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Abstract

Nowadays machine-learning algorithms are increasingly being applied in security-related applica-

tions like spam and malware detection, aiming to detect never-before-seen attacks and novel threats.

However, such techniques may expose specific vulnerabilities that may be exploited by carefully-crafted

attacks. Support Vector Machines (SVMs) are a well-known and widely-used learning algorithm. They

make their decisions based on a subset of the training samples, known as support vectors. We first

show that this behaviour poses risks to system security, if the labels of a subset of the training samples

can be manipulated by an intelligent and adaptive attacker. We then propose a countermeasure that

can be applied to mitigate this issue, based on infinity-norm regularization. The underlying rationale is

to increase the number of support vectors and balance more equally their contribution to the decision

function, to decrease the impact of the contaminating samples during training. Finally, we empirically

show that the proposed defence strategy, referred to as Infinity-norm SVM, can significantly improve

classifier security under malicious label contamination in a real-world classification task involving mal-

ware detection.

1 Introduction

Machine learning techniques are increasingly being used in different application fields, including
medicine, economy, and computer security. In security-related applications, like malware detec-
tion or biometric authentication, a system may be targeted by an intelligent attacker who aims
at evading detection of “malicious” samples (e.g., a file containing malware, or the attempt by
an unauthorized user to access a resource protected by a biometric system), exploiting knowl-
edge of the underlying learning algorithm. This issue is addressed by the novel research field of
adversarial machine learning, whose aim is to investigate the vulnerabilities of machine learning
algorithms, and to improve their security in adversarial environments (see, e.g., [1, 11, 4, 3, 2]).

Attacks against machine learning algorithms can be categorized into evasion and poison-
ing. Evasion attacks consist of modifying malicious samples at test time to avoid detection.
Poisoning attacks are performed at training time, instead, when the classifier learns from a set
of labelled samples how to perform the desired classification task (i.e., discriminating between
malicious and legitimate samples): they consist in creating well-crafted samples and injecting
them into the training data to subvert the system function. Depending on the attacker’s capa-
bility, poisoning attacks can be carried out by manipulating either a sample (thus changing its
feature values) or its label. In the latter case the attack is named adversarial label flip [12, 20].
The capability of changing the labels of the training samples is potentially very harmful, as
they directly impact classifier learning [9].

Label-flip attacks are of practical relevance, as the attacker may have access to the training
labels in a wide range of applications in which systems ask users to provide a feedback on the
classified samples for improving their recognition capability. For instance, server-side spam
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filters allow users to correct the label (spam or legitimate) automatically assigned to incom-
ing emails, if wrong; an attacker may exploit this feature by creating an email account on a
provider protected by the targeted spam filter, and then purposely mislabeling incoming emails
that will be subsequently used to retrain the classifier, to gradually poison classifier training.
Another instance is PDFRate,1 which is an online tool for detecting malware embedded into
PDF files [16]: an attacker may provide wrong feedback to the system, which amounts to ma-
nipulating the labels of (future) training samples. Since collecting labels from domain experts
is usually costly, crowdsourcing systems like Amazon Mechanical Turk are being used to assign
this task to non-expert individuals: this scenario may be exploited by attackers to provide
wrong labels. “Malicious crowdsourcing” or “crowdturfing” services are growing in popular-
ity: Internet users are payed to perform profitable malicious tasks, like spam dissemination,
including polluting the data used as training samples by machine learning systems [19].

The above examples show that understanding label-flip attacks more thoroughly and finding
effective countermeasures is a very relevant research topic. In this paper we focus on label-flip
attacks against Support Vector Machines (SVM), which are a state-of-the-art, widely used
classifier. Previous work, summarized in Sect. 2.2, has shown that SVM classification accuracy
decreases in the presence of label noise (even non-adversarial), and that some SVM variants
are more robust under random label flips. To our knowledge the only specific countermeasure
against label-flip attacks has been proposed in our previous work [5]: it is a heuristic approach
that enforces the classifier to evenly weigh all the training samples, to increase the stability
of the decision function with respect to changes of the training labels. In this work we give
a theoretical support to the above approach, and propose a general, more theoretically-sound
countermeasure (Sect. 3) rooted in recent findings about the relationship between regularized
and robust optimization (Sect. 2.3), which also reduces the complexity of SVM training. In
Sect. 4 we validate our approach on artificial and real-world data sets In Sect. 5 we review
related work, and in Sect. 6 we discuss the main contribution of this work and some interesting
research directions.

