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ABSTRACT
�ough systems with process creation give rise to unboundedly

many processes, their names are systematically generated and typi-

cally form a regular set. When we consider modal logics to specify

properties of such systems, it is natural to consider quanti�cation

over such regular sets. �ese are in the realm of term modal logics,
which are usually undecidable. We consider themonodic variant, in
which there is only one free variable in the scope of any modality,

and present a model checking algorithm for this logic.
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1 INTRODUCTION
Modal logic, and its variants including temporal logics play an

important role in system veri�cation[1, 3, 8]. van Benthem et al.

[12] show the close correspondence between processes, transition

systems, veri�cation and modal logic. �e modalities are generally

indexed by agents in specifying many of these systems. In most of

the logics, the number of agents is assumed to be �xed and thus the

number of modalities is constant. But we encounter many systems

where the number of agents keeps changing dynamically. For in-

stance, if the agents are considered as clients requesting a service,

then at any point of time the number of agents is unbounded even

though it is �nite and more importantly it keeps changing dynam-

ically. Another example would be an operating system running

many concurrent threads. �e logic studied in this paper is set in

this context.

We illustrate this using an example.

Example 1.1. Consider an operating system which can execute

many processes at a time. A con�guration of the system is given

by the states of its active processes. Any active process can change

the system state by making a move. Let us assume that a move

by a process can create one or more new processes (threads), thus

making the active set dynamic and potentially unbounded. In this

se�ing, we can consider assertions such as: there is at least one
process active in the present con�guration or for all possible next
con�gurations, the processes that are currently active will remain
active in the next . . . �ese cannot be expressed in modal logics

with �xedly many modalities.

One solution is to consider a modal logic with in�nitely many

modalities. For instance, ^nα may be read as “process n makes a
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transition to a state satisfying α”, where n is any natural number.

However, a simple exercise shows that a formula in the logic can

force only boundedly many agents and hence models are systems

with �xedly many agents. Also, it is not possible to state properties

like “there exists a process such that · · · ” since it needs an in�nite

disjunction. Sowe need another logical device to force unboundedly

many agents.

A natural such logical mechanism is quantification. It is possible
to express all the properties of the kind mentioned above using �rst

order modal logic[4]. But what we want are not arbitrary predicates

and quanti�cation over domain elements but quanti�cation over

agent names: that is, over modality indices. In general we want

a term structure over modality indices. Logics with modalities

indexed by terms were studied by Grove and Halpern [7], Passy

and Tinchev [11], Gargov and Goranko [6], Blackburn [2], and by

some others.

Perhaps what �ts us best are the term − modal loдics (TML)
introduced by Fi�ing, �almann and Voronkov [5] in which modal-

ities are indexed by terms, built on a generic �rst order logic. In

term−modal logic, we have quanti�cation over agents, and can

identify agents based on properties. For instance, we can assert:

“all agents who are waiting are also sending messages” as:

∀x �x (waitinд) ⇒ �x (sent messaдe ).
Note that TML is di�erent from standard �rst order modal logic,

since in TML quanti�ed variables are allowed as indices for modal-

ities which is not the case in �rst order modal logics. Term− modal

logic o�ers an intuitive way to talk about unboundedly or countably

many agents and gives us a device to quantify over them. Fi�ing

et .al in [5] discuss the importance of this logic and o�er a com-

plete proof theory for reasoning in the logic. However, with the

full power of �rst order logic inside, this logic is undecidable. In

fact, TML is undecidable even if we restrict ourselves to have only

propositions at the atomic level ([10]). In [9], Barteld Kooi stud-

ies the expressivity of dynamic term modal logic in the epistemic

se�ing.

Since the logic is undecidable, we focus on themonodic fragment:

formulas in which only one free variable occurs in the scope of any

modality. In [10], we have shown that this fragment is decidable;

here we study the model checking problem for the logic. Note that

for model checking we need a �nite speci�cation of systems with

potentially in�nitely many processes, and we do this by considering

systems with regular sets of active processes.

2 SYNTAX AND SEMANTICS
We now de�nem − PTML, the monodic propositional fragment of

TML.
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De�nition 2.1. Given a countable set of propositions P , and a

countable set of variables Var , the syntax is de�ned as follows:

ϕ := p ∈ P | ¬ϕ | ϕ ∧ ϕ | ^xα | ∃xα ,x ∈ Var

where FV (α ) ⊆ {x }.

