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Abstract—Scheduling involves assigning variables to specific 

domains according to resources and wishes. Usually, many 

students are ready to present seminars at the same time. In 

order to maximize time, student seminars can hold 

concurrently in multiple venues. Manual scheduling of student 

seminars is tedious since it must be painstakingly planned to 

minimize clashing of panelists, who must be present when 

students present. This paper presents a genetic algorithm (GA) 

for automatically scheduling parallel student seminars to 

minimize clashes and inconvenience to panelists. Experimental 

results show that GA-based seminar scheduling is promising.  

Keywords-genetic algorithm; seminar scheduling; parallel 

seminars 

I.  INTRODUCTION 

Order is a critical factor that guarantees proper 
organization of events; where there is disorderliness, there is 
bound to be confusion and ultimately, loss of productivity. In 
the academic community seminars are examples of events 
which must be properly ordered. Student seminars are oral 
presentations which are part of the requirements for students’ 
academic programmes. Seminars are usually coordinated by 
a designated member of staff who takes into consideration 
the schedules of the panelists who should be physically 
present at the seminars. A student’s panelists comprise 
his/her project supervisors, co-supervisors and 
examiners/assessors.   

In cases where many students are ready to present 
seminars around the same period, two approaches can be 
adopted. On one hand, students can present seminars one-at-
a-time. Even though this approach eliminates the clashing of 
panelists, it creates the problem of having all panelists 
available throughout the seminar presentations. On the other 
hand, seminars can be scheduled to run concurrently. The 
latter approach minimizes the overall seminar presentation 
time, but requires that students are carefully scheduled such 
that the panelists who should be on ground during the 
presentations are not required to be in more that one seminar 
location at any given time.  

A timetable is “a table of events arranged according to 
the time when they take place” [1]. Timetables are very 
important for the university administration; they give 
students and teachers a schedule indicating the right time and 
the right place to be, the availability of the rooms, the time to 
be spent by the teachers for the period, the availability of the 

teachers and the students. Timetable problem is a real-life 
combinational problem concerned with scheduling of a 
certain number of events within a specific time frame. 
Therefore, seminar scheduling is an example of the 
timetabling problem.  

Seminar scheduling entails arranging time slots for 
seminar sessions while considering some constraints like 
number of participants, capacity of the venue, number of 
presentations by facilitators, and so on. Seminar scheduling 
problem is a problem related to assigning variables to 
specific domains according to resources and wishes. As 
population of participants gets larger and larger while 
resources like venues and supervisors remain constant or 
diminish, manually performing scheduling under these 
constraints becomes an incredibly hard problem. Also, each 
defined constraint restricts the area and the problem becomes 
harder, thus it takes a long time to get a solution by human-
based techniques. 

The main contribution of this paper is in the use of 
Genetic Algorithm (GA) to plan concurrent student seminars 
in order to avoid/minimize conflicts in the seminar 
schedules. GA is a search and optimization technique based 
on natural genetics and natural selection [2]. The rest of this 
paper is organized as follows: A review of related works is 
presented in Section II.  The seminar scheduling problem is 
explained in Section III. In Section IV, a detailed description 
of a GA for automatic seminar scheduling is presented.  
Experimental results appear in Section V, while the paper is 
concluded in Section VI. 

 

II. RELATED WORKS 

Although little has been written about seminar 
scheduling, it is closely related to other problems that have 
received significant research attention like the timetabling 
problem and examination scheduling [3].  

A genetic algorithm-based intelligent system was 
proposed in [4] for course scheduling in higher education. 
The GA helped to optimize the preparation of class 
schedules. The test result obtained 99 conflicting classes 
from 635 existing classes. The average non-conflict 
scheduling accuracy of the system is 84.4%.  

In [5], GA was used to develop an optimization-based 
prototype for nurse assignment that makes daily decisions on 
assigning nurses to patients. A prototype for assigning nurses 
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to patients with the purpose of minimizing excess workload 
on the nurses was developed.  

