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Abstract

A presentation attack consists in submitting to the fingerprint capture device an artificial replica

of the finger of the targeted client. If the sensor is not equipped with an appropriate algorithm aimed

to detect the fingerprint spoof, the system processes the obtained image as a one belonging to a real

fingerprint. In order to face this problem, several presentation attacks detection (PAD) algorithms

have been proposed so far. Current methods heavily rely on features extracted from a large data set

of fake and real fingerprint images, and an appropriate classifier trained with such data to distinguish

between live (real) and fake (spoof) fingerprint images. Building such data set requires a significant

effort for fabricating samples of fake fingerprints, with the most effective materials used to circumvent

the sensor. Interesting and promising results have been obtained, but they also suggest that the PAD

is tailored on the particular sensor. Small and significant differences also occur when a novel version

of the same sensor is released, and this may affect the PAD. Therefore, making a PAD interoperable

is among the main current issues when considering fingerprints as the first level of protection and

security of logical or physical resources. This paper is a first attempt to assess at which extent the

sensor interoperability can be an issue for fingerprint PADs and to eventually propose a solution to

this limitation. In particular, textural features will be under focus and a feature space transformation

method based on the least square is proposed.

1 Introduction

Fingerprint capture devices suffer from the presentation attacks problem [4]. These attacks
consist in submitting an artificial replica of the finger to the device. Fingerprint replica are
fabricated by using, for example, silicon-based materials [12].

Fingerprint verification systems, without an appropriate detector of such spoofs, may process
the fingerprint image as belonging to an authentic one. If the image quality and the replica are
good enough, very similar to the original fingeprint, they can be circumvented [11].

This problem has been firstly pointed out in [12]. From then, many works appeared in
literature to propose fingerprint presentation attacks detection (FPAD) algorithms, the most
of them based on wavelet transform and filtering methods [16, 1, 14, 6, 5, 10]. At this regard,
the international fingerprint FPAD competition (LivDet) in 2009, 2011, 2013 and 2015, tried
to make the point about the effectiveness of such algorithms, by involving many academic and
private institutions [7]. The main outcome of this competition has been more than ten data sets
publicly available for research purposes, made up of images coming from a large set of sensors.
Spoof images were derived by using different materials (from gelatine to liquid silicon)1.

Although many promising results have been obtained, especially by features extracted with
textural algorithms, there are significant issues still open. Among others, it is normal in fin-
gerprint verification systems to substitute the capture device with a newest and better one,

1See http://livdet.diee.unica.it for further information on the competition and data sets.
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Figure 1: Example of same fingerprint from Biometrika FX2000 (left), Italdata ET10 (right)
scanner.

as a sort of upgrade. Unfortunately, this is not possible without updating templates as well2.
In other words, there is not interoperability among fingerprint sensors, due to the different
characteristic of image captured and, in some cases, on pre-processing steps operated before
making available the image to the verification step [15, 2, 8].

In this paper, we answer the question: “is the interoperability also a problem for fingerprint
presentation attacks detectors?”. By an extensive experimental analysis on the data sets pre-
sented at LivDet 2011, we show that the problem exists (Section 2). On the other hand, we
also show that the problem can be mitigated by an appropriate domain transformation algo-
rithm, thus allowing to preserve the performance on the system during upgrade and downgrade
(Sections 3-4). Conclusions are drawn in Section 5.

2 Interoperability experimental analysis

Each fingerprint scanner model is usually different from the others in both hardware and soft-
ware. The main hardware difference is the sensor type: optical, solid state and ultrasound [9].
This peculiarity is linked to a different physical phenomenon, which codifies the valleys and
ridges based on it. The scanners can be grouped by image characteristics such as DPI (dot per
inch), scanning area, geometric accuracy. The DPI factor is a crucial point for matcher and
liveness detector, it specifies the maximum resolution between two points. A high resolution
scanner highlights details, such as pores, useful for FPAD. In the identification/verification task
the DPI is very important for interdistance measurement of minutiae. A good example is the
Bozorth matcher which works only at about 500DPI [18]. The scanning area defines the portion
of captured fingertip, for example smartphone scanners are very small and do not acquire the
entire fingerprint.

