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ABSTRACT 

Automated subjective answer assessments in modern digital 

evaluation environments are promising structural consistency, but 

they distort the very nature of expressing complex and context-

rich information put up for evaluation. In modern teaching-

learning environments, with wide variety of biasing observed 

while fabricating humane scripted Memoranda-Of-Instructions, it 

becomes difficult to evaluate subjective answers with appropriate 

justification. Answer evaluation systems have seen an extensive 

research by academicians since few decades. On the other hand, 

research on subjective model answer generation is still in its 

infancy stage. Lately, an algorithm for subjective model answer 

generation has become necessary for developing a generic 

framework sufficing all types of subjective questions. In this 

paper, we described one such algorithm for generating model 

answers for all types of descriptive (subjective) questions from a 

given text corpus.  

CCS Concepts 

• CCS →  Information systems →  Information retrieval →  

Retrieval tasks and goals →  Question answering. 
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1. INTRODUCTION 
As the modern education system is augmented with digital 

environments round the globe, the evaluation systems are also 

getting digitized progressively.  

With the advent of automated subjective answering evaluation 

tools like Electrnic Essay Rater (E-rater) by Burstein, Kukich, 

Wolff, Chi and Chodorow (1998), Conceptual Rater (C-rater) 

(Valenti et al., 2003), Intelligent Essay Assessor (IEA) (Valenti et 

al., 2003), Educational Testing Service (ETS-I) by Whittington 

and Hunt (1999), BETSY (Valenti et al., 2003), Schema Extract 

Analyze and Report (SEAR) (Christie, 1999), a drastic drift is 

seen in preparation of question paper manuscripts from MCQ 

questionnaire to a blend of both objective and subjective questions 

[1,2]. The Academicians are observed spending more of their time 

in setting question papers and evaluating answer, rather than 

analyzing the scores and counselling the students. According to 

recent statistics it takes one month on an average to evaluate 700 

candidate answer script for  six subjects in total. Thus, taking 

almost two to three months to declare answer for the same lot of 

students. Apart from this, even with expert evaluators it is not 

possible for anyone to justify which answer is better and why? 

Envisioning such a series of hurdles, an attempt is being made to 

ease the task of manual answer generation by obtaining machine 

generated answers to some question categories. 

The rest of this paper is organized as follows: Section 2 addresses 

preprocessing issues that have been addressed by other systems 

for model answer generation. Section 3 outlines the subjective 

answer generation algorithm. Section 4 suggests further 

applications and developments possible in near future. 

2. PRE-PROCESSING ISSUES 
The considerable issues that are needed to be investigated in 

depth before building the prototype tool of generating model 

answers are enumerated below: 

Language Support: One of the design issues in the algorithm 

demands the concurrent modification of passive data objects in 

already existing dictionary, while checking for the terms in that 

domain-specific vocabulary in an attempt to expand the 

vocabulary at runtime. Not all languages support the above 

mentioned feature. Hence, there arises a need to choose the 

appropriate language for tool development. This issue can also be 

resolved by using the method as described by D. Clarke et al. in 

their article [3]. 

Natural Language Processing (NLP) Tool selection: The 

selected NLP tool must support the following Annotator 

properties viz. Tokenization, Sentence Splitting, Lemmatization, 

Parts of Speech Tagging, Constituency Parsing, Dependency 

Parsing and Co-reference Resolution 

Supporting Domain-specific Vocabularies: Using ‘WordNet’ 

as the source of open-domain vocabulary may seem optimal at 

first, but it usually hinders the generation of most accurate 

answers, demanding information retrieval for a narrowly specified 

subject domain. The Information Retrieval model built for 

Question-Answering (QA) systems by IBM’s statistic system 

finds greatest hindrance observed in the last step of trimming set 

of optimal sentences from the ranked set of passages obtained in 

the previous step. The best alternative for reducing such system 

errors is to use restricted domains as back-ground knowledge 

rather than open-domains [4]. In another exhaustive survey put up 

by L. Hirschman and R. Gaizauskas, they emphasized on the 
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crucial role of passages in extraction of answers to the subjective 

questions through IR techniques [5]. 