�e notion of free variable of a formula (referred to in the syntax)

is standard. FV (p) = ∅, for p ∈ P . FV (¬ϕ) = FV (ϕ). FV (ϕ ∧ψ ) =
FV (ϕ) ∪ FV (ψ ). FV (^xϕ) = FV (ϕ) ∪ {x }. FV (∃xϕ) = FV (ϕ) \ {x }.
We call a formula ϕ a sentence if FV (ϕ) = ∅.

Similarly the modal depth of ϕ, denoted md (ϕ) is de�ned in-

ductively: md (p) = 0, for p ∈ P . md (¬ϕ) = md (ϕ). md (ϕ ∧ψ ) =
max {md (ϕ),md (ψ )}.md (^xϕ) =md (ϕ) + 1.md (∃xϕ) =md (ϕ).

As one would expect, Kripke models now need to be enriched

with interpretations for variables over agent names. In addition,

agent dynamics is captured by a function (γ below) that speci�es,

at any worldw , the set of agents alive (or meaningful) atw . �en

coherence demands that whenever (u,d,v ) ∈ R, we have that d ∈
γ (u).

De�nition 2.2. A model is a tuple M = (W ,D,R,γ , I ,V ) where
W is a non-empty set of worlds, D is a non-empty set of names,

R ⊆W ×D×W , γ :W → 2
D
, I : Var → D,V :W → 2

P
. Moreover,

for allu ∈W and d ∈ D, if there existsv ∈W such that (u,d,v ) ∈ R,
then d ∈ γ (u).

In [5], a monotonicity condition is imposed on the accessibility

relation: whenever (u,d,v ) ∈ R, we also have that γ (u) ⊆ γ (v ).
�is is a reasonable assumption, but since we do not need it for our

technical development, we do not assume monotonicity.

We will o�en display the model as M = (F , I ) where F =
(W ,D,R,γ ,V ) is referred to as a frame. Sometimes we denote

(u,d,v ) by u
d
−→ v .

Given a formula ϕ and a model M = (W ,D,R,γ , I ,V ), for any
w ∈W we de�neM ,w |= ϕ (ϕ is true atw) inductively as follows:

• M ,w |= p if p ∈ V (w ).
• M ,w |= ¬ϕ ifM ,w 6 |= ϕ.
• M ,w |= ϕ1 ∧ ϕ2 ifM ,w |= ϕ1 andM ,w |= ϕ2.
• M ,w |= ^xϕ if there is someu ∈W such that (w , I (x ),u) ∈

R andM ,u |= ϕ.
• M ,w |= ∃x ϕ if there is some d ∈ γ (w ) such thatMx→d ,w
|= ϕ whereMx→d is de�ned by (W ,D,R,γ , I ′,V ) such that

for any y , x , I ′(y) = I (y) and I ′(x ) = d .

�e boolean connectives, �xϕ and ∀xϕ are de�ned in the stan-

dard way. A formula ϕ is satis�able if there is some model and

some worldw such that ϕ is true atw .

Example revisited. We show some properties in the example

system 1.1 discussed earlier, using formulas of the proposed logic.

• �ere is at least one process active which can potentially

change the system state:

∃x ^x>.
• For all possible next con�gurations, property p holds:

∀x (�xp).
• �ere are at least two processes active:

∃x�xp ∧ ∃y ^y¬p
1
.

1x and y cannot have same witness hence at least two processes are required.

• �ere is a process such that it can change to a con�guration

in which none of the processes can make a move (system

halts):

∃x^x∀y�y⊥.

Note that all the properties discussed could be expressed in the

monodic fragment of the logic.

3 TRANSITION SYSTEM MODELS
Systems with unboundedly many processes to be model checked

are presented as transition systems with �nitely many states and

edges between the states labelled by regular expressions. �e idea

is that there is a �nite alphabet set and every process name is some

string over this alphabet. If a string s is in the language of some

regular expression r and there is an r edge from q to q′ then it

means that process s can change the system state from q to q′.

De�nition 3.1. Let Σ be a �nite alphabet. Let Reд(Σ) be the set of
all regular expressions over Σ. For all r ∈ Reд(Σ) let Lr denote the
regular language generated by the expression r . If s,t ∈ Σ∗ then
s · t denotes the concatenation of strings s and t , o�en wri�en st .