2 Background

We first describe two label flip strategies we shall consider in our experiments. Then we review
state-of-the-art strategies that may be used to improve SVM security under label flip attacks.
We finally overview works highlighting a link between regularization and robustness, that will
provide a formal support to the approach we propose in Sect. 3.

In the following we denote by {(xi, yi)}ni=1 the training set, where xi ∈ Rd is the feature
vector of the i-th sample and yi ∈ {−1,+1} its label (respectively, for legitimate and malicious
samples). The decision function of a trained SVM classifier (using a nonlinear kernel) is g(x) =∑n

i=1 αiyik(x,xi) + b, where k(·, ·) is the kernel function, and {αi}ni=1 and b are coefficients set
by the learning algorithm.

2.1 Label-Flip Attacks

We consider two different kinds of label flip attacks. In both cases we set a constraint to the
fraction of labels the adversary can change, to reflects a likely limitation in real-world scenarios.

Random label flip is a baseline attack, which consists of flipping the labels of a randomly-
chosen fraction of training samples, without exploiting any knowledge of the targeted classifier.

1Available at: http://pdfrate.com
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Adversarial Label-Flip Attack (ALFA-Tilt) is a different attack proposed in [5, 21],
and assumes a skilled attacker whose aim is to maximize the classifier error on untainted (test-
ing) data. Since finding the subset of samples whose label flipping maximizes the testing error
is a non-trivial problem, the authors devised a heuristic approach that maximizes a surrogate
measure of the testing error, namely, the angle between the decision hyperplane found by the
untainted classifier and the one under attack.

Different attack scenarios can be simulated, depending on the attacker’s level of knowledge of
the system: either perfect knowledge, if the attacker exactly knows the coefficients of the SVM
decision function, or limited knowledge, if she is only capable of creating a data set sampled
from the same distribution of the one used for training the original classifier, and then training
a surrogate classifier for estimating the original decision function. In this work we consider the
worst case of perfect knowledge, although in real scenarios the attacker is likely to have only a
limited knowledge of the system.

2.2 SVM Variants

A possible countermeasure to label-flip attacks is to enforce the decision function of an SVM
to weigh more uniformly the contribution of each training sample to the decision hyperplane.
The reason is that this would decrease the impact of each single point during learning of the
decision function. Two SVM variants can be used to this aim.

Least-Squares SVM (LS-SVM). This SVM variant [18] uses a quadratic loss function in-
stead of the hinge loss. This makes its solution non-sparse, i.e., all the training samples are
assigned a non-null α value. In particular, the LS-SVM (primal) learning problem is:

min
w,b,e

1
2w
>w + γ 1

2

∑n
i=1 e

2
i s.t. yi = w>φ(xi) + b+ ei ∀i , (1)

where φ is the kernel-induced feature mapping, and w the set of primal weights. Recall that,
as in SVM learning, w =

∑n
i=1 αiyiφ(xi) and k(xi,xj) = φ(x)>φ(xj), which enables learning

of nonlinear decision functions in input space by solving the corresponding dual optimization
problem (i.e., optimizing directly the dual variables α instead of w).

Label Noise Robust SVM (LN-robust SVM). This is another SVM variant proposed in [5]
against label flip attacks. It assumes that the label of each training sample can be independently
flipped with the same probability µ. The probability of label flips is then encoded into the kernel
matrix, which is involved in the dual SVM learning problem. The expected value of the modified
kernel matrix (which is still positive-semidefinite) is then used for solving the standard SVM
learning problem. It turns out that, by increasing the variance S = µ(1−µ), the variance of the
coefficients αi decreases; accordingly, each training sample is more likely to become a support
vector, providing a more balanced contribution to the decision function. This approach only
requires a simple correction to the kernel matrix with respect to standard SVM. It is however a
heuristic solution, which also requires one to be able to reliably estimate the fraction of potential
label flips in the training data.

