
SUBJECTIVE MODEL ANSWER GENERATION TOOL FOR
DIGITAL EVALUATION SYSTEMS

Shubham
Research Scholar

Bhilai Institute of Technology
Durg

+91-9644026902

Shubhamlive1010@gmail.com

Dr. Arpana Rawal
Professor

Bhilai Institute of Technology
Durg

+91-9907180993

arpana.rawal@gmail.com

Dr. Ani Thomas
Professor

Bhilai Institute of Technology
Durg

+91-9893165872

ani.thomas@bitdurg.ac.in

ABSTRACT

Automated subjective answer assessments in modern digital

evaluation environments are promising structural consistency, but

they distort the very nature of expressing complex and context-

rich information put up for evaluation. In modern teaching-

learning environments, with wide variety of biasing observed

while fabricating humane scripted Memoranda-Of-Instructions, it

becomes difficult to evaluate subjective answers with appropriate

justification. Answer evaluation systems have seen an extensive

research by academicians since few decades. On the other hand,

research on subjective model answer generation is still in its

infancy stage. Lately, an algorithm for subjective model answer

generation has become necessary for developing a generic

framework sufficing all types of subjective questions. In this

paper, we described one such algorithm for generating model

answers for all types of descriptive (subjective) questions from a

given text corpus.

CCS Concepts

• CCS → Information systems → Information retrieval →

Retrieval tasks and goals → Question answering.

Keywords

Answer Generation Systems; Algorithm; Content filtering;

Restricted Domain; Vocabulary; Seed; Co-occurring; Domain

specific; Answer retrieval

1. INTRODUCTION
As the modern education system is augmented with digital

environments round the globe, the evaluation systems are also

getting digitized progressively.

With the advent of automated subjective answering evaluation

tools like Electrnic Essay Rater (E-rater) by Burstein, Kukich,

Wolff, Chi and Chodorow (1998), Conceptual Rater (C-rater)

(Valenti et al., 2003), Intelligent Essay Assessor (IEA) (Valenti et

al., 2003), Educational Testing Service (ETS-I) by Whittington

and Hunt (1999), BETSY (Valenti et al., 2003), Schema Extract

Analyze and Report (SEAR) (Christie, 1999), a drastic drift is

seen in preparation of question paper manuscripts from MCQ

questionnaire to a blend of both objective and subjective questions

[1,2]. The Academicians are observed spending more of their time

in setting question papers and evaluating answer, rather than

analyzing the scores and counselling the students. According to

recent statistics it takes one month on an average to evaluate 700

candidate answer script for six subjects in total. Thus, taking

almost two to three months to declare answer for the same lot of

students. Apart from this, even with expert evaluators it is not

possible for anyone to justify which answer is better and why?

Envisioning such a series of hurdles, an attempt is being made to

ease the task of manual answer generation by obtaining machine

generated answers to some question categories.

The rest of this paper is organized as follows: Section 2 addresses

preprocessing issues that have been addressed by other systems

for model answer generation. Section 3 outlines the subjective

answer generation algorithm. Section 4 suggests further

applications and developments possible in near future.

2. PRE-PROCESSING ISSUES
The considerable issues that are needed to be investigated in

depth before building the prototype tool of generating model

answers are enumerated below:

Language Support: One of the design issues in the algorithm

demands the concurrent modification of passive data objects in

already existing dictionary, while checking for the terms in that

domain-specific vocabulary in an attempt to expand the

vocabulary at runtime. Not all languages support the above

mentioned feature. Hence, there arises a need to choose the

appropriate language for tool development. This issue can also be

resolved by using the method as described by D. Clarke et al. in

their article [3].

Natural Language Processing (NLP) Tool selection: The

selected NLP tool must support the following Annotator

properties viz. Tokenization, Sentence Splitting, Lemmatization,

Parts of Speech Tagging, Constituency Parsing, Dependency

Parsing and Co-reference Resolution

Supporting Domain-specific Vocabularies: Using ‘WordNet’

as the source of open-domain vocabulary may seem optimal at

first, but it usually hinders the generation of most accurate

answers, demanding information retrieval for a narrowly specified

subject domain. The Information Retrieval model built for

Question-Answering (QA) systems by IBM’s statistic system

finds greatest hindrance observed in the last step of trimming set

of optimal sentences from the ranked set of passages obtained in

the previous step. The best alternative for reducing such system

errors is to use restricted domains as back-ground knowledge

rather than open-domains [4]. In another exhaustive survey put up

by L. Hirschman and R. Gaizauskas, they emphasized on the

Copyright © 2017 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes. This volume is

published and copyrighted by its editors.

crucial role of passages in extraction of answers to the subjective

questions through IR techniques [5].

3. SUBJECTIVE ANSWER GENERATION

ALGORITHM
The syntax used in pseudo code borrows some of the elements

from java syntax. All the input and output objects are specified in

bold. All the language constructs like conditionals and loops use

italics style. Square brackets denote index for storing and

accessing array elements. Assignment operation is denoted by

Symbolic notation ←. The description of various variables and

procedures used in this pseudo code are as follows:

a. Q is the raw question string to be used for finding

answers

b. K is the List of keyword strings present in question Q

which can be generated using open source NLP tools.

c. C is the List of Corpus sections as string which can be

sections or chapters defined in a standard text book

d. V is the source vocabulary which can be generated for

all the keywords of Corpus C using either wordnet for

enhanced domain vocab or manual human intervention

for restricting domain.

e. Get-Entry-Points : Function for initial filtering based

on count of Question keywords K found in different

sections of Text Corpus.

f. Get-Seed-Sentences : Function for getting seed

sentences present in a particular section based on

keyword K and keyword vocab for given question Q.

g. Get-Section-Sentences : Function to return list of all

sentences present in a text paragraph from a section.

h. Get-Vocab : This procedure returns a list of string for

all terms supplied separately. Each list in returned

composite list is synonym for respective words provided

in input list.

i. Get-Keywords : This procedure returns a list of related

keywords based on NLP dependencies provided by NLP

parsers.

j. Get-Co-Occurring-NP : This procedure returns co-

occurring NP after performing anaphora resolution of

supplied text.

