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Abstract

The article deals with set-valued dynamical system state estimation
problem when there is no statistical information on initial state, dis-
turbances and noises but sets of their possible values are available. In
practice some measurements can be performed with anomalous errors
(failures, fallings out). That is at some time instants the measurement
errors were realized outside of the given set of possible values. The
article considers the level of measurement error falling out that can be
reliably recognized using set-valued state estimation.
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1 Introduction

Nowadays set-valued dynamical system state vector estimation under condition of statistical uncertainty is being
developed in control and identification theory. A lot of publications are devoted to this area [2, 4, 8, 10, 11, 12,
13, 14, 18]. The main subject of set-valued estimation is a feasible set, that is a set of all possible dynamical
system states at a time instant.

The processes in the control system are described with equations:

xk+1 = Axk + Buk + Γwk,

yk+1 = Gxk+1 + Hvk+1, k = 0, 1, . . . N.
(1)

where xk ∈ Rnx , uk ∈ Rnu , wk ∈ Rnw , yk ∈ Rny ,vk ∈ Rnv denote state, control, disturbance, measurement,
noise vectors at time instant k correspondingly; A, B, Γ, G, H are known matrices. The system (1) is supposed
to be controllable and observable.

Initial state x0, disturbances wk and noises vk are unknown but they can take some value from given convex
sets:

x0 ∈ X0, wk ∈ W, vk ∈ V. (2)

Set-valued estimation involves a construction of feasible sets X̄k+1 , which are guaranteed to contain all state
vectors xk+1 ∈ X̄k+1 at the time k:

Xk+1/k = AX̄k + ΓW. (3)
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X[yk+1] = {x ∈ Rnx |Gx + Hv = yk+1, ∀v ∈ V }, (4)

X̄k+1 = Xk+1/k ∩X[yk+1]. (5)

Operations in (3)-(5) are set operations, that is Minkowski sum, set intersection, linear set transformation.
According to equations (3)-(5) the shape and size of feasible sets depend not only on the sets X̄0, W and V but
also on the values of disturbance wk and measurement error vk. The feasible set is calculated as intersection of
reachable set Xk+1/k and measurement consistent set X[yk+1], the location of these sets depends on the values
of realized disturbance wk and measurement error vk. The smaller feasible set is constructed the more accurate
set-valued estimate we have. Therefore if a feasible set is a point it means that the exact value of the dynamical
system state is calculated.

Feasible set shape and structure can be complex that is it can contain a lot of vertices and facets. But when the
system state vector dimension increases troubles in performing set operations in real-time occur. Then feasible
set outer approximations with some canonical forms, like ellipsoids [3, 8, 9, 10], parallelotopes [7] and zonotopes
[18] can be applied.

In practice some measurements can be performed with anomalous errors (failures, fallings out) [1, 5, 11, 15].
Anomalous measurements can appear because of abrupt violation of data measurement equipment performance
condition. Anomalous measurements can lower efficiency of classical data processing algorithms [5, 15]. That is
why it is important to timely recognize anomalous measurements and exclude them from the following process-
ing. There are heuristic approaches to anomalous measurement errors filtration like application of appropriate
threshold criteria for selection and elimination of failures, least absolute deviation method and others. However
these methods are effective only when the anomalous measurements significantly differ from other measurements.
Besides these methods do not allow to get borders of parameter estimation errors.

2 Anomalous measurements

Let us consider that at a time k the measurement error vk was outside the given set of possible values vk /∈ V .
Two cases from feasible set construction algorithm (3)-(5) depending on the realized value of the measurement
error vk are possible:

• the feasible set is empty;

• the feasible set is not empty.

If the feasible set X̄k is empty at a time k (fig.1), it means that at this time k or earlier the falling of vk

out of the set V has happened, i.e. vk /∈ V . In this case estimation algorithm can be restarted with new initial
data, for example the borders of set V can be extended. Another way is to exclude this measurement from
data processing and do not perform estimation at this time k. If the feasible set X̄k is not empty (fig.2) the
constructed set may not contain the real system state xk /∈ X̄k. But in this case it is impossible to recognize
the failure. Therefore the guaranteed feature of anomalous measurements at set-valued estimation is the empty
feasible set. For comparison when Kalman filter is used for system state estimation there are no guaranteed
features of anomalous measurements because the system state estimation is probabilistic [6, 16, 17].

Let us consider what level of measurement error vk falling out can be reliably recognized using set-valued
state estimation that is at what measurement error vk falling out the feasible set is empty. The feasible set X̄k is
empty if the corresponding reachable set Xk/k−1 and measurement consistent set X[yk] do not intersect (fig.3).
These sets certainly do not intersect if their projections on coordinate axes do not intersect . Let us consider
projections of the sets Xk/k−1 and X[yk] on coordinate axes, on which the measurements are performed.

