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Abstract

JavaScript and ActionScript are powerful scripting languages that do not only allow the deliv-

ery of advanced multimedia contents, but that can be also used to exploit critical vulnerabilities of

third-party applications. To detect both ActionScript- and JavaScript-based malware, we propose in

this paper a machine-learning methodology that is based on extracting discriminant information from

system API methods, attributes and classes. Our strategy exploits the similarities between the two

scripting languages, and has been devised by also considering the possibility of targeted attacks that

aim to deceive the employed classification algorithms. We tested our method on PDF and SWF data,

respectively embedding JavaScript and ActionScript codes. Results show that the proposed strategy

allows us to detect most of the tested malicious files, with low false positive rates. Finally, we show

that the proposed methodology is also reasonably robust against evasive and targeted attacks.

1 Introduction

JavaScript and ActionScript are two scripting languages that are mostly used in websites and
documents to provide the user with additional, multimedia contents. However, their flexibility
and interpreted nature allows attackers to use them for exploiting vulnerabilities of applications.
This became particularly evident when PDF files containing JavaScript attacks started to
hamper Adobe Reader security in 2008. More recently, starting from 2015, ActionScript-based
attacks exploited critical vulnerabilities of the ActionScript Virtual Machine, normally used
to read Flash files, thus causing severe damage. A very popular case is the attack against the
Hacking Team, an Italian security company, which caused a loss of more than 400 GB of
classified data [1].

Despite the attempts made by browser developers such as Mozilla and Google to contain
the phenomenon and limit the usage of Flash-based web applications, such technology is still
widely used to deploy multimedia content. Likewise, JavaScript is still considered an essential
tool to deploy web content and to improve the readability of documents. For these reasons,
security threats concerning these two formats are still actual and need to be addressed [5].

Due to the flexibility that the scripting languages allow when writing the source code (for
example, by writing lines of code as strings that can be interpreted at runtime by executing
specific functions), common Antivirus solutions suffer from multiple problems at detecting such
attacks. The source code can be easily obfuscated by means of automatic tools that make the
detection and analysis process considerably harder.

For these reasons, a number of approaches based on machine learning to detect JavaScript
and ActionScript have been introduced [6, 7, 9, 12, 13]. They employ static or dynamic
analysis of the scripting code typically carried by PDF and SWF files. Leveraging machine
learning guarantees more flexibility in comparison to signature-based approaches, as the former
can also be used to detect zero-day and novel attacks. The aforementioned approaches have
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been specifically tailored either to JavaScript or to ActionScript files. Moreover, most of
these works did not discuss the possibility of targeted attacks, i.e., when an attacker attempts
to craft malicious samples with the aim of evading the system.

In this paper, we propose a machine-learning approach that can be employed, although with
some slight differences, to analyze JavaScript or ActionScript codes carried by PDF and SWF
files. The rationale here is showing that, as the two languages share multiple characteristics,
it is possible to extract similar information related to system- or application-based APIs. We
show that using such information in combination with proper machine-learning algorithms can
not only lead one to attain high detection rates, but also to develop systems that are robust
against some targeted attacks.

The main contributions of this work are summarized in the following.

1. We provide a methodology that can be used to detect JavaScript and ActionScript

code embedded within PDF and SWF files.

2. We empirically evaluate it on PDF and SWF data, showing that it can correctly detect a
large fraction of malicious files while misclassifying only a small fraction of benign files.

3. We empirically show that our approach also exhibits some degree of robustness against
well-crafted, targeted attacks.

Paper Organization. The rest of the paper is organized as follows. Section 2 provides
an overview on JavaScript and ActionScript; Section 3 describes the employed detection
methodology; Section 4 provides the experimental evaluation; Section 5 discusses the limitations
of our approaches; Section 6 discusses the related work in the field; Section 7 closes the paper
with the conclusions.