The algorithm for generating answers is as follows:

ALGORITHM Generate-Answer is

 INPUT: Question Q with Keywords K,

 Text Corpus C as List of section fragments,

 Vocab Source V

 OUTPUT: Answer A comprising concatenated fragments

 E ← Get-Entry-Points(Q,C)

 CREATE an empty list Answer_Fragments of type String

 FOR i = 0 to E.size do

 Cur_Segment ← E[i]

 Seed_Sentences ← Get-Seed-Sentences(E[i],K,C)

 Section_Sentences ← Get-Section-Sentences(E[i],C)

 CREATE an empty list SectionWise_Fragments of type

string

 FOR j = 0 to Seed_Sentences.size do

 Seed_Index ← Get-Seed-

Index(Section_Sentences,Seed_Sentences[j])

 CREATE List Seed_Vocab of type String

 CREATE List Co_Occurring_NP of type String

 Seed_Vocab ← Get-Vocab(Get-

Keywords(Seed_Sentences[Seed_Index]),V)

 Left_Marker ← Seed_Index

 Right_Marker ← Seed_Index

 WHILE there exists a String from Seed_Vocab or

Co_Occurring_NP

 in Seed_Sentences[Left_Marker]

 Cur_Co_Occurring_NP ← Get-Co-Occurring-

NP(Seed_Sentences[Left_Marker])

 add Cur_Co_Occurring_NP to Co_Occurring_NP

 Left_Marker ← Left_Marker - 1

 IF Left_Marker = 0

 break from while loop

 END IF

 END WHILE

 WHILE there exists a String from Seed_Vocab or

Co_Occurring_NP

 in Seed_Sentences[Right_Marker]

 Cur_Co_Occurring_NP ← Get-Co-Occurring-

NP(Seed_Sentences[Right_Marker])

 add Cur_Co_Occurring_NP to Co_Occurring_NP

 Right_Marker ← Right_Marker + 1

 IF Right_Marker = Seed_Sentences.size

 break from while loop

 END IF

 END WHILE

 INITIALIZE Cur_Frag to empty String

 FOR k = Left_Marker to Right_Marker

 Concatenate Seed_Sentences[k] to Cur_Frag

 END FOR

 Add Cur_Frag to SectionWise_Fragments

 END FOR

 Remove Duplicate sentences from SectionWise_Fragments

 INITIALIZE Cur_Section_Answer to empty String

 FOR j = 0 to SectionWise_Fragments.size do

 Concatenate SectionWise_Fragments[j] to

Cur_Section_Answer

 END FOR

 Add Cur_Section_Answer to Answer_Fragments

 END FOR

 INITIALIZE A to empty String

 FOR i = 0 to Answer_Fragments.size

 Concatenate Answer_Fragments[i] to A

 END FOR

 RETURN A

4. FURTHER APPLICATIONS AND

DEVELOPMENT

This tool is observed to provide answer fragments that go fairly

congenial, when compared with model answers fabricated by

human assessors. The algorithm presented here is capable of

generating answers with highest precision depending on the

vocabulary source but some other parameters like context

continuity and context span must be included in order to limit the

locality of context for more accurate results with high recall. The

software testing of the tool seems to provide promising results in

performing fair and unbiased evaluation of students’ answer

scripts. Combining this algorithm with a good answer evaluation

approach can provide robust answer evaluation feature for

automating the digital evaluation systems.

Another field of this tool application is evaluation of online

assignments at the institute level for analyzing students’ appraisals

on continuous scale. The up gradation scopes of such a tool

development follow with real-time answer generation for different

types of subjective questions presented in wide variety of

grammatical styles and for versatile subject domains.

5. ACKNOWLEDGMENTS
This work was supported by Research and Development

Laboratory, Department of Computer Science and Engineering at

Bhilai Institute of Technology, Durg, Chhattisgarh, India,

awaiting sponsorship from suitable funding agencies.

6. REFERENCES
[1] Valenti, S., Neri, F. and Cucchiarelli, A. 2003. An Overview

of Current Research on Automated Essay Grading. J. of

Information Technology Education (JITE), pp. 319-330.

[2] Christie, J. 1999. Assessment of Essay Marking - focus on

Style and Content. In 3rd International Computer Assisted

Assessment Conference (CAA) , pp. 39-45.

[3] R.Diekema, Ozgur Yilmazel, and E.D.Liddy, 2004. Minimal

Ownership of Active Objects. In Proceedings of the 6th

Asian Symposium on Programming Languages and Systems,

APLAS 2008, Bangalore, pp. 139-154A.

[4] Parag A. Guruji, Mrunal M. Pagnis, Sayali M. Pawar and

Prakash J. Kulkarni, ‘Evaluation Of Subjective Answers

Using Glsa Enhanced With Contextual Synonymy’,

International Journal on Natural Language Computing

(IJNLC) Vol. 4, No.1, February 2015, pp. 51-60.

[5] Jorg Tiedemann, “Integrating linguistic knowledge in

passage retrieval for question answering.” Proceedings of

Conference on Human Language Technology and Empirical

Methods in Natural LanguageProcessing, Vancouver, British

Columbia, Canada, pp. 939 - 946, 2005.