2.3 Robustness and Regularization

Recently an interesting relationship between regularized and robust optimization problems has
been pointed out [22]. Under mild assumptions, the two kind of problems are equivalent. In
particular, the robust optimization problem considered in [22] is:

min
w,b

max
u1,..,un∈U

∑n
i=1

(
1− yi(w>(xi − ui) + b)

)
+
, (2)
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where (z)+ = z (0), if z > 0 (≤ 0), u1, ...,un ∈ U is a set of bounded perturbations of the
training data, and U is the so-called uncertainty set. This set is defined as:

U ∆
= {(u1, . . . ,un)|

∑n
i=1 ‖ui‖∗ ≤ c} , (3)

being ‖ · ‖∗ the dual norm of ‖ · ‖. Typical examples of uncertainty sets include the `1 and
`2 balls [22, 17]. The non-robust, regularized optimization problem is formulated as (cf. Th. 3
in [22]):

minw,b c‖w‖+
∑n

i=1

(
1− yi(w>xi + b)

)
+
. (4)

This means that, if the `1 norm is chosen as the dual norm characterizing the uncertainty set
U , then the optimal regularizer would be `∞.2 If the attacker can change only few labels of
training samples, label flip attacks can be seen as a sparse `1 noise affecting the training labels.
The optimal countermeasure is therefore to use a `∞ regularizer to enforce the classifier to give
the same importance to all the training samples.

3 Infinity-norm Support Vector Machines

In [8, 15], based on the findings of Xu et al. [22] (Sect. 2.3), we have shown that infinity-norm
(`∞) regularization is very effective against sparse evasion attacks, i.e., attacks in which the
attacker modifies only a small subset of the feature values. The reason is that this regularizer
bounds the maximum and the minimum values of the feature weights, i.e., enforcing the SVM
to learn more-evenly distributed weights. Under this setting, it is not difficult to see that the
attacker is required to manipulate more features to evade detection.

Label-flip attacks can be seen as sparse attacks in terms of the influenced training points,
since only the labels of few training samples can be manipulated by the attacker. Our idea is
thus to exploit `∞ regularization to enforce more evenly-distributed α weights on the training
data, similarly to the intuition in [5] to learn more secure SVMs against adversarial label flips.
In this work, we obtain this effect by training a (linear) Infinity-norm SVM directly in the kernel
space, i.e., using the kernel matrix as the input training data, to learn a discriminant function
of the form g(x) =

∑m
i=1 αik(x,xi) + b, where k(·, ·) is the kernel function, and {xi}mi=1 and

{αi}mi=1 are respectively the training samples and their α weights. Under this setting, the α
values and the bias b are obtained by solving the following linear programming problem:

minα,b ‖α‖∞ + C
∑m

i=1 (1− yig(xi))+ . (5)

Notably, this approach can be used also with kernels that are not necessarily positive semi-
definite (i.e., indefinite kernels).

4 Experimental Analysis

In this section, we first show on a two-dimensional example how the adversarial label-flip attack
(ALFA-tilt) affects the decision function of the different SVM classifiers described in the previous
sections. Then, to mitigate the fact that the impact of label-flip attacks is strongly data-
dependent, as pointed out in [9], we validate our approach on a very large number of real-world
datasets, including a case study on PDF malware detection.

2The `1 norm is the dual norm of `∞, and vice versa.
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Figure 1: Decision boundaries for the SVM, the LN-Robust SVM (with S=0.1), the LS-SVM,
and the Infinity-norm SVM, respectively trained on untainted (first row) and tainted (third
row) data. Adversarial label flips are highlight with green circles. For each SVM, we also
report the α values assigned to the training samples against the corresponding g(x) values.

Two-dimensional Example. We consider here a Gaussian dataset with mean [y, 0] (for class
y) and diagonal covariance matrix equal to diag([0.5, 0.5]). We have generated 60 samples for
training and 40 for testing, and used the adversarial label-flip attack to flip 18 training labels.
We have set C = 1 for SVM and LN-SVM, and C = 0.01 for LS-SVM and Infinity-Norm SVM.
Results are reported in Fig. 1, where one can appreciate how the Infinity-norm SVM retains
a higher accuracy under attack, due to the fact that it spreads in a more uniform manner the
(absolute) weight values α over the training samples. Note indeed that the decision hyperplane
obtained by Infinity-norm SVM under attack, and the corresponding test error, are less affected
by the attack.