Software based differences are at API level, there can be many pre-processing steps in order
to highlights ridges and valleys. Every step changes the dynamic of gray levels. The fingerprint
matcher (comparator) based on the minutiae position, does not depend on these operations, as
opposed to the performance of liveness detector that is based on a high frequency analysis. As
a matter of fact the most important algorithms in FPAD like LBP [13], LPQ [6] and BSIF [5],
work on a small local region of a gray scale image.

In Fig. 1 we are able to appreciate the differences of geometric distortion with two optical

2The template is a model stored in the data base and related to the registered subject, that is, authorized
to pass the fingerprint verification test
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Figure 2: In the left side there is mean histogram of gray scale Biometrika for all subset. In
the right side differences between mean histogram of LivDet2011 data set.

fingerprint capture devices, namely, Biometrika FX2000 and Italdata, adopted in the second
edition of the International Competition on Figerprint Liveness Detection. The Biometrika
capture device is more rounded than the Italdata one (both images belong to same fingerprint
of the same person). The background is quite different, in the Italdata is almost white whereas
in the Biometrika some shadows appear in the corners.

Another peculiarity is the gray level histogram. The example on the left side of Fig. 2
shows the image gray scale average histogram of Biometrika for the two subsets released for
LivDet2011 and named training and test sets. In order to remove background effect, each
fingerprint image is cropped, finding the center, in a ROI of 200x200 pixel. The trend of the
four plots is quite similar. The main difference is in the highest gray levels between live and fake
images. Moreover, on the right side of Fig. 2, differences among the four fingerprint scanners
by plotting the average histogram of gray levels for all images (Biometrika, Digital Persona,
Sagem, Italdata) are shown. As a consequence of those differences among sensors, we may
expect that the feature vectors, calculated using for example textural algorithms, are different
as well. The textural algorithms work very well in FPAD, but they can be used independently
from the scanner. In other words, it may be expected no interoperability among scanners,
because textural algorithms capture both small details of the fingerprint which are useful for
our target and scanner-specific information.

In the following experiment we demonstrate this assertion using the four LivDet 2011 data
sets [19], divided into a subset of 2000 live and 2000 fake samples.

Let us refer for example to two data sets coming from different sensors as A and B. We
further subdivide these sets into train set TrainA and test set TestA such that A = TrainA∪
TestA and TrainB and TestB such that B = TrainB ∪ TestB. Let us then define the set
trainAB = TrainA ∪ TrainB and the set as testAB = testA ∪ testB. In this experiment,
we train a classifier to discriminate among the two scanners images. In order to estimate the
capability to discriminate the device, the training process is repeated with an increasing number
of samples. The used classifier is a linear SVM [3], thus the sensor classes are separated by a
decision hyperplane.

The used features are LBP [13], LPQ [6] and BSIF [5] histograms, that are the state of the
art in fingerprint presentation attack detection.

Fig. 3 shows the mean accuracy rate for all the possible scanner pairs by increasing the
number of training patterns. As expected, the performance grows up with the number of pat-
tern, but even with a few samples the accuracy is more than 85%. Therefore, just a few patterns
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Figure 3: Accuracy of scanner recognition using LBP, LPQ and BSIF algorithms.

are sufficient to identify the capture device. This shows the existence of the interoperability
problem.

Biometrika Italdata Digital P. Sagem
test test test test

Biometrika train 88.85% 55.65% 64.35% 48.92%
Italdata train 51.20% 81.35% 65.65% 32.07%

Digital P. train 47.65% 50.55% 89.40% 50.59%
Sagem train 51.85% 48.20% 49.90% 91.65%

Table 1: LBP results: the accuracy are obtained training a classifier with the data set in the
first column and testing on the data set in the first row.

