-
ferent positions of the image is described. Dispersion values for recovery
errors were found under using different models. We also have received the
gain in image restoration by providing adequate description of satellite
images unlike in application of autoregression (AR) models.
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1 Introduction

In many cases, transfer of multidimensional data with errors shadowing images
or badly damaged them by noise arises the problem of recovering the missing
fragments of images [1–3, 8] or filtering [4–6].

The white noise filtering is possible in the case of using the well-proven
Kalman filter, which allows one of the reasonably accurate estimation without
requiring significant computing expenditures.

One of the methods of restoration, essentially is in an image replacement by
some model in the damaged area. However, in real-world images the damaged
area can contain any objects, description of which is possible using inhomoge-
neous models. Therefore, to use this method, we must find adequate model. Most
of the existing models [2, 7] are unable to provide adequate replacement of dam-
aged areas due to some reasons. However, we can use the combination-mixed
models of the images.

Quite a common option of such models is doubly stochastic ones [3, 5, 9] or
models, which vary its parameters from pixel to pixel.

Another important feature of the filtering and restoration results is the need
for their use in solving problems of signal detection in images [10, 11].
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Thus, the purpose of this work is to improve effectiveness of the image filtering
and restoration by applying models of images with varying parameters. Note that
a comparison will be made on the criterion of minimum error dispersion.

2 Images filtration

Although signal detection is very important, effectiveness of the work of all
algorithms significantly depends on the source material, and usually images are
distorted versions of the raw data. So, received images may have different shifts,
shading, as well as, be quite noisy nuisance. Moreover, strong interference leads
to almost total loss of information at the site of exposure. Therefore, the most
important stage of preprocessing is filtration.

We consider the following doubly stochastic model of random fields:

xi,j = ρxi,jxi−1,j + ρyi,jxi,j−1 − ρxi,jρyi,jxi−1,j−1 + ξi,j , (1)

where ρxi,j = ρ̃xi,j +mρx are the row correlation parameters field; ρyi,j = ρ̃yi,j +
mρy is the column correlation parameters field; mρx and mρy are the average
values of correlation parameters random field for row and column respectively;
ξi,j is the random field of independent Gaussian random values having average
M{ξi,j} = mξi,j = 0 and dispersion M{ξ2i,j} = σ2

ξi,j
= σ2

x

(
1− ρ2xi,j

) (
1− ρ2yi,j

)
;

σ2
x is the base random field dispersion.

The random fields that describe changes in the correlation coefficients are
described as follows:

ρ̃xi,j = r1xρ̃xi−1,j + r2xρ̃xi,j−1 − r1xr2xρ̃xi−1,j−1 + ςxi,j ,
ρ̃yi,j = r1yρ̃yi−1,j + r2yρ̃yi,j−1 − r1yr2yρ̃yi−1,j−1 + ςyi,j ,

(2)

where r1x, r2x, r1y, r2y are the constant correlation parameters of the internal
random fields; ςxi,j and ςyi,j are the independent Gaussian random values with
zero average and dispersionsM{ς2xi,j} = σ2

ςx = σ2
ρx

(
1− r21x

) (
1− r22x

)
,M{ς2yi,j} =

σ2
ςy = σ2

ρy

(
1− r21y

) (
1− r22y

)
; σ2

ρx and σ2
ρy define the dispersions of the basic ran-

dom fields of correlation parameters for the row and column, respectively.
Thus, in order to solve the problem of parameter estimation, it is necessary

to estimate random fields ρxi,j and ρyi,j in model (1). It should be noted that
for the case of doubly stochastic models the important property is the ability
to apply recurring evaluation procedure [2] that would only slightly increase the
computational expenditures.

Suppose that the input signal of a monitoring system at the entrance is the
sum of the useful signal (1) and additive white Gaussian noise {ni,j} with average
mn = 0 and dispersion σ2

n

zi,j = xi,j + ni,j . (3)

We shall use the vector nonlinear Kalman filter to make the filtering process
of the flat image. Therefore, we must obtain a vector of the image line items
that can be written as follows:
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xi = (xi1 , xi2 , . . . , xiN ) . (4)

In this case, we write a generalized expression model for the flat image in
accordance in the following form:

xi = diag (ρxi)xi−1 + ϑ (ρxi ,ρyi) ξi,
ρxi = r1xρxi−1

+ ϑρxξxi,
ρyi = r1yρyi−1

+ ϑρyξyi,
(5)

where diag (ρxi) is the diagonal matrix with elements
(
ρxi1

, ρxi2
, . . . , ρxiN

)
.

Finally, expression for the process of line-by-line estimation is written as
follows:

x̂pi = x̂epi + Pi
∂ΦT

∂xpi
(zi − x̂epi) . (6)

It should be noted that application of the nonlinear vector Kalman filter
is possible if the signal model is known. Thus, to make signal model known,
it is necessary to have information about coefficients r1x, r2x, r1y, and r2y and,
in addition, the statistical characteristics of the model such as mρx,mρy, and
σ2
ρx, σ

2
ρy, σ

2
x. If the receiving part has no a priori information tagged with pa-

rameters, we must perform a preliminary assessment, for which it is proposed to
use the algorithm for pseudogradient search [3, 7].