According to [6], scheduling classes is a time consuming 
job for administrators. Many constraints are defined for 
classrooms, faculty members, and courses, whereby, a course 
may require a classroom with some minimum number of 
seats and with some audiovisual equipment. Also, a faculty 
member may prefer not to teach two or more courses in a 
row, or may prefer teaching before certain time. In view of 
these, the researcher employed GA for finding a “good” 
schedule that results in an efficient use of each classroom, in 
relation to time, space, and constraints.  

Analytical Hierarchy Process (AHP) and GA have been 
combined to create a time table schedule that matches most 
of the teachers’ preferences [7]. The approach consists of the 
integration of a satisfaction function to the genetic algorithm. 
The parameters of the satisfaction function are the teachers’ 
loads and a set of scores calculated using the analytical 
hierarchy process. The key point of AHP in calculating the 
scores is the pairwise comparison of a set of teachers’ 
criteria. The new approach was consequently a combination 
of AHP and GA, and it gives rise to a new methodology to 
solve the time table problem that is called AHP/GA.  

Researchers in [8] presented an experimental 
investigation into solving the Assignment model using GA 
and Simulated Annealing. Various parameters affecting the 
algorithms are studied and their influence on convergence to 
the final optimum solution was shown. While solving this 
problem through GA, a unique encoding scheme was used 
together with Partially Matched Crossover (PMX).  

In their work, [9] combined the attributes of fuzzy logic 
and Genetic Algorithm to create a Fuzzy Genetic Heuristic 
(FGH) Algorithm which they used to solve the university 
course timetable problem. They posit that fuzzy logic models 
are easy to comprehend because they use linguistic terms and 
structured rules but do not come with search algorithms. 
Unlike GA, fuzzy models adopt techniques from other areas 
such as statistics and linear system identification. Thus they 
harnessed GA’s search ability by merging both paradigms 
and created FGH algorithm, which describes Fuzzy Set 
model using GA search attribute. FGH uses an indirect 
representation featuring event allocation priorities and 
invokes a timetable builder routine for constructing complete 
timetable.  

The work reported in [3] focused on the preference-based 
conference scheduling (PBCS) problem, in which 
preferences of conference attendees are taken into 
consideration. PBCS was formulated as an integer 
programming problem. Since the formulation is NP 
complete, simulated annealing was used to obtain good 
solutions to a PBCS for a real life conference that involved 
scheduling 213 sessions over 10 time-blocks for 520 
attendees who had preferences.   

III. SEMINAR SCHEDULING PROBLEM 

The seminar scheduling problem (SSP) is concerned with 
arranging concurrent student seminars in such a way that no 
panelists are required to be in more than one seminar at the 
same time, and the movement of panelists to different venues 
is minimized. A student’s panelists are his/her research 
supervisors and examiners/assessors. Examiners must be 

present during a student’s seminar because they ask 
questions and based on the student’s response, determine if 
the student can proceed to the next stage of study or not. It is 
important for supervisors to be present during their 
supervisees’ seminars because they might be required to 
clarify issues related to their supervisees’ research. 

Let S = {s1, s2, s3 … sNS} be a set of NS students and let L 
= { l1, l2, l3 … lNL} be a set of NL lecturers. The panelist 
matrix P is a NS x NL matrix. The entry Pij in the matrix is 1 
if the j

th
 lecturer lj is a panelist for the i

th
 student si. 

Otherwise, the entry is zero. A sample of the panelist matrix 
is shown in Fig. 1. From the first row of the matrix, l2 and l3 

are panelists for s1. Furthermore, from column one of the 
matrix, l1 is a panelist for only s3. Let the number of periods 
(i.e., time slots) and venues be denoted by NP and NV, 
respectively. Assume that the NS students are to be 
scheduled concurrently in NV venues within NP periods. Let 
a session be defined as a combination of a venue and a 
period. Fig. 2 shows how sessions are numbered from 
periods and venues. Note that the number of sessions, NSS = 
NV * NP. 