Biometrika Italdata Digital P. Sagem
test test test test

Biometrika train 85.20% 50.00% 57.75% 54.27%
Italdata train 55.90% 86.40% 59.00% 53.44%

Digital P. train 55.55% 50.00% 88.55% 54.66%
Sagem train 60.15% 50.00% 54.80% 92.78%

Table 2: LPQ results:the accuracy are obtained training a classifier with the data set in the
first column and testing on the data set in the first row.

The second evidence is reported in Tables 1,2,3 where the liveness detection accuracy and
cross-accuracy among fingerprint capture devices is reported. For example, the row 3 and
the column 2 reports the liveness detection accuracy on features extracted from images coming
from the Biometrika sensor submitted to the classifier trained on features extracted from images
coming to the Italdata sensor. These values indicate that the features space of live and fake
images is differently distributed for all scanners.

Based on these evidences, we can conclude that there is not interoperability among finger-
print capture devices even when liveness of fingerprint traits must be assessed. In other words,
the liveness detector should be tailored on the specific sensor, by using an appropriate set of
live and fake fingerprint images.
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Biometrika Italdata Digital P. Sagem
test test test test

Biometrika train 91.95% 50.00% 50.00% 52.50%
Italdata train 70.40% 86.15% 53.80% 59.72%

Digital P. train 50.00% 49.80% 95.85% 50.88%
Sagem train 53.05% 50.00% 50.00% 93.76%

Table 3: BISF results: the accuracy are obtained training a classifier with the data set in the
first column and testing on the data set in the first row.

3 Feature space transformation: least square

In the previous sections we have shown, from a high level viewpoint, that it is not possible to
substitute a sensor with a novel and better one without updating the whole liveness detection
algorithm. In other words, the interoperability problem, already pointed out for fingerprint
matching, also exists when upgrading a fingerprint liveness detection system. According to our
results, this mainly affects the feature space distribution of live and fake images, especially if we
adopt textural features, thus making impossible to keep the same classifier trained on features
extracted from the “old” sensor. The practical consequence is that, if the new sensor must be
used, a novel data set of live and fake fingerprints must be captured and a novel classifier must
be trained. This can be quite expensive and difficult to obtain in a short time. Therefore, we
propose here a method that can be adopted to mitigate the problem. “Mitigating” the problem
means to allow users to adopt the new sensor whilst keeping the old classifier, by paying a drop
of performance less significant that the one shown in the previous Section, until a novel data
set is fully available.

To this aim, we used the least square method [17] that is adopted to minimize the error in
the ill posed problem A× x = b. In this problem A is an n×m matrix, x and b are two m and
n elements vectors. Since we want to transform one n ×m matrix into another, our problem
can be divided in m steps:

A× xi = bi i = 1, 2, ...,m (1)

In each of these step we calculate the column vector xi that, from the matrix A, generate
the i− th column vector of B.

Basically we select the features extracted from the datasets corresponding to two different
sensors and calculate the matrix X that allows, with a simple product, to transform one feature
set into the other by minimizing the squared error. In other words, we adapt the domain of
the new sensor to that of the old one. We use an approximation algorithm instead of an
interpolation algorithm because we want to avoid the overfitting of the new space on the old
one.

Given the two matrices trainA and trainB, according to the terms given in the previous
Section, we calculate the matrix X such that:

trainB = trainA×X (2)

With this method we can turn every feature space A in any other feature space B by paying
attention to the fact that we want to maintain the distinction between lives and fakes, that
is, we want the live features of A moving on the live features of B and the fake features of A
moving on the fake features of B. Thus, if each row of trainA and trainB contains a feature
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vector, we have to be sure that for every row to each live (or fake) in trainA correspond a live
(or fake) in trainB. Clearly the two matrices must have the same number of rows (number of
feature vectors) and columns (feature vector elements).