3. SUBJECTIVE ANSWER GENERATION 

ALGORITHM 
The syntax used in pseudo code borrows some of the elements 

from java syntax. All the input and output objects are specified in 

bold. All the language constructs like conditionals and loops use 

italics style. Square brackets denote index for storing and 

accessing array elements. Assignment operation is denoted by 

Symbolic notation ←. The description of various variables and 

procedures used in this pseudo code are as follows: 

a. Q is the raw question string to be used for finding 

answers 

b. K is the List of keyword strings present in question Q 

which can be generated using open source NLP tools. 

c. C is the List of Corpus sections as string which can be 

sections or chapters defined in a standard text book 

d. V is the source vocabulary which can be generated for 

all the keywords of Corpus C using either wordnet for 

enhanced domain vocab or manual human intervention 

for restricting domain. 

e. Get-Entry-Points : Function for initial filtering  based 

on count of Question keywords K found in different 

sections of Text Corpus.  

f. Get-Seed-Sentences : Function for getting seed 

sentences present in a particular section based on 

keyword K and keyword vocab for given question Q. 

g. Get-Section-Sentences :  Function to return list of all 

sentences present in a text paragraph from a section.  

h. Get-Vocab : This procedure returns a list of string for 

all terms supplied separately. Each list in returned 

composite list is synonym for respective words provided 

in input list. 

i. Get-Keywords : This procedure returns a list of related 

keywords based on NLP dependencies provided by NLP 

parsers. 

j. Get-Co-Occurring-NP : This procedure returns co-

occurring NP after performing anaphora resolution of 

supplied text. 

The algorithm for generating answers is as follows: 

 

ALGORITHM Generate-Answer is 

    INPUT: Question Q with Keywords K,  

           Text Corpus C as List of section fragments,  

           Vocab Source V 

    OUTPUT: Answer A comprising concatenated fragments 

 

    E ← Get-Entry-Points(Q,C) 

    CREATE an empty list Answer_Fragments of type String 

    FOR i = 0 to E.size do 

        Cur_Segment ← E[i] 

        Seed_Sentences ← Get-Seed-Sentences(E[i],K,C) 

        Section_Sentences ← Get-Section-Sentences(E[i],C) 

        CREATE an empty list SectionWise_Fragments of type 

string 

        FOR j = 0 to Seed_Sentences.size do 

            Seed_Index ← Get-Seed-

Index(Section_Sentences,Seed_Sentences[j]) 

            CREATE List Seed_Vocab of type String 

            CREATE List Co_Occurring_NP of type String 

            Seed_Vocab ← Get-Vocab(Get-

Keywords(Seed_Sentences[Seed_Index]),V) 

            Left_Marker ← Seed_Index 

            Right_Marker ← Seed_Index 

            WHILE there exists a String from Seed_Vocab or 

Co_Occurring_NP  

                        in Seed_Sentences[Left_Marker] 

                Cur_Co_Occurring_NP ← Get-Co-Occurring-

NP(Seed_Sentences[Left_Marker]) 

                add Cur_Co_Occurring_NP to Co_Occurring_NP 

                Left_Marker ← Left_Marker - 1 

                IF Left_Marker = 0 

                    break from while loop 

                END IF 

            END WHILE 

            WHILE there exists a String from Seed_Vocab or 

Co_Occurring_NP  

                        in Seed_Sentences[Right_Marker] 

                Cur_Co_Occurring_NP ← Get-Co-Occurring-

NP(Seed_Sentences[Right_Marker]) 

                add Cur_Co_Occurring_NP to Co_Occurring_NP 

                Right_Marker ← Right_Marker + 1 

                IF Right_Marker = Seed_Sentences.size 

                    break from while loop 

                END IF 

            END WHILE 

            INITIALIZE Cur_Frag to empty String 

            FOR k = Left_Marker to Right_Marker 

                Concatenate Seed_Sentences[k] to Cur_Frag 

            END FOR 

            Add Cur_Frag to SectionWise_Fragments 

        END FOR 

        Remove Duplicate sentences from SectionWise_Fragments 

        INITIALIZE Cur_Section_Answer to empty String 

        FOR j = 0 to SectionWise_Fragments.size do 

            Concatenate SectionWise_Fragments[j] to 

Cur_Section_Answer 

        END FOR 

        Add Cur_Section_Answer to Answer_Fragments 

    END FOR 

    INITIALIZE A to empty String 

    FOR i = 0 to Answer_Fragments.size 

        Concatenate Answer_Fragments[i] to A 

    END FOR 

    RETURN A 

4. FURTHER APPLICATIONS AND 

DEVELOPMENT  
 

This tool is observed to provide answer fragments that go fairly 

congenial, when compared with model answers fabricated by 

human assessors. The algorithm presented here is capable of 

generating answers with highest precision depending on the 

vocabulary source but some other parameters like context 

continuity and context span must be included in order to limit the 

locality of context for more accurate results with high recall. The 

software testing of the tool seems to provide promising results in 

performing fair and unbiased evaluation of students’ answer 

scripts. Combining this algorithm with a good answer evaluation 



approach can provide robust answer evaluation feature for 

automating the digital evaluation systems. 

Another field of this tool application is evaluation of online 

assignments at the institute level for analyzing students’ appraisals 

on continuous scale. The up gradation scopes of such a tool 

development follow with real-time answer generation for different 

types of subjective questions presented in wide variety of 

grammatical styles and for versatile subject domains. 
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