
Events in BPMN: The Racing Events Dilemma

Sankalita Mandal

Hasso Plattner Institute at the University of Potsdam, Germany
sankalita.mandal@hpi.de

Abstract. Today, business process management is a key for companies to
represent their operations using business process models. These business
processes are executable using process engines. The process engines can
produce and consume events for the completion of the processes. However,
to receive the external events, we must rely on outer world sources such as
a weather API, a traffic agency, an email from a different organization etc.
While the digital world makes these message exchanges very convenient,
there might still be some latency between the generation of a message
and the detection of that message in a receiving process. This latency
between the occurrence time and detection time of an event can cause
a dilemma of choosing among the alternative paths triggered by racing
events and might lead to wrong execution of a process. This problem is
investigated in this paper. Also, some solutions are proposed to mitigate
the consequences.

1 Introduction

Business processes according to BPMN 2.0 [1] consist of several activities, events
and gateways. Events are something that happens in a specific context [2].
These events can be produced or consumed during process execution. Now, in
a distributed setup, it can happen that an event has already occurred but the
notification of that event occurrence is yet to be received. This may happen
due to several manual or system latency. If we think about an application
procedure where candidates mail their documents and an administrator enters
the information into the system, then it is obvious that the application reception
time will be different in the system than the actual reception time via post. In
another scenario, when we transfer money via some online payment method,
though the payment is done from our side, it may take several minutes or even
days to reflect the transferred money in the system of the recipient.

The discrepancy between the occurrence time and the detection time of an
event can cause dilemma for choosing among the alternative paths following event
occurrences. This paper introduces racing events dilemma in detail and discusses
the significance of it, rather the problems that can arise from it. Using two
processes for registering to a workshop and paying for the workshop, it is shown
that timestamp discrepancy can cause incorrect execution of processes. This
may have a negative impact on time, money, user experience or other valuable
resources. Possible solutions to mitigate the dilemma are also discussed.

O. Kopp, J. Lenhard, C. Pautasso (Eds.): 9th ZEUS Workshop, ZEUS 2017, Lugano,
Switzerland, 13-14 February 2017, published at http://ceur-ws.org/

http://ceur-ws.org/


2 Foundation

This section introduces the relevant concepts helpful to follow the rest of the
paper. Namely, we talk about business processes consisting of activities and events,
especially the racing events and discuss the emerging field of event processing.

2.1 Business Process Model

A business process is a sequence of activities performed in an organizational
context where all these activities collectively achieve a business goal [3]. The
activities and their coordination are visualized with business process models.
Nowadays, BPMN 2.0 is the de facto standard for modeling business processes.
Each business process model can be considered as a blueprint for several process
instances. An activity model can be instantiated for a set of activity instances.

An activity instance goes through different state transitions as shown in Fig. 1.
When a process instance is started, each activity in the process is initialized
and is in state init. As soon as the incoming flow of an activity is triggered,

init ready running

initialize enable begin

skipped

terminated

canceled

terminate

skip

cancel

not started closed

Fig. 1. Activity instance life cycle

the instance is in state ready.
The state changes to running
when the activity starts execu-
tion. Finally, the activity goes
to terminated state. If the activ-
ity instance is not started and
process instance follows a differ-
ent path, then it directly goes
to skipped state. Also, due to
the occurrence of an attached
boundary event, a running ac-
tivity instance can be canceled.

For all the activity state changes, the process engine generates transitional
events. These are different from BPMN events used in a process model. Let’s
say t is the function to depict the timestamp of events, be it BPMN event or
transitional event. Then to notify the beginning, termination or cancellation of
an activity A, the engine logs the events tb(A), tt(A), tc(A), respectively.

Talking about BPMN events, a process model can consist of start events,
intermediate events and end events. These events can be of type catching or
throwing [1]. For catching events, the control flow enables the event, waits for
it to occur and when it occurs, the process consumes it. But there are certain
situations where two events race with each other to determine the process flow.

Fig. 2 shows an online booking reservation process for a workshop. After
receiving the booking request, the information is processed and the booking is con-
firmed. Participants can cancel the booking before they receive the confirmation.
Once the place is confirmed, booking is not refundable.