SSP involves assigning students to different sessions 
such that certain hard and soft constraints are satisfied. Hard 
constraints are constraints that need to be satisfied for a 
solution to be feasible. Soft constraints are constraints that 
must not necessarily be fulfilled, that is, they are allowed to 
be violated. 

The hard constraints for the SSP are: 

 Each student shall present exactly one seminar. 

 Only one student can present a seminar in a given 
session. 

 All the panelists for a student must be present during 
the student’s seminar.  

 No panelist can be in more than one venue at a time. 
 The only soft constraint considered seeks to minimize 

inconvenience resulting from lecturers moving from one 
venue to another at different time periods: 

Each panelist should remain in one venue throughout the 
entire seminar presentations. 

Fig. 3 shows two ways of scheduling student seminars 
within two venues and two periods. Panelists (obtained from 
Fig. 1) are shown alongside each student. Panelists causing 
hard constraint violations are shown in red, while those 
causing soft constraint violations are shown in green. There 
are two hard constraint violations from the seminar schedule 
of Fig. 3(a) since l2 and l5 are required to be in multiple 
venues at the same period; l2 is required to be in venue 1 and 
venue 2 in period 1, whereas l5 is required to be in both 
venues in period 2. Furthermore, there are two soft constraint 
violations from Fig. 3(a); l3 moves from venue 1 to venue 2, 
while l4 moves from venue 2 to venue 1. There are no hard 
constraint violations on Fig. 3(b). The only soft constraint 
violations are as a result of l2 and l5 changing venues. 

IV. GENETIC ALGORITHM 

Genetic Algorithm (GA) is a search algorithm which 
mimics the survival of the fittest strategy that occurs in the 
natural world [7]. It is an iterative search technique 
developed based on evolutionary genetics which seeks the 
best of a set of solutions [10]. GA follows five phases 
namely: generating an initial population, evaluating the 
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fitness of the chromosome, selection, crossover and 
mutation. The process of selection, crossover and mutation 
are iterated until the optimal solution is obtained [11]. This 
algorithm explores the search space and makes use of the 
generated knowledge to find a better population. A flowchart 
of the standard GA is presented in Fig. 4. The performance 
of GA is usually evaluated in terms of convergence rate and 
the number of generations to reach the optimal solution. 

 

 
Figure 1.  A Panelist Matrix with Four Students and Five Lecturers 

 

 
Period 1 Period 2 

Venue 1 Session 1 Session 4 

Venue 2 Session 2 Session 5 

Venue 3 Session 3 Session 6 

(a) 

 
Period 1 Period 2 Period 3 

Venue 1 Session 1 Session 3 Session 5 

Venue 2 Session 2 Session 4 Session 4 

(b) 

Figure 2.  Sessions (a) three venues and two periods (b) two venues and 

three periods 

 

 
Period 1 Period 2 

 

Venue 1 s1 (l2, l3) s4 (l4, l5) 
 

Venue 2 
s2 (l2, l4) s3 (l1, l3, l5)  

(a) 

 
Period 1 Period 2 

Venue 1 s1 (l2, l3) s3 (l1, l3, l5) 

Venue 2 
s4 (l4, l5) s2 (l2, l4) 

(b) 

Figure 3.   Constraint violations (a) Hard and soft constraints violations (b) 

Soft constraints violations 

A notable characteristic of GA is that it is a parallel 
population-based search with stochastic selection, crossover 
and mutation [12]. Secondly, GA works on the chromosome 

which is an encoded version of potential solution parameters 
rather than optimizing the parameters themselves [12]. 
Thirdly, GA uses fitness values obtained from objective 
functions without other artificial over engineered black box 
mathematics [7]. The user typically chooses the best 
structure of the last population as the final solution. The 
algorithm is complete when one of the following occurs: a 
specified tolerance threshold is achieved; a specified number 
of generations has passed; a specified amount of 
computational time has passed; or the solution fitness has 
plateaued [13].  

The inputs to the GA for solving the SSP are the number 
of venues NV, the number of periods NP, and the panelist 
matrix P. The output of the GA is the seminar schedule 
similar to those shown in Fig. 3. 