A regular agent transition system is given by T = (Q ,S ,δ ,q0)
where

• Q is a �nite set of states,

• S ⊆f in Reд(Σ) is a �nite set of regular expressions,
• δ ⊆ (Q × S ×Q ) and
• q0 ∈ Q .

Note that we could equivalently de�ne δ ⊆f in (Q ×Reд(Σ) ×Q )

and extracted S from δ . Note that when we have u1
r1
−−→ u2

r2
−−→ u3 ∈

R1 with a ∈ Lr1 and ab ∈ Lr2 we could think of b as a child process

of parent process a. �e language of regular expressions is rich

enough to consider tree structures of concurrent and sequential

threads with forking, as well as process threads created within

loops, perhaps while waiting for an external event to occur.

De�nition 3.2. Given a �nite set of regular expressions S over Σ,
for any two strings s,t ∈ Σ∗, de�ne s ≡ t if for all r ∈ S , s ∈ Lr i�
t ∈ Lr .

Note that ≡ induces a partition of Σ∗. For all strings s ∈ Σ∗,
de�ne ~s� = {t | s ≡ t }. We denote this by ≡T .

3.1 Input speci�cation and Model
�e input for model checking is speci�ed by the tuple (T ,ϕ, I ,U ,s0)
where T is a regular agent transition system as de�ned above, ϕ is

a monodic formula I : FV (ϕ) → Σ∗,U : Q → 2
Pϕ

and s0 ∈ Σ
∗
. �is

induces the following model on which the model checking is done.

De�nition 3.3. Given an input (T ,ϕ, I ,V ,s0), de�ne the induced
frame FT = (W ,D,R,γ ,V ′) as follows:

• D = Σ∗

• W ⊆ (Q ×Σ∗) and R ⊆ (W ×D ×W ) are the least sets such
that the following conditions hold:

– (q0,s0) ∈W .

– if (q,s ) ∈W and (q,r ,q′) ∈ δ then (q′,st ) ∈ Q and(
(q,s ), t , (q′,st )

)
∈ R where st ∈ Lr .

• for all (q,s ) ∈W , γ ((q,s )) = {s} ∪ {t ∈ Σ∗ | for some q′ we

have

(
(q,s ),t , (q′,st )

)
∈ R}.
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• for all (q,s ) ∈W , V ((q,s ) = U (q).

�e clause de�ning γ needs some explanation. It speci�es the

set of active agents at a node to be exactly those that have some

transitions; these agents surely need to be active but do we not

need more ? For instance, what about inheriting already active

agents at parent nodes ? �e answer is that for monodic formulas,

there is only one variable free at any node and hence the children

“created” are all forced only by bound variables, and once we have

substituted for the free variables at the root, we do not need any

further inheritance. �us the de�nition here su�ces.

4 MODEL CHECKING PROBLEM
Given an input instance (T ,ϕ, I ,V ,s0), the model checking problem

is to decide whether (FT , I ), (q0,s0) |= ϕ.
Note that it is enough to consider a tree frame which is the unrav-

elling of FT upto depthmd (ϕ) with (q0,s0) as the root. Hence the
model checking problem is on a rooted tree with bounded depth but

can have potentially in�nite branching. Let the induced tree model
beM(T ,ϕ,I ,V ,s0 ) = (W ,D,R,γ , I ,V ), the corresponding rooted tree,

withWi being the set of all nodes at level i , whereW0 = (q0,s0).

4.1 Example revisited
Consider the example 1.1. We now illustrate the model checking

problem for a system of this kind. Let the system processes be

named by strings over Σ = {a,b}. Let the regular agent transition
system T be as given in the �gure 1.

q0 q1

q2

r1

r2
r1

r1

r2

Figure 1: A regular transition system.

Suppose r1 = Σ∗a and r2 = (ab)∗, then the induced model is

given in �gure 2. �e set of processes active at any state is given by

the union of the labels of outgoing edges from the corresponding

state. For instance, γ
(
(q0,ϵ )

)
= {ϵ ,a,ab · · · }.

q0,ϵ

q2,ϵ

q1,ϵ

q1,a

q0,a

q2,a

q2,aa

q2,ab

q1,aa

q0,aa

· · ·

· · ·

· · ·

· · ·

ϵ

ϵ

a

a

a

a

ab

b

a

b

a

ϵ

Figure 2: Induced model of Fig 1 where r1 = Σ∗a and r2 =
(ab)∗.