To model that, activity Process Booking has an interrupting boundary event
attached to it. When cancellation is received while this activity is going on, the
booking is cancelled and the participant is notified about the cancellation. Here

24 Sankalita Mandal



Boundary Event Discrepancy

Booking Request
Received

Process
Booking

Cancellation
Received

Cancel
Booking

Cancellation
Sent

Confirmation
Sent

Fig. 2. Interrupting Boundary Event

the boundary event Cancellation Received is in a race with the event notifying
the termination of the activity Process Booking.Event based Gateway Discrepancy

Initiate
Payment for
Workshop

2 Min

Payment
Received

Ask
Participant to

Review
Payment
Details

Send Payment
Confirmation
to Participant

Payment
Details

Received

Fig. 3. Event-based Gateway

Another example of racing events is an event-based gateway. Fig. 3 shows the
payment process for the workshop. Upon receiving the payment information from
the participants, the organizers initiate the payment and wait for confirmation.
The confirmation is forwarded to the participant once it is received. If confirmation
is not received within 2 min then the participant is asked to check the payment
information provided earlier. Here the racing events are the message event
Payment Received and the timer event after the gateway.

2.2 Event Processing

Though BPMN includes a set of different types of events, it does not say much
about the source of the events, how they are generated or how they can be
correlated. Event processing, on the other hand, explores such concepts [4]. The
single or atomic events do not take time to occur, like a weather update from a
sensor. Atomic events can be aggregated to generate complex events, e.g., a flight
delay message due to five consecutive bad weather updates. Here, the weather
updates are collected, matched with the route of the flight and the message is
sent to only those passengers who booked this flight.

Fig. 4 shows the communication between events and processes in a distributed
setup. The event source (e.g., a sensor) can directly send the events to a pro-
cess engine or to an event processing platform. Event processing platforms like
Unicorn [5] are able to perform different operations on event streams. It can

Events in BPMN: The Racing Events Dilemma 25



receive events from different sources, parse them, aggregate them based on pre-
defined transformation rules to create complex events and notify the subscribers

Fig. 4. Event Process Interaction

about certain events. These noti-
fications can be sent to a person
or a system like a process engine
that receives this event and reacts
on that according to the process
specification. The complex events
are mapped to the BPMN events
included in the executable process
models in the process engine. An
event e generally has a timestamp
attached to it to describe its time of
occurrence, identified as to(e). The
time when the event is detected by

a process engine is called time of detection or td(e). The timeline in Fig. 4 shows
this. While by definition to(e) < td(e), due to the distributed setup, there can be
a gap between event occurrence time and event detection time.

3 Problem Statement

If there is a significant delay between the occurrence of an event and detection
of the event, this can cause a dilemma to choose among the racing events
during a process execution. The dilemma can even lead to incorrect process
execution. In Fig. 5, we see an example process that describes the general problem.
There are four activities A, B, C and D and a boundary event e is attached

Problem Statement

B A C

e
D

Fig. 5. Problem Statement

to the activity A. In this case, the racing
events are e1: the boundary event e and
e2: the termination of A, i.e., tt(A). Now,
the problem occurs when to(e1) < to(e2)
but td(e2) < td(e1). For a correct execu-
tion, if e1 occurs before e2, then the path
lead by e1 should be chosen. But since
the detection time of e2 is earlier than the
detection time of e1, the process engine
thinks that e2 has happened before e1 and follows the branch lead by e2. Thus,
the timestamp discrepancy creates the racing events dilemma that results into
an incorrect execution of the process.

If we look back to the example in Fig. 2, it may happen that the moment when
the participant pressed the cancellation link was before the Process Booking
activity finished. Nevertheless, due to server latency the activity terminated
before getting notification about the cancellation. In this case, the participants,
even if they cancelled the registration timely, do not get the workshop fee back.
This problem arises due to the latency between the occurrence time and the

26 Sankalita Mandal



detection time of the boundary event. Here, the problem raised as to(Cancellation
Received) < tt(Process Booking) < td(Cancellation Received).

Considering the example in Fig. 3, there can be a situation where the payment
is done within 2 min but the confirmation is not received yet. In that case, the
timer fires and the participant is asked to review payment details. Since there was
not really any problem with the payment information, it creates confusion. Again,
the problem occurs due to the timestamp discrepancy to(Payment Received) <
to(Timer Event) < td(Payment Received). In both the cases, with re-evaluation
of the situation, the money might be reimbursed or the participant might be
informed, respectively. But still it will have negative impacts such as extra time
to communicate the problem with the participants, bad user experience and
probably some compensation from the organization’s side.