In addition to filter (6), we will explore a number of filtering algorithms both
for AR models and doubly stochastic ones.

1) Vector Kalman filter for the AR model with ρxi,j =const and ρyi,j =const.
2) Wiener filter for AR model with the covariance function

B (l, k) = σ2
xm
|l|
ρxm

|k|
ρy .

3) Vector Kalman filter for the AR model with reverse swing (interpolation).
4) Vector Kalman filter for the doubly stochastic model with reverse swing

(interpolation), for which x̂i,j
ρ̂xi,j
ρ̂yi,j

 = Φ (xe, ρxe, ρye, Vn) .

Figure 1 presents filtering error dispersion dependencies on noise dispersion.
We can see that if the image is close to identical and similar only in certain
segments, we have effective filtration by only the fourth algorithm.

As for the gain (Figure 2), note that the maximum gain is achieved at low
values of the noise dispersion, and then we get the stabilization of the gains.
We note that for a single noise dispersion, algorithm of the Kalman filter with
vector interpolation works almost 2 times more precisely than the Kalman and
Wiener filters with interpolation configured for the AR model. Furthermore, the
gain compared to Kalman without interpolation is much larger.
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Fig. 1. Filtration efficiency of the heterogeneous image.

Fig. 2. Gain when heterogeneous images are filtered.



14

Fig. 3. Filtration efficiency of image with changes in brightness.

Fig. 4. Gain when images with brightness variations are filtered.
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Obviously, the heterogeneous image filtering with variations in brightness
(Figure 3) can not be used without analysis of correlation parameters. So, here,
there is the fourth algorithm that is also applied more accurately. However, in
terms of gains (Figure 4), such algorithm provides smaller indicators since the
main image has the heterogeneity of the sharp variations in brightness.

Thus, filtering algorithm based on the doubly stochastic model provides the
best results for real images.

3 Images restoration

Consider restoring the square area on the image using a model with variable
parameters. Let the brightness values of the image representing the random
field be {Zi,j ;i = 1, 2,. . . , M1;j = 1, 2,. . . , M2}. There is the damaged area
starting at the point (i0, j0) of the c × c-dimension. Denote this area as D. We
introduce the following restoration model [12]

Xi,j =

Zi,j , if (i,j)/∈D
ρ1i,j (Xi−1,j −Xi,j) + ρ2i,j (Xi,j−1 −Xi,j)−
−ρ1i,jρ2i,j (Xi−1,j−1 −Xi,j) +Xi,j + ξi,j , if (i,j)∈D

 , (7)

where ρ1i,j , ρ2i,j are the estimations of the correlation coefficients for row and
column at the point (i, j);Xi,j is the estimation of the average value at the point
(i, j); ξi,j is the Gaussian random field with average M{ξi,j} = 0 and dispersion

σ2
ξ = σi,j

√(
1− ρ21i,j)(1− ρ22i,j

)
, where σ2

i,j is the estimation of the dispersion

at the point (i, j).
It is advisable to assess parameters in the sliding window excluding the points

that lay in the damaged area. Model (7) is a Habibie one with variable parameters
in the area D. For the window with N × N -size, estimates are determined by
the formulas

Xi,j = 1
N2

∑N
2

u=−N
2

∑N
2

q=−N
2

Zi+u,j+q

σ2
i,j = 1

N2

∑N
2

u=−N
2

∑N
2

q=−N
2

(Zi+u,j+q −Xi,j)
2

ρ1i,j = 1
σ2
i,jN

2

∑N
2

u=−N
2

∑N
2

q=−N
2

(Zi+u,j+q −Xi,j) (Zi+u−1,j+q −Xi,j)

ρ2i,j = 1
σ2
i,jN

2

∑N
2

u=−N
2

∑N
2

q=−N
2

(Zi+u,j+q −Xi,j) (Zi+u,j+q−1 −Xi,j)

(8)

To restore the damaged area, we shall make an assessment in neighbourhood
of the area D. In addition, to ensure greater heterogeneity, we divide area D
into sub-areas, onto each of which we shall expand the model with the estimated
parameters (8).

Evaluation system (8) gives estimates based on the motion of the window
from left to right and from top to bottom, i.e., the model unfolds from the top
left corner of the area D. You can get similar expressions for motion of the
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window from other corners. It is clear that the estimates for different starting
points of evaluation will vary. This is due to the fact that the basic values of the
model implementation will depend on intact neighborhood, and it, in the turn,
is determined by its position on the image. Thus, the nearest surroundings will
change when the starting point for deployment model changes.