2 Overview on JavaScript and ActionScript

JavaScript and ActionScript are both derived from ECMAScript, a standardized program-
ming language maintained by Ecma with the ECMA-262 standard [8]. They are object-oriented,
interpreted scripting languages. However, while JavaScript is mostly used for web applica-
tions and to extend functionality of third parties formats such as PDF, ActionScript is used
as an essential support for delivering Flash-based content. In particular, ActionScript is
mainly employed in SWF files, although it can also be employed in PDF files to show Flash
animations inside a document. Moreover, ActionScript code is also compiled into a bytecode
(called ActionScript Bytecode or ABC), as it is executed by a virtual machine that has been
specifically designed by Adobe. JavaScript and ActionScript are actively used for exploiting
vulnerabilities of the readers of the files that host them. For example, malicious JavaScript

codes are commonly used to perform attacks against Adobe Reader, by exploiting the fact that
such scripts are executed inside a PDF file. Such operation is performed in three steps: (i)
the reader opens the file and executes the scripting code; (ii) the scripting code performs ma-
licious actions by exploiting a vulnerability of the reader; (iii) if the vulnerability is correctly
triggered, the malicious script may download another executable to infect the victim from a
malicious URL, or it may directly execute a binary file embedded within the script itself.

Most of these attacks are performed by invoking system-based or application-specific APIs.
The underlying reason is that some of the APIs themselves are vulnerable to attacks (e.g.,
the collab.getIcon() method used for PDF files). Likewise, system-based APIs can be used
to manipulate memory, and they are often an essential element for performing attacks (e.g.,
the flash.utils.ByteArray class, which allows one to easily manipulate arrays of bytes, and
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which is often used in buffer overflow or heap-spraying attacks). In the following, we describe
possible usages of JavaScript and ActionScript codes.
Examples of JavaScript code. Example 1 shows three ways of using Javascript code inside
a PDF file. The functions and attributes belong to the Acrobat JavaScript API.

// get adobe version number
var version = app.viewerVersion;

// printing date
var d = new Date();
var sDate = util.printd("mm/dd/yyyy", d);

// exploiting a vulnerability (CVE -2009 -4324)
try {this.media.newPlayer(null);} catch(e) {}

Example 1: Possible usages of the Acrobat Javascript API.

In the first case, the app.viewerVersion attribute can be used by a malware to infer the
version of the PDF reader. The second case uses the util.printd function to print the current
date. This function can be also used by a malware to fill the system memory. The third case
is a popular example of vulnerability exploiting (CVE-2009-4324) in which, by passing the null
parameter to the media.newPlayer function, the attacker may be eventually able to gain full
control of the victim machine.
Examples of ActionScript codes. The next Example shows two ways of using the
ActionScript system classes. These lines are rather frequent in malware as well.

import flash.utils.ByteArray
import flash.system.Capabilities

//Write bytes
var mem_block:ByteArray = new flash.utils.ByteArray ();
mem_block.writeInt (0 x41414141);

//Check if os is windows
var op_sys:String = flash.system.Capabilities.os

Example 2: Possible usages of the ActionScript system classes.

The first lines use the writeInt function belonging to the flash.utils.ByteArray system
class to fill an array with integers. This is often used by malware for memory manipulation.
The last line invokes the flash.system.Capabilities system class to infer the operating
system executing the script. This is often used by malware, as some exploits are dependent on
the operating system. Despite the differences between the two languages, these two examples
show the role of system- and application-based API calls in characterizing the behavior of the
malicious scripts.

3 API-Based Detection of Scripting Malware

We describe here a general methodology that can be applied to both JavaScript and
ActionScript to detect the corresponding attacks. Our goal is to develop a system that, given
an input file containing a JavaScript or ActionScript code,1 is able to establish whether
that file is malicious or not. This is done in three phases: (i) during pre-processing, the input
file is analyzed (statically or with dynamic instrumentation, depending on the application) to
extract the embedded scripting code; (ii) during feature extraction, each sample is represented

1In this paper, we only consider PDF and SWF files.
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in terms of a feature vector, whose values correspond to the number of occurrences of each
system API found inside the scripting code;2 and (iii) during classification, the feature vector
of the sample to be classified is provided as input to the machine-learning algorithm, which
outputs a decision, i.e., classifies the input file either as benign or malicious. To this end, the
machine-learning algorithm has to be previously trained on a (labeled) collection of malicious
and benign files (called the training set) that should be sufficiently representative of the (never-
before-seen) samples to be classified during operation. The aforementioned phases are further
detailed in the following sections.