Let us suppose we have a large number of collected images with sensor B with which we
trained a classifier and to have a new sensor A with which we want to build another dataset. If
the number of images acquired with the new sensor is limited, can we exploit the other classifier
moving the feature space of A in that of B? Can we just use live fingerprints or is it required
to also collect fake samples? How many feature vectors do we need to get satisfying results?
In order to answer these questions we performed a number of experiments by analyzing the
LivDet 2011 datasets [19]. Features were extracted with three different textural algorithms:
LBP[13], LPQ[6] and BSIF[5]. For sake of space we will only show the results obtained with
the LBP algorithm. Results on other algorithms were similar and they can also be requested
to the authors.

3.1 Least square transformation

In our first experiment we used all possible pairs of LivDet2011 datasets. For each couple of
datasets A and B, given the trainA and trainB matrices, we calculate the transformation
matrix X (see Eq. 2) that allows us to move a vector from the A feature space to the B
one. With the X and the testA matrices we are easily able to compute a pseudoTestB matrix
moving the testA feature vectors in the B feature space:

pseudoTestB = testA×X (3)

In Table 4 we present the obtained results in terms of accuracy. The values in the diagonal,
since A and B represent the same dataset, are obtained with the classical procedure and without
any transformation: we just trained a classifier with trainB and we used it to classify the feature
vectors in testB. Conversely, for each off-diagonal value, we still trained a classifier with trainB
(rows), but then we calculated the matrix X by Eq. 2 and the pseudoTestB by Eq. 3. Finally,
we classified the feature vectors in pseudoTestB (columns).

Biometrika Italdata Digital P. Sagem
pseudo-test pseudo-test pseudo-test pseudo-test

Biometrika train 88.85% 80.10% 84.15% 86.25%
Italdata train 86.50% 81.35% 85.60% 88.80%
Digital train 86.55% 79.65% 89.40% 85.07%
Sagem train 83.90% 77.15% 89.35% 91.65%

Table 4: LBP results: the accuracies are obtained by training a classifier with the datasets in
the first column and testing on the datasets in the first row.

The presented results clearly show that the accuracies obtained by transforming testA in a
pseudoTestB are comparable (but almost always lower) with those obtained by simply training
the original dataset trainB. In other words, the effect of the passage from a sensor to another
one is mitigated or reduced.

3.2 Transformation using only live samples

The results in Section 3.1 are obtained using both lives and fakes feature vectors to calculate the
transformation matrix. Since the acquisition of new fakes is not as easy and fast as collecting
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live samples, which is not a trivial problem as well, we repeated the experiments using the live
samples to calculate the transformation matrix.

Biometrika Italdata Digital P. Sagem
pseudo-test pseudo-test pseudo-test pseudo-test

Biometrika train 88.85% 57.75% 50.00% 49.41%
Italdata train 72.30% 81.35% 50.00% 50.88%
Digital train 49.95% 50.00% 89.40% 49.17%
Sagem train 50.00% 50.00% 50.00% 91.65%

Table 5: LBP results: the accuracies are obtained training a classifier with the datasets in the
first column and testing on the datasets in the first row were the pseudo-tests are calculated
with using only live samples.

Unfortunately, as shown in Table 5 the results are much worse, but this is also explainable
since we have willingly reduced the information available for the transformation, by avoiding
the use of fake samples. Whilst this is an indirect evidence that textural algorithms are able to
extract live and fake fingerprint characteristics, this also show that it is not possible to avoid
this information when designing the domain adaptation function. As a matter of fact, the
majority of fake fingerprints were classified as live ones in our experiments.