To assess the performance of the proposed algorithm, we shall implement
restoration method on the different images. When we do this we compare restora-
tion (7) with the restoration by the model of Habibie that can be written:

Xi,j =

Zi,j , if (i,j)/∈D
ρ̂1 (Xi−1,j −X) + ρ̂2 (Xi,j−1 −X)−
−ρ̂1ρ̂2 (Xi−1,j−1 −X) +X + ξi,j , if (i,j)∈D

 , (9)

where ρ̂1, ρ̂2 are the estimation of correlation parameters for the row and col-
umn; X is the average value estimation; ξi,j is the Gaussian random field with

average M{ξi,j} = 0 and dispersion σ2
ξ = σ

√(
1− ρ̂12)(1− ρ̂22

)
, where σ2 is the

estimation of the dispersion.
So, the restoration algorithm with the Habibie model (9) requires only one

assessment of the image parameters.
Figures 5-7 show the different damaged images and the result of their recov-

ery: a) damaged image, b) restore from the upper left corner, c) restore from
a right corner, d) restore from the left bottom corner, e) restore from a right
corner, f) restore based on the Habibie model from the upper-left corner.

Fig. 5. Restoration of the area of the image on the border of two dissimilar surfaces.
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Dispersions of the restoration error (Figure 5) are the following:

b: 0.046, c: 0.060, d: 0.045, e: 0.043, f: 0.335.

Fig. 6. Restoration of the image area close to uniform.

Dispersions of the restoration error (Figure 6) are the following:

b: 0.031, c: 0.040, d: 0.035, e: 0.034, f: 0.043.

Analysis of the errors for restoration in Figure 6 shows that in the case of
a homogeneous area of the image, results in the implementation of algorithms
are close enough regardless the initial point. However, slight variation of the
dispersion values of the error may be due to the fact that the implementation
of a model uses a random field. Consequently, the value of the restored pixel
brightness is accidental. It also should be noted that the image selected in Fig-
ure 6 consists the inhomogeneities. Such structure also affected the calculation
of variance of the restoration error. However, the restoration results in Figure
6b — e are significantly better than restoration results in Figure 6f. Firstly, it is
due to the fact that the model with variable parameters is better suited for the
description of the original image. Secondly, implementation of the Habibie model
leads to using the constant correlation coefficients, although the connection be-
tween the real image pixel does not correspond to this description. Finally, we
consider the restoration of the image area when the neighborhood is different
from different sides, i.e., there are either diverse objects at the corners of the
damaged section or there is a difference in the brightness values.
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Fig. 7. Restoration of the image area limited by different structures.

Dispersions of the restoration error (Figure 7) are the following:
b: 0.005, c: 0.003, d: 0.006, e: 0.008, f: 0.015.
An error dispersion investigation for the Figure 7 revealed that when the

damaged area is bounded on different sides of the pixels with different brightness,
it is a very important factor what side is basic for restoration. Indeed, restoration
from the right upper corner of the neighborhood is based on the dark area closest
to the brightness of the damaged portion. Further, the order of similarity of the
neighborhood brightness coincides exactly with the order of increasing error
variance. Therefore, when the brightness of the vicinity parts is closer to the
brightness of the damaged area, we have the better restoration results. Thus, for
Figure 7, restoration algorithm using the Habibie model is considerably inferior
to the algorithm based on the use of complex (doubly stochastic) models. This
is primarily due to the heterogeneity of the original image.

The size of the damage is c = 40 for all images. The images sizes are the
following: Figure 5 290×290, Figure 6 330×330, Figure 7 440×440. Dispersions
of the error were calculated from relations for dispersion of the images.

The analysis shows that restoring (7) is better suited to heterogeneous im-
ages. Restoration using the Habibie model looks much worse even in visual per-
ception. In addition, the value of the error restoring dispersion in the cases
examined also depends on the ratio of size of the damage to the image size.
Obviously, if it is smaller, then the accuracy is higher.

It should be noted that application of the doubly stochastic model allows one
to have information on the undamaged neighborhoods in the form of parameter
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fields that provides better restoration. Analysis of the results shows that the
efficiency of restoring depends on the starting position of the model implemen-
tation that makes it possible to increase the efficiency of the restoration of the
damaged area due to splitting into the smaller subareas. For these subareas, we
choose the best neighborhood, in which estimation is made.

Thus, considered restoring algorithm based on the use of models with varying
parameters unlike the Habibie model restoration is able to restore the hetero-
geneity areas and is generally superior to the latter.

4 Conclusion

Comparative analysis of four algorithms of filtering was described in details.
Researches were performed for the different images.

It was found that the gain of the vector Kalman filter stabilizes with noise
dispersion increasing.

The vector Kalman filter for the doubly stochastic models with reverse swing
provides the significant gain (40 — 50%) for the actual images that cannot be
adequately described by the AR models of random fields.

The algorithm of restoring damaged areas on images based on mathematical
modeling was suggested. Analysis of the results obtained shows that to restore
satellite images, it is appropriate to use models with varying parameters.

Improvement of efficiency of the algorithm in future can be obtained by
aggregation of the restoration results obtained for different directions.
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