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Abstract. This paper describes a multi-modal dataset collected for studying col-

laborative, engineering design cognition among undergraduate students. Students 

worked in pairs to solve two engineering design challenges, and also participated 

in a variety of interventions aimed to improve the quality of the learning experi-

ence. While students completed these hands-on tasks, multimodal data was cap-

tured using Xbox Kinect, Leap motion, a high definition web camera, and Affec-

tiva Q-sensor. 
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1 Introduction 

Multimodal data capture capabilities and multimodal learning analytics [1]–[3] are rap-

idly growing. Research and practitioners now have the opportunity to collect a wealth 

of multimodal process data as students complete collaborative tasks in the physical 

and/or digital world. What’s more, these tools may offer a different perspective into 

students’ learning experiences. For example, sensors like the Xbox Kinect and high 

definition web-cameras have the ability to store rich, high frequency data about how 

learners are physically engaging with a given task. Moreover, different bio-physiolog-

ical sensors (e.g., Empatica E4 or the Affectiva Q-sensor) have the ability to capture 

data that may be too fine-grained and minute for a human to detect.  

In this paper I describe a dataset that was recently collected to study engineering design 

cognition as perceived through a host of multimodal sensors. However, before I delve 

into describing the data, I will briefly provide the motivation for the collecting this data. 

I will then move into describing the different pieces of data collected and some of the 

challenges collecting the data. I will conclude with some of the on-going work being 

done to clean the dataset and prepare it for dissemination. 

2 Dataset Motivation 

Over the past few years there has been growing interest in improving K-16 engineering 

education [4]–[7]. However, in the same way that Problem-Based Learning faced many 
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challenges, engineering design, and the Maker Movement more broadly, are also sus-

ceptible to the phenomena of “doing without understanding” [8]–[10]. Hence, a primary 

motivation for collecting this dataset is to study and compare different strategies for 

promoting learning in the context of an open-ended, engineering design task. In partic-

ular, we examine how different interventions can improve the quality of an engineering 

design, or Making, experience, and the ways that this is evidenced through multimodal 

data, in accordance with prior work [11], [12].  

3 Methodology 

3.1 Study Participants 

54 students from a West Coast community college, who ranged in terms of age and 

prior experience with engineering design, participated in this study. The students in-

cluded several majors and students with different career goals. The participants re-

ceived course credit for their involvement, and in this way were a sample of conven-

ience. 

3.2 Study Description 

The study uses a 2-by-2 design where students worked in pairs on two engineering 

design tasks and participated in two interventions. Student pairing was based on avail-

ability. Students also completed other activities to allow us to better understand and 

analyze their learning experience. A diagrammatic representation of the events is shown 

in Figure 1. The total experience lasted about one hour per group. This amount of total 

time mirrors a number of engineering design oriented “maker” challenges that take 

place at after-school programs in libraries and museums around the country. A detailed 

description of the study is included in the following paragraphs. 

Intervention #1: Single Design vs. Multiple Designs. Pairs were randomly assigned 

to draw either one design (three minutes) or three very different designs (one minute 

per design). We will refer to these conditions as Single and Multiple. 

Task #1: Paper and Textbook Task. Students were asked to use one sheet of printer 

paper to construct a structure that could support one or more engineering textbooks at 

least three inches off the table (see Figures 2-4 for examples). Students had six minutes 

to complete this task. The task aimed to help students realize that the configuration of 

the piece of paper was of significant import, and that the material was not the only 

factor. The number of books that each pair’s design could support was recorded. 
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Question for an Expert. After the first task, students wrote down questions that they 

would ask an expert in mechanical engineering or engineering design. Students had 

approximately three minutes to write down their questions. 

Intervention #2: Video or Discussion. Pairs of students were randomly assigned to 

watch a short informational video while others participated in a discussion about how 

the first task had proceeded. 

Task #2: Paper Plate and Beans Task. Students had 10 minutes to use one paper 

plate, two feet of tape, three wooden sticks and four straws. These materials were used 

to build a structure that could support a mass of 0.5 lb. as high off the table as possible 

(see Figures 8 & 9 for examples). This task looked to build on similar principles as the 

first task, but with greater variability in the materials, and with the added goal of height 

optimization. Note: Both Task #1 and Task #2 sit at the fuzzy intersection of engineer-

ing and making which is currently be advanced by a number of schools, museums, 

government organizations, etc. [7], [13]. The height of each pair’s design was recorded. 