One thing to be noted here, the timestamp discrepancy is more probable
for those events where the source of the event and the receiver of the event are
different. Since timer events are triggered by the engine itself, they are generally
in sync with the clock that is followed for process execution. Although, due
to engine workload there can be discrepancy between the scheduled time set
for a timer and the actual execution of the event [6]. For other type of events,
the timestamp discrepancy can occur due to manual or system delay. If the
delay occurs for the start event, the process is instantiated late. In case of an
intermediate event, the next activity is started late. But there can be severer
impacts due to timestamp discrepancy as discussed above.

4 Proposed Solution

Apart from the proactive measures to mitigate the manual delays or increasing
system efficiency to communicate faster in a distributed setup, the following
measures can be considered to deal with timestamp dilemma. First, we calculate
the maximum delay between the occurrence of an event and the detection of the
same using a posteriori analysis. Next, we use this maximum delay to propose
some solutions to decrease the number of incorrect executions of a process.

Perform a posteriori Analysis. The process engine produces event logs where
the transitional events such as begin or termination of an activity are listed.
Assuming that the BPMN events carry the occurrence timestamp information
and the detection timestamp is found in the engine log, we can analyse the traces
after a process instance is executed. This tells us if the execution was timestamp
correct. To do this analysis, we assume that the systems communicating with
each other are using logically synchronised clocks such as Lamport clock [7].

Def: Timestamp Correct. An execution is timestamp correct if for racing events
occurrence time and detection time are in same sequence.

– If to(e1) < to(e2) holds, then td(e1) < td(e2) also holds.
– If to(e1) > to(e2) holds, then td(e1) > td(e2) also holds.

Events in BPMN: The Racing Events Dilemma 27



According to above definition, the traces 1. and 2. below depict correct
execution whereas trace 3. is an incorrect execution for Fig. 5.

1. tb(B) tt(B) tb(A) tt(A) tb(C) tt(C)
2. tb(B) tt(B) tb(A) to(e) td(e) tc(A) tb(D) tt(D)
3. tb(B) tt(B) tb(A) to(e) tt(A) td(e) tb(C) tt(C)

The a posteriori analysis can give us insight about the probable event for
which there is a discrepancy for most of the instances. Thus, we can try to look
for the source of the latency. If it involves manual event generation, we might try
to automatize that. If it involves sending events from one platform to another, we
might try to increase the efficiency of the platforms such that the delay between
occurrence time and detection time of an event is ignorable.

Also, we can calculate the maximum delay for each event from the difference
between the occurrence time stated in event timestamp and the detection time
logged by process engine. This can be used to apply the following solutions.

Sol. I: Delay Execution. If we know the maximum delay between the occurrence
and the detection of the event will be ∆, then we can delay the execution of
the process flow accordingly to accommodate the latency. For example, if we
know that in case of Fig. 2, ∆ = 10 sec, then we can set the rule as following: If
after tt(Process Booking) + 10 sec no cancellation is received, then confirmation
is sent. Otherwise booking is cancelled. This impacts event subscription since
even after the activity terminates, we do not unsubscribe to the boundary event,
rather we extend the subscription time by ∆.

Sol. II: Create Updated Model. Even after detecting the source of latency and
taking measures to increase the efficiency it may happen that the discrepancy
still occurs. Or it might be the case that the manual or system efficiency cannot
be increased very easily. Then we can consider updating the process model to
accommodate the latency. In Fig. 3, if the a posteriori analysis suggests that the
payment confirmation generally takes longer than expected because of the slow
service at the payment gateway, we can set the timer at 5 min instead of 2 min.
Thereby, we increase the probability of getting confirmation before the timer fires
and decrease number of incorrect execution of the process instances.

5 Related Work

Time is a fundamental concept while working with processes or events. Though
BPMN process elements follow sequences based on causality, a sequence in time
is also introduced while executing the elements in a certain order. E.g, if activity
A must happen before activity B, it implies that the termination of A should
be before the beginning of B. But BPMN does not differentiate between the
occurrence time and detection time for an event. The existing process engines
like Camunda [8] or Chimera [9] react on the events only when they receive it.
Therefore, they consider only the detection time of the events.

28 Sankalita Mandal



In a distributed setup, the clocks of different participants should be logically
synchronized using Lamport clock [7] or similar algorithm. Though it makes
sure that the detection time will always be greater than the occurrence time of
the event, it does not solve the problem concerning racing events. The Time-
out Reordering mechanism described in [10] stores the events in a queue and
delays their detection by a time-out which specifies the maximum delay due to
processing of the event. Using this time-out, the events are reordered such that
occurrence and detection time are in same order. Woo et. Al [11] have also dealt
with the timestamp discrepancy in a similar way. In their frameowrk PTMON,
they assume the upper bound of the delay is known and generate RTL formulas to
detect probabilistic timing constraints violation. However, none of these methods
consider the causal relationship of events with other elements of the process, such
as termination of an activity.