3.1 Preprocessing

Preprocessing is the operation with which the JavaScript or ActionScript files are detected
and extracted for further analysis. This operation is performed differently, depending on the
analyzed file. For PDF files containing JavaScript, we locate the scripting code by analyzing
the internal structure of a PDF file. Typically, the presence of such code inside the PDF file is
highlighted by keywords like /JavaScript or /JS (for more details, see the PDF specifications3).
For SWF files containing ActionScript, we locate the equivalent ActionScript bytecode
contained in the file by searching for a data structure called DoABC Tag (for more details, see
the SWF specifications4). With respect to the ActionScript bytecode, it is worth noting
that it contains scripting code that is semantically equivalent to the original source. For the
purpose of feature extraction, directly analyzing the bytecode allows us to easily retrieve the
API information without further decompilation.

3.2 Feature Extraction

We now describe the feature extraction methodology employed in our approach. The goal of
this phase is counting the number of occurrences of each system API contained in the scripting
file. The approach is a variant of the one described in [6], with some differences depending on
the scripting file that is analyzed.
Javascript. For JavaScript codes contained in PDF files, we count the occurrences of the
methods and attributes belonging to the JavaScript for Acrobat API list.5 This is done by
dynamically instrumenting the execution of the Javascript code inside the PDF file, so that
all the invoked JavaScript APIs could be extracted. Note that we are not fully executing the
PDF file, i.e., code extraction is statically performed.
Actionscript. For ActionScript scripts contained in SWF files, we count the occurrences
of the classes belonging to the official ActionScript 3 API list. This is done by statically
analyzing the ABC bytecode in order to detect all the employed API.6

The two strategies have been tailored to the application domain to obtain a compact feature
set, consisting respectively of 3272 and 2587 features for JavaScript and ActionScript. We
point out that we did not consider the arguments of the system calls (especially with respect
to JavaScript), as it would have considerably increased the complexity of our analysis. These
feature sets are then reduced through feature selection, to obtain a more compact feature set
and facilitate the training process of our classifiers, by tackling the so-called curse of dimension-
ality [4]. In particular, we exploit a feature selection criterion based on information gain, and

2In particular, for JavaScript code in PDF files, we consider the Javascript APIs for Adobe.
3http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
4http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/swf/pdf/swf-file-format-spec.pdf
5http://www.adobe.com/devnet/acrobat/javascript.html
6http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
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select the first 100 features with the highest occurrence score S = |p(xi|M) − p(xi|B)|, being
xi the i-th feature value, and M and B the sets of malicious and benign samples [4].

The selected features include functions, attributes and classes that are often used by
malware to perform their actions. For example, selected features among Flash files are
flash.events.Event, flash.utils.ByteArray, Math and other classes that are often used
to manipulate memory to perform attacks. With respect to JavaScript, selected features
include, among others, app.ViewerVersion, app.[’eval’], app.PlugIns. Such features are
often used to obfuscate code.

3.3 Classification

Different machine-learning algorithms can be exploited for our classification task. Although
previous work has shown that non-linear classifiers such as Random Forest or SVMs with the
RBF kernel typically perform better at this task than linear classifiers [10], this is not enough
for our purposes. The reason is that our application is intrinsically adversarial, i.e., input
data can be manipulated by a skilled attacker to evade detection during system operation. In
particular, it may be possible for an attacker to modify a malicious file by adding features (i.e.,
API calls) typically used in benign files, with the goal of confusing the classifier by making the
feature vector of the resulting malicious file more similar to those exhibited by benign files.
Note also that, While it may be easy to add API calls to malicious files, removing them might
compromise the intrusive functionality of the malware sample. We thus restrict ourselves to the
case of feature increments in this work. This attack strategy is also known as mimicry, and it
has been shown to be very effective against systems that are not designed to be robust against
targeted evasion attempts [3].