3.3 Number of feature vectors

In the previous subsections the transformation matrices have been calculated using all the
feature vectors (lives and fakes in Section 3.1 and just lives in Section 3.2) extracted from the
images in the train parts of the LivDet 2011 datasets [19] (approximately 2000, 1000 lives and
1000 fakes). In order to simulate a limited number of acquisition, we replicate the experiments
using just a randomly selected subset of those feature vectors (with the same number of lives
and fakes in both subset). Given the two matrices trainA and trainB we extract the two subset
subSetA and subSetB and calculate the new matrix X such that:

subSetA = subSetB ×X (4)

In the experiments presented in Tables 6 - 9 the transformation matrices were calculated
with subsets containing the 20%, 40%, 60% and 80% of the feature vectors of the original train
datasets.

Biometrika Italdata Digital P. Sagem
pseudo-test pseudo-test pseudo-test pseudo-test

20% 86.51% 73.20% 85.43% 82.28%
40% 87.25% 76.48% 87.82% 86.83%
60% 87.69% 76.13% 89.01% 87.89%
80% 88.64% 77.71% 89.92% 87.91%

Table 6: LBP results: the accuracies are obtained training a classifier with the Biometrika
dataset and testing on the datasets in the first row obtained using a transformation matrix
calculated with the train percentages in the first column.

Results show, as expected, an increasing trend of the accuracies since the bigger is the train
percentage, the higher is usually the recognition rate. Anyway, in most cases, a 40% of the
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Biometrika Italdata Digital P. Sagem
pseudo-test pseudo-test pseudo-test pseudo-test

20% 79.65% 75.97% 81.74% 79.41%
40% 82.72% 79.27% 87.43% 84.79%
60% 83.40% 81.40% 86.98% 86.82%
80% 84.22% 80.71% 88.57% 87.52%

Table 7: LBP results: the accuracies are obtained training a classifier with the Italdata dataset
and testing on the datasets in the first row obtained using a transformation matrix calculated
with the train percentages in the first column.

Biometrika Italdata Digital P. Sagem
pseudo-test pseudo-test pseudo-test pseudo-test

20% 72.27% 69.41% 86.48% 82.76%
40% 78.35% 72.75% 88.41% 85.41%
60% 82.03% 76.79% 88.72% 86.42%
80% 83.16% 75.18% 89.14% 86.97%

Table 8: LBP results: the accuracies are obtained training a classifier with the Digital Persona
dataset and testing on the datasets in the first row obtained using a transformation matrix
calculated with the train percentages in the first column.

train seems to be sufficient to obtain satisfying results. This means that it is possible to keep
the old classifier without an appreciable loss of performance and using at the same time the
new sensor, until a good number of live and fake samples has been collected.

4 Conclusions

In this paper, we analyzed the level of interoperability between sensors in the field of fingerprint
presentation attacks (liveness) detection. We showed that the problem exists and that it is
difficult to overcome since the sensor characteristics heavily affect the image characteristics
and the related feature space when using textural algorithms. These features contain so much
“sensor-specific” information that the related images can be localized in different regions of the
features space itself, almost without overlapping.

Starting from these observations we proposed a method to strongly reduce these sensor-
specific features distributions. This method is based on the least square algorithm, pros and
cons were also discussed in the paper. Although the pointed out limitations, it allowed achieving
a considerable level of interoperability among fingerprint capture devices.

In the future we will focus our efforts on the improvement of the performances but also
on the reduction of the number of feature vectors required to calculate the transformation
matrix. In particular, calculating the domain transformation equation without the need to
use fake samples would be of great help to design an effective algorithm for capture devices
interoperability in fingerprint liveness detection.
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Biometrika Italdata Digital P. Sagem
pseudo-test pseudo-test pseudo-test pseudo-test

20% 80.64% 72.67% 86.53% 89.12%
40% 80.83% 75.38% 88.72% 91.06%
60% 82.00% 75.22% 89.24% 91.47%
80% 80.34% 77.11% 89.49% 91.51%

Table 9: LBP results: the accuracies are obtained training a classifier with the Sagem dataset
and testing on the datasets in the first row obtained using a transformation matrix calculated
with the train percentages in the first column.
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