Pre-, Mid- and Post-tests. Students were asked to identify principles or mechanisms 

in three example structures (see Figures 5-7) as pre-, mid- and post-tests (note: they 

weren’t framed as tests, but as ways to help the students do better on the tasks). Students 

were given approximately 1 minute to write down their ideas for why each structure 

was stable. Students had access to their prior responses and were allowed to copy or 

update their previous ideas. Responses to these questions served as the basis for docu-

menting conceptual change.  

 

Following the post test, students also answered a number of questions about their 

experience, and completed two transfer tasks that asked them to compare different de-

signs, and to describe how they would teach a younger student how to go about com-

pleting a similar engineering design task. 
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Figure 1 Sequence of Activities 

 

 

Figure 2  

Task 1 Design 

 

 

Figure 3  

Task 1 Design 

 

 

Figure 4  

Task 1 Design 

 

 

Figure 5  

Ladder Image 

 

Figure 6  

Bridge Image 

 

Figure 7  

Igloo Image 

 

 

Figure 8 

Task 2 Design 

 

 

Figure 9  

Task 2 Design 
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3.3 Multimodal Data 

In addition to the time-stamped task annotations and hand written artifacts collected for 

this study, I was also able to collect data from a number of multimodal sensors. These 

sensors include: 1 high definition web camera (audio/video data), Xbox Kinect (multi-

channel audio, skeletal tracking and frontal images), Affectiva Q-sensor (electro-der-

mal activation, and hand/wrist movement), three Leap motion controllers (3-axis 

hand/wrist and prop movement). The high definition web camera was positioned di-

rectly over top of the students and collected data at 30 frames per second (Figure 10). 

The Xbox Kinect was positioned approximately 1.5 meters in front of the students and 

collected skeletal tracking data at 10 frames per second, and frontal images (Figure 11) 

at one frame per second. The audio from the Xbox Kinect included all four channels 

and was captured at 16kHz. The Affectiva Q-sensor was worn on the wrist, and col-

lected data at a rate of 8 samples per second. Furthermore, two stress tests were admin-

istered at the conclusion of the task in order to provide an individualized baseline for 

each student under stress. Finally, a Leap motion sensor was positioned to the side of 

each participant, and over the top (next to the web camera). Leap data was captured at 

approximately 60 Hz. 

 

 

Figure 10 Example Overhead Web Camera Image 

 

 
Figure 11 Example Kinect Frontal Image 
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3.4 Multimodal Data Extraction 

The current dataset includes all of the raw data described above, in addition to several 

pieces of data that were extracted from the different modalities. For example, transcripts 

are available for all participants during both tasks. For Task #2 the transcripts are time-

stamped, and have been aligned with the audio to simplify prosodic analysis, for exam-

ple. Additionally, the frontal images were used to provide second by second head pose 

estimation and automatic facial expression analysis[14], [15]. In particular, I have an 

estimate for the direction of each user’s gaze, evidence of facial action units, and evi-

dence of basic facial expressions. Finally, demographic information about each student, 

their performance in school, high school grade point average, etc. is also available. 

4 Challenges 

A particular challenge in collecting this data set was synchronizing the data across the 

different machines being used to collected the different modalities. Part of this process 

was simplified by running synchronization tasks before several of experiments, but 

considerable effort was still required to properly synchronize data from the different 

modalities. Additionally, providing accurate real-time event annotation was a challenge 

(though in the end this greatly eased the synchronization process). Another challenge 

encountered was the sporadic nature of some of the data collection tools. For example, 

overhead video, audio, and/or frontal images is missing from a number of pairs. This 

lost data is largely the result of software failing to operate as expected.  

Similar challenges exist in analyzing and visualizing the current data in such a way 

that is meaningful. Many of the analytic tools available cater towards working in a par-

ticular modality, but there seem to be few tools that can effectively be used with multi-

ple modalities, outside of custom scripts in MATLAB and/or Python. 
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