A. Chromosome Representation 

Each chromosome is a row vector having NS genes. The 
value in each gene determines the session in which a student 
presents his/her seminar. For example, the value of the first 
gene states the session during which s1 presents, the value of 
the second gene specifies the session during which s2 
presents, and so on. Because each student must present in a 
unique session, the values in the chromosome are distinct 
integers ranging from 1 to NSS. It is noteworthy that this 
chromosome representation ensures that the first two hard 
constraints are always satisfied. Fig. 5 shows how the 
seminar schedules shown in Fig. 3 are encoded as 
chromosomes. The chromosome in Fig. 5(a) indicates that 
s1, s2, s3 and s4 present in the first, second, fourth and third 
sessions respectively, while Fig. 5(b) shows that s1, s2, s3 
and s4 present in the first, fourth, third and second sessions, 
respectively. 

B. Fitness Function 

As mentioned in Section IV(A), the first two hard 
constraints have been taken care of from the chromosome 
representation. The third hard constraint is assumed to hold 
all the time. Thus once a student appears in a session, all the 
student’s panelists are assumed to be present. The fitness 
function therefore handles the last hard constraint and the 
only soft constraint. The last hard constraint states that 
panelists can only be in one place at a time. A clash occurs 
when a panelist is required to be in different venues at the 
same period. Similarly, the soft constraint seeks to eliminate 
the inconvenience of panelists moving from one venue to the 
other. The fitness function F for the GA can be described 
mathematically using (1). 

 

)),(),(*100()(
1

iCMovementsiCClashesCF
NL

i




 

Where, NL is the number of lecturers; C is the 
chromosome; and Clashes(C, i) is a function that computes 
the number of times li is required to be in multiple venues at 
the same period, when chromosome C is used to generate the 
seminar schedule. Movements(C, i) is a function that 
computes the number of times li is required to move from 
one venue to another, when chromosome C is used to 
generate the seminar schedule. 

  Lecturers  

  
l1 l2 l3 l4 l5 

S
tu

d
en

ts
 s1 0 1 1 0 0 

s2 0 1 0 1 0 

s3 1 0 1 0 1 

s4 0 0 0 1 1 

 



International Conference on Information and Communication Technology and Its Applications (ICTA 2016) 

59 

 

 
Figure 4.  Flowchart of the Genetic algorithm process [14] 

Because hard constraints are more severe than soft 
constraints, the former are penalized 100 times more than the 
latter. The GA searches for the chromosome with the 
minimum fitness value (minimum total number of clashes 
and movements). The fitness values of the seminar schedule 
presented in Fig. 3(a) is 202 since there are two clashes and 
two movements of panelists. On the other hand, the schedule 
in Fig. 3(b) has a fitness value of 2 since all hard constraints 
were satisfied but panelists changed venues twice. 

C. Selection 

This process is used in the GA to determine which 
solutions are to be preserved and allowed to reproduce and 
which ones are to be discarded based on their fitness values. 
The primary objective of the selection operator is to retain 
the good solutions and eliminate the bad ones in a population 
and still keep the population size constant. The type of 
selection operator to be used is the rank selection, chosen for 
its ability to allow fittest individual to be selected. The 
fitness values of the chromosomes were used to sort them in 
ascending order. This prevents bias towards individuals that 
are highly fit, thereby reducing speedy convergence. 

D. Crossover 

The crossover operator is used to create new solutions 
from the existing solutions available in the mating pool after 
applying rank selection operator. Crossover exchanges the 
gene information between the solutions in the mating pool. 
Partially-mapped crossover was used in this work because it 
prevents duplication of genes. Crossover operators like 
single point crossovers and double point crossovers often 
result in duplication of genes indicating that a student 
presents in multiple sessions, violating the hard constraint 
that requires each student to present his/her seminar once. 