To tackle this issue, we exploit an approach similar to that advocated in [2], named one-
and-a-half-class (1.5C) classification. The underlying idea is to combine a two-class classifier
with a one-class classifier to detect potential, anomalous samples during testing. In fact, most
of the evasion samples constructed to evade detection by a two-class classifier can be considered
anomalous with respect to the training (benign) data, and can be thus detected using this
simple strategy. In particular, we build our 1.5C Multiple Classifier System (1.5C-MCS) using
three distinct classifiers: (i) a Random Forest classifier trained on both benign and malicious
data; (ii) a one-class SVM RBF trained only on benign data; and (iii) another one-class SVM
RBF trained on the outputs of the aforementioned classifiers, using only benign data. The latter
SVM will basically output an aggregated score to be thresholded to make the final decision.

4 Experimental Results

In this section, we report the experimental results that we attained by applying the methodology
described in Sect. 3 on PDF and SWF files. We divided our experimental protocol into two parts:
(i) a standard evaluation, in which we assessed the performance of our method on two datasets
respectively including PDF and SWF files; (ii) an adversarial evaluation, in which we assessed
the performance of our method against the mimicry attacks described in Section 3.3. We start
by first describing how we pre-processed PDF and SWF files, and the datasets employed in our
experiments. Then, we describe the results attained for each evaluation protocol.
Data Pre-processing. Data pre-processing was performed with two tools, depending on the
file type. We used PhoneyPDF7 to dynamically analyze PDF files and JPEXS8 for SWF files.

7https://github.com/kbandla/phoneypdf
8https://www.free-decompiler.com/flash/
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Both tools are open source and publicly available.
Datasets. We used two datasets in our experiments, respectively containing PDF and SWF
files. For the PDF data, we collected 17826 PDF files, 12592 of which are malicious and the
remaining 5234 are benign. These samples were collected until 2016 by using the VirsuTotal9,
Malware don’t need coffee10 and Contagio11 services. It is worth noting that all samples
in our dataset embed JavaScript code. Since benign files do not typically embed JavaScript

code, it is reasonable to observe that their number is lower in our dataset (which in turn will
provide a pessimistic evaluation of our false positive rates).

For the SWF data, we collected 6776 SWF files, 4425 of which are benign and the remaining
2351 are malicious. Differently from the previous case, there are more benign files than malicious
ones, as Flash-based attacks have only considerably increased since 2015. These files were
collected until 2016 by using the VirusTotal service. It is worth noting that each of these
samples contains ActionScript 3 code. This avoids that a file is simply recognized as benign
because no ActionScript code is present.

4.1 Standard Evaluation

In this experiment, we assessed the performance of our approach for the two aforementioned
datasets. Performances were evaluated in terms of true and false positive rates. The experiments
were performed as follows. For each dataset, we randomly split the data in a training and a
test set, respectively consisting of 70% and 30% of the total number of samples. This process
was repeated five times, to avoid biases due to the quality of a specific training-test split.
We used Random Forest and SVM RBF classifiers, as described in Sect. 3.3. The parameters
of each classifiers were optimized through a 5-fold cross validation performed on the training
set. For each split, we classified the test set and calculated the average Receiver Operating
Characteristic (ROC) curve, which displays the true positive rate (i.e., the fraction of detected
malicious files) against the false positive rate (i.e., the fraction of misclassified benign samples).

In Fig. 1, we report the results on the JavaScript and ActionScript data for Random
Forests trained either using all features or only using the first 100 features selected with the
strategy described in Sect. 3.2), and for the 1.5C-MCS described in Sect. 3.3. Notably, there
are clear differences between the results attained on JavaScript and ActionScript. In par-
ticular, although the results are very good for both languages, classifying ActionScript files
is significantly more difficult than classifying JavaScript files. The reason is that benign and
malicious ActionScript files are more similar, in terms of API calls, than their JavaScript

counterparts.
Selecting features allows one to attain better performances with Random Forests for Action-

Script codes. The 1.5C-MCS exhibits essentially the same performance of the best Random
Forest classifier. This was somehow expected, as the one-class component has been designed
specifically to detect targeted, anomalous attacks that significantly deviate from benign data.