Let us consider the outermost case when the real system state is on the border of reachable set Xk/k−1

projection (fig.3). If the measurement error was realized on the border vmaxi of the set V on the axis x(i) the
measurement yk would get to the point y′k. Let us suppose that the falling out of measurement error happened
and the measurement is in the point yk.

y′k = xk + vmaxi ,

yk = xk + vk.
(6)

Then the value of measurement error falling out is equal to the distanse between points y′k and yk:

δvx(i) = |vk − vmaxi | = |y′k − yk|. (7)
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Figure 1: Example of anomalous measurement Figure 2: Example of anomalous measurement

a) Sets Xk/k−1, X[yk] b) Projections of sets Xk/k−1, X[yk] on coordinate
axis x(i)

Figure 3: Anomalous measurement

Then the minimum falling out δvx(i) when the projections’ intersection is empty is equal to

δvx(i) = |vk − vmaxi | = (d(Xk/k−1)x(i) − r(X[y′k])x(i)) + r(X[yk])x(i) = d(Xk/k−1)x(i), (8)

where d(•)x(i) denotes the projection of set diameter to the axis x(i), r(•)x(i) denotes the projection of set radius
to the axis x(i).

Let us estimate the diameter of the set Xk/k−1. The set Xk/k−1 is constructed as Minkowski sum of sets
AX̄k−1 and ΓW . The set-valued estimate X̄k−1 is not worse than the set V on measured coordinates. Then

d(Xk/k−1)x(i) = d(AX̄k−1)x(i) + d(ΓW )x(i) ≤ d(AV )x(i) + d(ΓW )x(i), (9)

Therefore if the measurement error is outside of the given set V and the following condition is fulfilled for any
of the coordinates x(i)

δvx(i) ≥ d(AV )x(i) + d(ΓW )x(i), (10)

then the measurement error falling out will be reliably recognized.
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3 Example

Let us consider the model (1) with the following matrices:

A =
(

0.9976 0.04639
−0.09278 0.8584

)
, Γ =

(
0.1189
4.639

)
· 10−3, G = I2×2, H = I2×2. (11)

The initial state set, disturbance set and measurement error set are the following polyhedras:

X0 :




1 0
0 1
−1 0
0 −1


 x0 ≤




7.5 · 10−4

3 · 10−2

7.75 · 10−4

3 · 10−2


 , W :

(
1
−1

)
wk ≤

(
1.5
1.5

)
,

V :




1 0
0 1
−1 0
0 −1


 vk ≤




1.45 · 10−4

2.28 · 10−2

1.45 · 10−4

2.28 · 10−2


 .

(12)

Let us compute from (10) the measurement error falling out level that can be recognized for this model.
For the coordinate x(1) the falling out level is:

d(AV )x(1) = 0.0024, d(ΓW )x(1) = 0.00036,
δvx(1) ≥ 0.0024 + 0.00036 = 0.00276.

For the coordinate x(2) the falling out level is:
d(AV )x(2) = 0.039170, d(ΓW )x(2) = 0.013917,
δvx(2) ≥ 0.039170 + 0.013917 = 0.053087.

Notice that the measurement error set is much smaller that the disturbance set at the first coordinate. That
is why the measurement error falling out can be recognized if the measurement error vk value is 19 times greater
than the largest possible value of the set V at the first coordinate. For the second coordinate if the falling
out is 2.3 times greater than the largest possible value of the set V at the second coordinate the anomalous
measurement error can be recognized. However this estimate is upper-bound. In practice there are realizations
when the smaller falling outs can be recognized. Let us consider a disturbance realization (fig. 4). We considered
some measurement errors realizations with different falling outs at the steps k = 10 and k = 20. At the first
realization the value of vk(2) is equal to 1.5vmax2 = 0.0342 at steps k = 10 and k = 20. At the second realization
the values of vk(1) is equal to 3vmax1 = 4.35 · 10−4 at steps k = 10 and k = 20. The figures 5-7 show the
measurement error realization with falling outs which were recognized although the falling out value was smaller
than the estimate δvx(2). For these realizations the feasible set is empty at the time k = 10. For the realizations
from fig.8, 11 the measurement error falling outs were not recognized. The feasible sets at the times k = 10 and
k = 20 are not empty but they do not contain the real system state xk (fig.8, 11).
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Figure 4: Disturbances.
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Figure 5: Measurement errors (realization 1). The solid
line denotes the border of the given set V , dashed line
denotes the measurement errors vk.
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Figure 6: Measurements (realization 1)