E. Mutation 

Mutation is the infrequent introduction of new features 
into the solution strings of the population pool to maintain 
diversity in the population. Mutation was achieved by 
swapping two randomly selected genes of a chromosome 
based on the probability of mutation. The mutation operator 
stops the algorithm from getting stuck in local minima. Fig. 6 
shows how mutation swaps a pair of genes (sessions) 
between two students. The first and third genes, which are 
shaded were swapped during mutation. 

F. Stopping Criteria 

Selection, crossover and mutation were repeated after 
generation of the initial population until one of the following 
conditions is satisfied: (i) the best fitness value of zero is 
obtained, signifying that no constraint is violated, (ii) the 
maximum number of generations is reached, (iii) or the 
fitness value does not improve within a preset number of 
generations. 

V. EXPERIMENTAL RESULTS 

This section discusses experimental results used to 
validate the proposed GA. The GA was implemented using 
the MATLAB® simulation tool. 

A. Evaluation Criteria 

The fitness values and running times were used to 
evaluate the performance of the developed GA-based 
seminar scheduler. 

B. Experimental Dataset 

Eleven datasets were used to evaluate the GA-based 
student seminar scheduler. Table I shows the characteristics 
of each dataset. The first dataset comprises real data obtained 
from the Department of Computer Science, Federal 
University of Technology, Minna when Masters students of 
the Department presented their final thesis seminars in April 
2016. The panelist matrix for that dataset is shown in Table 
II. For the other ten datasets, the number of venues, number 
of periods, and the panelist matrices were randomly 
generated such that each student had between two and four 
randomly selected panelists. Note that the second, third, 
fourth and fifth datasets have the same panelist matrix and 
number of sessions, but different combinations of number of 
venues and periods. 

C. Experimental Setup 

MATLAB R2010a was used to implement the GA. The 
experiments were carried out on a computer system having a 
processor speed of 2.4GHz as well as main memory capacity 
of 4GB, and running the 64-bit windows 7 operating system. 
The parameters used to run the GA experiments are as 
follows: the GA was halted after 1,000 generations or if the 
best fitness value obtained did not improve within 50 
generations. The probability of mutating each gene in the 
population is 0.02 while the probability of crossover is 0.9. 
All the experiments were run 30 times since GA is 
stochastic. 

No 

Yes 

Mutation 

Start 

Initialization 

Evaluation 

Selection 

Crossover 

End 

Meet stopping criteria 
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D. Results and Discussion 

Fig. 7 shows a seminar schedule generated by GA. The 
fitness value obtained from this schedule is four, since there 
are no panelist clashes but panelists had to change venue four 
times, as indicated by the green-colored panelists. 

The second, third, fourth and fifth datasets all have 12 
sessions as well as the same panelist matrix. They only differ 
in the number of venues and periods. Fig. 8 shows the 
relationship between the average fitness value and number of 
venues for a fixed number of sessions using the four datasets. 
It can be seen that as the number of venues increases, the 
number of constraint violations also increases. In the extreme 
case of excessive parallelism, there is only one period and 
multiple venues, so all seminars take place at once, resulting 
in significant constraint violations. On the other hand, when 
there is only one venue, there are no constraint violations 
because is no parallelism at all and each student presents in a 
distinct period. 

Table III shows the fitness values and execution time of 
GA for all the datasets. There are no results for Dataset 9, 
because the GA is programmed to compare the number of 
students with the number of sessions before actual execution 
starts. If the former is greater than the later, the GA displays 
an error message and terminates because hard constraint(s) 
are guaranteed to be violated when the number of students 
exceeds the number of sessions. Otherwise, the GA proceeds 
normally. The number of venues and periods for Dataset 9 
are two and twelve respectively, resulting in twenty four 
sessions, while the number of students is twenty seven. 
Fitness values for majority of the datasets shown in Table III 
are less than 100, indicating that only soft constraints were 
violated. This shows that the GA is highly successful in 
finding good seminar schedules. 