Now, if the model checking is to be done at the node (q2,ϵ ), then
the corresponding unravelled tree is given in �g 3.

q2,ϵ

q0,aq2,ϵ q0,ba

q0,a q1,aaq2,ϵ · · · q1,baa

· · ·

· · · · · · · · · · · · · · ·

ϵ
a

ba

ϵ
a a

a

Figure 3: Model unravelled into a tree with (q2,ϵ ) as the root.

Now suppose the valuation functions are given by V (q0) = {p},
V (q1) = {p,r } and V (q2) = {r } then ∀x�x (p ∧ r ) is false at (q2,ϵ )
however, ∃x^x^x (p ∧ r ) is true at (q2,ϵ ).

4.2 Bisimulation
Before addressing the model checking problem, we de�ne the no-

tion of bisimulation.

De�nition 4.1. Given two frames F1 = (W1,D1,R1,γ1,V1) and
F2 = (W2,D2, R2,γ2,V2), we de�ne a tuple (G,H ) to be a bisimu-

lation where G is called world bisimulation with G ⊆ W1 ×W2

and H ⊆ D1 × D2 is called name bisimulation such that for any

(u1,u2) ∈ G the following conditions hold:

• V1 (u1) = V2 (u2).
• for any d1 ∈ γ1 (u1) there is some d2 ∈ γ2 (u2) such that

(d1,d2) ∈ H .

• for any d2 ∈ γ2 (u2) there is some d1 ∈ γ1 (u1) such that

(d1,d2) ∈ H .

• for every d1 ∈ D1 and v1 ∈W1 if u1
d1
−−→ v1 ∈ R1 then for

every d2 ∈ D2 if (d1,d2) ∈ H then there exists v2 ∈ W2

such that (v1,v2) ∈ G and u2
d2
−−→ v2.

• for every d2 ∈ D2 and v2 ∈W2 if u2
d2
−−→ v2 ∈ R2 then for

every d1 ∈ W1 if (d1,d2) ∈ H then there exists v1 ∈ W1

such that (v1,v2) ∈ G and u1
d1
−−→ v1.

It is an easy exercise to show that formulas of our logic preserve

bisimulation ([10]).
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De�nition 4.2. For any given input instance (T ,ϕ, I ,V ,s0), con-
sider the induced tree model M(T ,ϕ,I ,V ,s0 ) = (W ,D,R,γ , I ,V ). For

every height i ≤ md (ϕ) and for all (q,s ), (q′,s ′) ∈ Wi de�ne

(q,s ) ui (q
′s ′) if q = q′, and s ≡T s ′ .

u induces a partition ofW . De�ne [(q,s )] = {(q′,s ′) | (q,s ) u
(q′,s )} andW ′ = {[(q,s )] | (q,s ) ∈W }.

De�ne D ′ = {[s] | s ∈ Σ∗}.

For that ui and ≡T induce a bounded partition and the size of

|D ′ | ≤ 2
|S |

and |W ′ | ≤ l2 · 2 |S | · |Q | where Q and S are the �nite

set of states and �nite set of regular expressions speci�ed in T
respectively and l is the length of the formula ϕ.

De�nition 4.3. Given an input instance (T ,ϕ, I ,V ,s0), consider
the induced tree modelM(T ,ϕ,I ,V ,s0 ) = (W ,D,R,γ , I ,V ). De�ne the

�ltered modelM ′
(T ,ϕ,I ,V ,s0 )

= (W ′,D ′,R′,γ ′, I ′,V ′) as follows:

• W ′ and D ′ are as de�ned above.

• R′ = {
(
[(q,s )],[t],[(q′,st )]

)
|
(
(q,s ),t , (q′,st )

)
∈ R}.

• γ ′([(q,s )]) = {[t] | t ∈ γ (q,s )}.
• For any variable x , if I (x ) = t then I ′(x ) = [t].
• V ′([(q,s )] = V ((q,s )).

4.3 Main result
First we observe that given a �nite modelM , there are only �nitely

many agents used as names in the model and hence the standard

labelling algorithm for model checking modal logics can be used [3].

Hence over �nite models, model checking is in P for the logic. �e

di�culty appears for us because models are implicitly in�nite, with

unbounded branching (though of bounded depth). �e theorem

below assures us that we can reduce the problem to the standard

one.