Real-world data. Here we report the results for 6 datasets downloaded from LibSVM and
UCI repositories.3 Firstly, we have normalized data in [−1, 1] using min-max normalization.
Then we have randomly split the data in 5 distinct training and test set pairs, consisting of 60%

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Figure 2: Random label flip attack against SVM, LN-Robust SVM (with S=0.05 e S=0.5),
Least-Square SVM, Infinity-norm SVM for different C values on UCI dataset.
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Figure 3: Adversarial label tilt attack against SVM, LN-Robust SVM (with S=0.05 e S=0.5),
Least-Square SVM, Infinity-norm SVM for different C values on UCI dataset.
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and 40% of the data. The averaged results, for different C values under random and ALFA-tilt
attacks are resepctively reported in Fig. 2 and Fig. 3. Notably, the LS-SVM and Infinity-norm
SVM attain the best performance for low C values, as the effect of regularization is stronger.
These classifiers are nevertheless the most secure under both the random and the ALFA-tilt
attack. The performance with the best C for each classifier are dataset-dependent, however
Infinity-norm SVM is clearly able to achieve a higher level of security on all the different datasets
considered in this evaluation.

PDF Malware Detection. Nowadays PDF is the most used document type due to the
fact that presents documents in a independent manner from the operative systems. A PDF
document can hosts not only text and images but also JavaScript and Flash scripts. This makes
it one of the most exploited vector for convey malware (i.e., malicious software). We have
used a dataset called Lux0r [7]. This consists of PDF documents that embeds JavaScript code,
collected from different security blogs and antivirus engine. The dataset contains around 12, 000
malicious PDFs and about 5, 000 benign samples. Every PDF is represented by 736 features,
each representing the number of occurrences of a specific Javascript function (API call) into the
PDF. Each API call corresponds to an action performed by one of the objects that belongs to the
PDF. For this experiment, we have used the same normalization and splitting strategy used in
our previous experiment on other real-world datasets. The averaged results of this experiment
for random and ALFA-tilt attacks are reported in Fig. 4. As for the experiments on the other
datasets, we can see that Infinity-norm SVM is able to obtain always good performance and
that it has the highest accuracy under the ALFA-tilt attack.
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Figure 4: Random (first row) and label tilt attack (second row) against SVM, LN-Robust SVM
(with S=0.05 e S=0.5), Least-Square SVM, Infinity-norm SVM for different C values on PDF
malware detection dataset.

5 Related Work

Adversarial label flip is a particular case of a more general phenomenon known in the machine-
learning literature as label noise, as properly explained into a recent survey on this topic by
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Frénay et al. [9]. As mentioned in Sect. 1, some of the recently-proposed algorithms aim to
improve SVM security under random label noise. In [10], Goernitz et al. propose a one-class
SVM that reduces the influence of outlying data observations during learning. In [14], the
authors propose a heuristic approach, named micro-bagging, that equalizes the contribution
of each training sample, bagging one SVM for each different pair of training samples (each
belonging to a different class). Natarjan et al. [13] propose a classifier that use a weighted
surrogate loss function that represents an upper bound of SVM risk on real data. Their classifier
achieves high accuracy also in the presence of a large amount of noise.

Robustness of classifiers against adversarial (worst-case) label flips has been investigated
in [12, 6, 5, 20, 21], also proposing some countermeasures to increase classifier security against
such attacks.

6 Conclusions and Future Work

Within this work we have investigated the security of different SVMs under adversarial label
contamination. We have shown that the sparsity of the SVM α values may be considered
a threat for its security in the presence of training data contamination. We have proposed a
countermeasure that consists of using an infinity-norm regularizer in kernel space. This proposal
is based on more theoretically-sound explanations (in terms of robustness and regularization)
than those provided in previous work (mainly based on heuristics and intuition) [5, 21]. We have
validated our approach on a large number of real-world datasets, confirming the soundness of the
proposed approach. We remark that we have supposed that the attacker has perfect knowledge
of the system. Although, in practice, it may be difficult for an attacker to have full knowledge
of the targeted system, this is anyway an interesting analysis as it provides an estimate of
the maximum performance degradation that the system may incur under attack. Moreover,
only relying on security through obscurity (i.e., believing that the attacker is not going to
discover some system implementation details) is normally not advocated as a best security
practice. Besides considering also limited-knowledge attack scenarios, another interesting future
extension of this work may be to investigate the trade-off between robustness to poisoning
attacks at training time and evasion attacks at test time, depending on the kind of regularization
(and, thus, on the sparsity of the solution). In this respect, it may be interesting to consider
novel regularizers that allow one to trade sparsity for classifier security, to tackle computational
complexity issues without compromising system security, as also discussed in our recent work
for the case of evasion attacks [8].
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