VI. CONCLUSION 

In this research work, a Genetic Algorithm was formulated 

for scheduling seminars. The GA seeks to minimize clashes 

among panelists and inconvenience due to panelists’ change 

of venues. Experimental results show that soft constraint 

violations regarding movement of panelists can hardly be 

avoided, whereas hard constraint violations can be avoided 

depending on the inputs to the GA.  In future, we plan to 

incorporate panelists’ preferences for period(s) in the GA. 

Furthermore, the GA can be improved so that empty 

sessions when no students are presenting do not appear 

between sessions when students are presenting. For 

example, sessions 3, 5 and 11 on Fig. 7 are empty, so they 

should appear at later periods, so that students and lecturers 

can finish with the seminar as soon as possible. 

 

1 2 3 4  1 2 3 4 

1 2 4 3  1 4 3 2 
          (a)           (b) 

Figure 5.  Chromosome representation for seminar schedule (a) 

Chromosome for Fig. 3(a); (b) Chromosome for Fig. 3(b) 

 

 

1 2 3 4  1 2 3 4 

2 4 1 3  1 4 2 3 
          (a)           (b) 

Figure 6.  Mutation (a) Before mutation (b) After mutation 

 

TABLE I.  SUMMARY OF THE DATASETS 

Dataset Number 

of venues 

Number of 

periods 

Number of 

students 

Number of 

Panelists 

1 2 7 11 13 
2 6 2 6 10 

3 4 3 6 10 

4 3 4 6 10 
5 2 6 6 10 

6 3 6 15 15 

7 3 8 20 18 
8 3 10 25 18 

9 2 12 27 20 

10 3 15 30 20 
11 2 20 40 20 

 

TABLE II.  PANELIST MATRIX FOR FIRST DATASET 

S
tu

d
e
n

ts
 

Lecturers 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 0 0 1 0 0 0 0 0 1 0 0 0 

2 0 1 1 0 1 0 0 0 0 0 0 0 0 

3 0 1 1 0 0 0 0 0 0 0 0 0 1 

4 1 0 1 0 0 0 0 0 0 0 1 0 0 

5 0 0 1 0 0 0 0 1 1 0 0 0 0 

6 1 0 0 0 0 1 0 0 0 0 0 1 0 

7 1 1 0 0 1 0 0 0 0 0 0 0 0 

8 0 1 0 0 0 0 1 0 0 0 0 0 0 

9 1 1 0 0 0 0 0 0 0 0 0 0 0 

10 1 1 0 0 1 0 0 0 0 0 0 0 0 

11 1 0 0 0 0 0 1 0 0 0 0 0 0 

 
 
 

 
 

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 

Venue 1 s1 

(l1, l4, l10) 

  s11 

(l1, l7) 

s9 

(l1, l2) 

 s8 

(l2, l7) 

Venue 2 s3 

(l2, l3, l13) 

s10 

(l1, l2, l5) 

s7 

(l1, l2, l5) 

s2 

(l2, l3, l5) 

s5 

(l3, l8, l9) 

s4 

(l1, l3, l11) 

s6 

(l1, l6, l12) 

Figure 7.  Generated schedule for first dataset 
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Figure 8.  Relationship between average fitness value and number of venues 

TABLE III.  FITNESS VALUES AND EXECUTION TIMES FOR GA 

Dataset 
Fitness Value   Execution Time (seconds) 

Mean Min Max 
 

Mean Min Max 

1 4.20 3.00 6.00 
 

0.90 0.56 1.64 

2 501.00 501.00 501.00 
 

0.53 0.39 0.69 

3 201.27 201.00 202.00 
 

0.51 0.37 0.74 

4 102.00 102.00 102.00 
 

0.40 0.28 0.48 

5 0.00 0.00 0.00 
 

0.01 0.00 0.02 

6 112.47 109.00 115.00 
 

1.27 0.57 3.52 

7 16.83 14.00 20.00 
 

2.21 0.96 3.71 

8 24.10 20.00 29.00 
 

2.88 1.30 4.94 

9 - - - 
 

- - - 

10 23.50 20.00 28.00 
 

2.17 1.27 6.54 

11 18.17 13.00 26.00   3.94 2.17 7.09 
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