In previous discussion, we highlighted the situations like listening to an event
while an activity is going on or delaying execution even after an activity with
boundary event is terminated. This raises the concerns about event subscription.
The CASU Framework proposed by Decker and Mendling [12] discusses about
subscriptions for events which are needed for process instantiation. This can be a
basis to explore further about the right point in time to make a subscription, the
duration of the subscription and so on. The authors in [13] proposes a causal
ordering between event subscription, event occurrence and event consumption.
Our work adds another dimension to it, i.e., event detection.

The work by Niculae [14] and Eichenberg [15] discuss about different time
patterns in workflow management systems where the minimum or maximum
time between termination of one activity and beginning of the next activity can
be specified. These time patterns can guide us to optimize between the increased
waiting time for detecting an event but still starting the next activity timely so
that the overall process duration remains acceptable.

6 Conclusion and Future Work

The BPMN racing events determine the path a process execution should follow.
Due to manual delay or processing time needed for communication in a distributed
system, there might be discrepancy between the occurrence time of the events
and the detection time when the events are received in the process engine. This
timestamp discrepancy can cause dilemma between choosing the alternative
racing events and even lead to wrong execution of the process. In this work, an
investigation into timestamp discrepancy leading to racing events dilemma has
been done that shows the possible occurrences of the problem and the impact
caused by it. Also, a few proactive and reactive measures are presented to mitigate
the discrepancy that may eventually cause the dilemma.

However, further investigation is needed to check the frequency and severance
of problems caused by timestamp discrepancy in reality and effectiveness of
proposed solutions. Another future direction can be to explore if there exist an
alternative to model the processes without racing events so that the problem

Events in BPMN: The Racing Events Dilemma 29



can be avoided. The future research should find an efficient way to execute the
a posteriori analysis combining the event timestamp with engine generated log.
Also, instead of doing a trace analysis after the process has been executed, a run-
time trace analysis would be interesting that can validate timestamp correctness
on the fly and propose compensation as soon as incorrect execution is detected.

References

1. OMG: Business Process Model and Notation (BPMN), Version 2.0. http://www.
omg.org/spec/BPMN/2.0/ (January 2011)

2. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications (2010)
3. Weske, M.: Business Process Management - Concepts, Languages, Architectures,

2nd Edition. Springer (2012)
4. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing

in Distributed Enterprise Systems. Addison-Wesley (2010)
5. UNICORN: Complex Event Processing Platform. https://bpt.hpi.uni-potsdam.

de/UNICORN/WebHome
6. Ferme, V., Ivanchikj, A., Pautasso, C.: A framework for benchmarking bpmn 2.0

workflow management systems. In: 13th International Conference on Business
Process Management (BPM 2015), Springer, Springer (August 2015)

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7) (1978)

8. Camunda: camunda BPM Platform. https://www.camunda.org/
9. Chimera: Case Engine. https://bpt.hpi.uni-potsdam.de/Chimera

10. Hinze, A., Buchmann, A.P.: Principles and applications of distributed event-based
systems. Hershey, PA : Information Science Reference (2010)

11. Woo, H., K. Mok, A., Chen, D.: Realizing the potential of monitoring uncertain
event streams in real-time embedded applications. IEEE Real-Time and Embedded
Technology and Applications (2007)

12. Decker, G., Mendling, J.: Process instantiation. Data Knowledge Engineering 68(9)
(2009) 777–792

13. Barros, A., Decker, G., Grosskopf, A.: Complex events in business processes. In:
Business Information Systems, Springer (2007)

14. Niculae, C.C.: Time patterns in workflow management systems. Master thesis,
Eindhoven University of Technology (2011)

15. Eichenberg, M.: Event-Based Monitoring of Time Constraint Violations. Master
thesis, Hasso Plattner Institute (2016)

30 Sankalita Mandal

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
https://bpt.hpi.uni-potsdam.de/UNICORN/WebHome
https://bpt.hpi.uni-potsdam.de/UNICORN/WebHome
https://www.camunda.org/
https://bpt.hpi.uni-potsdam.de/Chimera