4.2 Adversarial Evaluation

In this experiment, we tested the resilience of the proposed approach against the mimicry
attacks described in Section 3.3. To perform our evaluation, we used the same setup of the
previous experiment: each dataset was split into training and test set multiple times. The
parameters of the classifiers were evaluated by means of a 5-fold cross validation performed

9https://virustotal.com/
10http://malware.dontneedcoffee.com/
11http://contagiodump.blogspot.it/
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Figure 1: ROC curves for PDF files embedding JavaScript (left) and for SWF files embedding
ActionScript (right). These curves report the results for Random Forests (either by using
all the features or the 100 most discriminant ones, selected accordingly to the the strategy in
Section 3.2) and for the 1.5C-MCS described in Section 3.3.

.

on the training set. Finally, the malicious files of the test set were modified according to the
mimicry strategy.

It is worth noting that we are not building the real sample corresponding to the manipulated
malicious file, but we are only simulating the effect of the attack at the feature level, i.e., we
are simulating changes in the feature values of each malicious sample that can be practically
implemented also to build a real malware sample. In particular, we only consider adding API
calls from benign samples. As mentioned in Section 3.3, removing API calls from a malicious
sample may compromise the intrusive functionality of the embedded exploitation code.

Fig. 3 shows how the performance of the considered classifiers decreases as the number
of benign samples added to a malicious file increases. Classifier performance is measured in
terms of detection rate at a given false positive rate for each classifier (for JavaScript, we set
FP = 0.1%, whilst for ActionScript we set FP = 1%). Clearly, the performance of more
secure classifiers should decrease more gracefully as the number of added benign files increases.

The first thing to observe is that the attack is tremendously effective against the
ActionScript dataset. On the JavaScript dataset the effect is lower, but it can be increased
by raising up the amount of added samples (up to 100, see [6]). Random Forests classifiers are
considerably vulnerable to this attack, while the 1.5C-MCS remains significantly secure. The
underlying reason is that, in the latter case, the one-class SVM is able to correctly spot the
anomalous behavior of the attack samples with respect to the rest of the training data used to
learn the classifier. To better explain this phenomenon, in Fig. 2 we report a scatter plot that
depicts benign (blue points), malicious (red points) and attack (green points) data in the space
characterized by the outputs of the two combined classifiers. In addition, the decision function
of the 1.5C-MCS is also shown. Differently to what happens with SVM RBF and stand-alone
Random Forest, the circular shape of the 1.5C-MCS encloses all the benign samples, so that
malicious and attack samples (which are located in a different position compared to standard
malicious samples - see the green points) are considered anomalous. Notably, while the scores
assigned to the attack samples by the Random Forest classifier are closer to those assigned by
the same classifier to the benign data (i.e., they would evade detection by this classifier), the
one-class SVM is able to well-separate them from the rest of the data. This also applies to
the 1.5C-MCS, which is able to correctly assign a high score value to the attack samples, and,
therefore, to successfully detect them.
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Figure 2: The decision function of our 1.5C-MCS (shown in colors) in the bi-dimensional space
spanned by the outputs of the combined classifiers. The decision boundary is highlighted with
a solid black line, while blue and red points respectively represent benign and malicious files.
Malicious files manipulated with the mimicry attack strategy are reported as green points.
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Figure 3: Detection rate of our classifiers against mimicry attacks in which an increasing number
of benign samples is added to each malware sample, for JavaScript and ActionScript files.

5 Discussion and Limitations

The main goal of this paper is showing that information extracted from system API calls,
methods and classes can be useful to discriminate between malicious and benign files. However,
there are some limitations, especially with respect to the ActionScript analysis. As detecting
obfuscated files was not our primary goal for this paper, we chose static analysis for Flash files.
Using dynamic analysis frameworks such as Sulo12 or Lightspark13 would have been more
effective, but overly complex for our purposes (on the contrary, dynamic instrumentation with

12https://github.com/F-Secure/Sulo
13https://github.com/lightspark/lightspark
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PhoneyPDF is rather lightweight). Moreover, JPEXS also employs some static deobfuscation
routines that might help detecting obfuscated files. We plan to test our approach against
obfuscated Flash files in future work.