Theorem 4.4. Given an input instance (T ,ϕ, I ,V ,s0), consider the
induced model M = (W ,D,R,γ , I ,V ) and the �ltered model M ′ =
(W ′,D ′,R′,γ ′, I ′,V ′). �en, for all (q,s ) ∈W we have (q,s ) ∈Wi is
bisimilar to [(q,s )] ∈W ′i .

Proof. De�ne G = {
(
(q,s ),[(q,s )]

)
| (q,s ) ∈ W where (q,s )

and [(q,s )] are at same level } and H = {(t ,~t�) | t ∈ Σ∗}. We show

that (G,H ) is a bisimulation by verifying all the required properties.

• �e �rst property is satis�ed since by de�nitionV ′([(q,s])
= V (q,s ).

• Suppose t ∈ γ (q,s ) then by de�nition ~t� ∈ γ ′([q,s]).
• For the third property, �rst we observe the following: sup-

pose t ∈ γ ((q,s )); then there is some r such that t ∈ Lr and
(q,r ,q′) ∈ δ for some q′. Hence for any (q1,s1) u (q,s )
we have t ∈ γ ((q1,s1) because by de�nition q1 = q and

s ≡T s1.
Now suppose that ~t� ∈ γ ′([(q,s )]); we need to prove

that t1 ∈ γ (q,s ) for some t ′ ≡T t . Since ~t� ∈ γ ′([(q,s )])
there is some t2 ∈ ~t� and some (q′,s ′) ∈ [(q,s )] such
that t2 ∈ γ (q

′,s ′) then by the observation above, for all

(q1,s1) ∈ [(q,s )] we have t2 ∈ γ ((q1,s1).

• Suppose

(
(q,s ),t , (q′,st )

)
∈ R then by de�nition(

[(q,s )],[t],[(q′,st )]
)
∈ R′.

• For the last condition, suppose

(
[(q,s )],~t�,[(q′,st )]

)
∈

R′; let (q,s1) ∈ [(q,s )] we need to prove that there is some

t1 ∈ ~t� such that (q′,s1t1) u (q,st ).
By de�nition there is some t2 ∈ ~t�, (q,s2) ∈ [(q,s )]

and (q′,s ′
2
t2) ∈ [(q

′,s2t2)] such that

(
(q,s2),t2, (q

′,s2t2)
)

∈ R. Since s1 ≡ s2 and t1 ≡ t we have s1t ≡ s2t and thus

(q′,s1t ) u (q′,st ). Now, by de�nition
(
(q,s1),t , (q

′,s1t1)
)
∈

R and hence we are done.

Hence (q,s ) inM and [(q,s )] inM ′ at the same level satisfy the

same formulas, and we are done.

�

Theorem 4.5. Given an input instance (T ,ϕ, I ,V ,s0), the cor-
responding model checking problem is in O (l2 · 2 |S | · |Q |) non −
deterministic time where l is the length of ϕ and Q and S are the
states and regular expressions mentioned in T respectively.

Proof. Construct M ′ which is O (l · l · 2 |S | · |Q |) size. �is is

because the two l factors corresponding to height of the tree and

length of the formula and the |S | · |Q | factor is due to the number

of equivalence paritions. Now, since M ′ is �nite, we can check if

M ′,[(q0,s0)] |= ϕ in polynomial time (in the size ofM ′) and since

(q0,s0) inM is bisimilar to [(q0,s0)] ∈ M
′
, the truth of the formula

is preserved. �

5 CONCLUSION
In this paper, we show that model checking for monodic PTML
over transition systems with regular sets of agents is in non −
deterministic EXP-time. We do not have a matching lower bound,

but with the power of quanti�cation, an exponential cost is rather

to be expected. However, it remains to explore the model checking

of full PTML.
Another interesting direction is to use dynamic logic (for regular

sets of names) over modalities rather than quanti�cation.

On the systems side, the most important line to pursue is to have

a processes speci�ed by a term algebra with process creation, and

consider model checking of such processes directly. Onewould then

naturally be led to process termination as well. However, it remains

to be seen how far monodic speci�cations will be useful for verify-

ing properties of such systems. Perhaps more interesting would be

constraints on such systems as well as structure on formulas that

yield be�er algorithmic properties for model checking.
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