Figure 7: Reachable set X10/9 and measurement consis-
tent set X[y10] (realization 1)
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Figure 8: Measurement errors (realization 2). The solid
line denotes the border of the given set V , dashed line
denotes the measurement errors vk.
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Figure 9: Measurements (realization 2)

Figure 10: Reachable set X10/9 and measurement con-
sistent set X[y10] (realization 2)
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Figure 11: System state xk estimation (realization
2).The solid line denotes the border of set-valued esti-
mates, dashed line denotes the real value xk.
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4 Conclusion

The set-valued dynamical system state estimation with anomalous measurements was considered when the mea-
surement error is realized outside the set of possible values. The reliable feature of anomalous measurement errors
is empty feasible set. The anomalous measurement is reliably recognized if the falling out value δνk at a time k
is greater than the sum of projections of the diameters of the sets AV and ΓW on any of coordinates. However
in practice there are realizations when smaller falling outs can be recognized. When the anomalous measurement
is recognized it can be excluded from the data processing or the estimation procedure can be restarted with new
initial data.

Acknowledgements

The work was supported by Act 211 Government of the Russian Federation, contract 02.A03.21.0011.

References

[1] V.Ya.Arsenin, A.V. Kryanev, .M.V. Tsupko-Sitnikov. The use of robust methods to solve ill-posed
problems. USSR Computational Mathematics and Mathematical Physics, 29(3):7–13, 1989.

[2] B. Zhou, K. Qian, X.-D. Ma, X.-Z. Dai. A New Nonlinear Set Membership Filter Based on Guaranteed
Bounding Ellipsoid Algorithm. Acta Automatica Sinica, 39(2):146–154, 2013.

[3] F.L. Chernousko. Minimax control for a class of linear systems subject to disturbances. Journal of
Optimization Theory and Applications, 127(3):535–548, 2005.

[4] L.A. Fokin, V.I. Shiryaev. Preliminary Comparison of Kalman and Minimax Approaches to Error
Estimation of Integrated Navigation System. IEEE International Siberian Conference on Control and
Communications (SIBCON-2013), 212–214, Krasnoyarsk, Russia, 2013.

[5] P. J. Huber, E. Ronchetti. Robust statistics, second edition. New Jersey, 2009.

[6] R.E. Kalman. A New Approach To Linear Filtering and Prediction Problems. Transactions of the
ASME – Journal of Basic Engineering, 82:35–45, 1960.

[7] E.K. Kostousova. On the polyhedral method of solving problems of control strategy synthesis. Proceed-
ings of the Steklov Institute of Mathematics, 292(1):140-155, 2016.

[8] I.A. Kremenetskiy, N.N. Salnikov. Nonstochastic Approach to Determining the Dimension and Param-
eters of Linear Autoregressive Models by the Input and Output Variables Measurements, Journal of
Automation and Information Sciences, 42(1):19-31, 2010.

[9] A.A. Kurzhanskiy, P. Varaiya. Ellipsoidal toolbox. Berkeley, University of California, 2006.

[10] A.B. Kurzhanski, P. Varaiya. On ellipsoidal techniques for reachability analysis. Optimization Methods
and Software, 17:177–237, 2000.

[11] A.I. Matasov. Estimators for uncertain dynamic systems. Dordrecht, Kluwer Academic Publishers,
1998.

[12] F.C. Schweppe. Recursive state estimation: Unknown but bounded errors and system inputs. IEEE
Transactions on Automatic Control, 13(1):22–28, 1968.

[13] E. Podivilova, A.N. Vargas, V. Shiryaev, L. Acho. Set-valued estimation of switching linear system: an
application to an automotive throttle valve. International Jouranl of Numerical Modelling, 29(4):755–
762, 2015.

[14] V.I. Shiryaev, E.O. Podivilova. Set-valued Estimation of Linear Dynamical System State When Dis-
turbance is Decomposed as a System of Functions. Procedia Engineering, 129:252–258, 2015.

[15] A.M. Shurygin. Estimator stability in geological application. Mathematical Geology, 32(l):19-30, 2000.

[16] B.L. Stevens, F.L. Lewis. Aircraft Control and Simulation. New York, Wiely, 1992.

86



[17] H. Tsai. Generalized Linear Quadratic Gaussian and Loop Transfer Recovery Design of F-16 Aircraft
Lateral Control System. Engineering Letters, 14(1):1-6, 2007.

[18] V.T. Le, C. Stoica, T. Alamo. Zonotopic guaranteed state estimation for uncertain systems. Automatica,
49:3418–3424, 2013.

87