The attained results show how the choice of the features and of a proper learning algorithm
is crucial to develop systems that are both accurate and robust against evasion attempts.
However, in this paper we only evaluate simple mimicry attacks that do not exploit any specific
knowledge of the targeted learning algorithm. Conversely, more complex attacks exploit this
knowledge in order to increase the probability of evasion while performing a minimal number
of modifications to the attack samples [3]. Differently from the attack strategy proposed in
this paper, the gradient-descent strategy proposed in [3] only modifies the most discriminant
features for the classifier to induce a higher performance decrease with a smaller amount of
feature manipulations. Obviously, this requires the attacker to know in detail the features
and the type of classifier used. In more practical scenarios, the knowledge of the attacker is
more limited, and it may thus be necessary to perform more changes to the attack samples to
successfully evade the system.

It is also worth noting that, as the API are publicly available and documented, they might
be used in both benign and malicious files. This means that if an attacker was able to craft a
malicious sample that looks exactly the same to a benign one (in terms of features), the system
would be evaded whatsoever. However, performing such operation might be extremely hard.
For instance, it may be necessary to replace some APIs with semantically equivalent ones, which
may however influence other feature values.

Finally, we plan to extend the output provided by our approach by pointing out which API
contributed the most to the classifier decision. At the moment, the user can only see whether
or not the file is malicious.

6 Related Work

We discuss here some relevant previous work related to the detection of malicious JavaScript
and ActionScript files.
JavaScript Detection. Cova et al. [7] devised a dynamic analysis system that executes
JavaScript code from HTML and PDF files, in order to detect malicious activities. To this
end, they extracted information related to code obfuscation and analyzed API calls in terms
of their sequences and arguments. The emulation of the JavaScript content was performed
through JSand,14 and the extracted information was subsequently used to learn a Bayesian
classifier.

The approach proposed in this paper is substantially different. We only observe API calls re-
lated to the Adobe JavaScript API (our approach is tailored to PDF detection only). Second,
we extract features related to the occurrence of API calls, without looking for other obfuscation-
related characteristics or for the arguments of the calls. Another static and dynamic approach
to detect JavaScript code inside PDF files was introduced by Tzermias et al. with MDScan [11].
In this case, the scripting code was instrumented with SpiderMonkey15 to detect shellcodes,
which are further analyzed and executed by Libemu16. Laskov et al. developed PJScan, a static
system to analyze lexical information extracted from JavaScript code to detect malicious PDF
files. Lux0R is the system that containts the strategy strategy that has been extended in this
work [6]. It focused on JavaScript detection in PDF files by analyzing discriminant APIs.

14http://demo-jsand.websand.eu/
15https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
16https://github.com/buffer/libemu
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ActionScript Detection. There are two main works for the detection of malicious
ActionScript inside SWF files. The first one (FlashDetect), by Overveldt et al. [12], resorted
to dynamic emulation of the SWF files to extract features. This was done in order to extract
suspicious function calls that could be useful for classification. Wressnegger et al. developed
Gordon, a system that statically analyzes the control flow graph of the ActionScript code and
uses n-grams of instructions and parameters as features for classification. Nevertheless, neither
FlashDetect nor Gordon have been publicly released.

7 Conclusions

In this paper, we have introduced a methodology to detect malicious JavaScript and
ActionScript codes contained in PDF and SWF files. This methodology leverages similar-
ities between the two scripting languages and extracts information from system API methods,
attributes and classes. Moreover, the system has been designed from the ground up to be
secure, according to the so-called security-by-design principle, by explicitly considering the po-
tential presence of targeted, evasive attacks during system operation. Our empirical results
on PDF and SWF files embedding JavaScript and ActionScript codes have shown that our
methodology allows one to detect a very high percentage of malicious files, while only misclas-
sifying a small fraction of benign samples. We have also shown that, by explicitly considering
carefully-crafted attacks against our system, it is possible to design a more secure learning-
based detector. In future work, we plan to test our approach against obfuscated samples and
more sophisticated evasive attacks.
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