

56

International Conference on Information and Communication Technology and Its Applications

(ICTA 2016)

Federal University of Technology, Minna, Nigeria

November 28 – 30, 2016

Concurrent Student Seminar Scheduling Using Genetic Algorithm

Ojoajogu Ajanya and Hamza O. Salami

Department of Computer Science, Federal University of Technology, Minna, Nigeria

ogajanya@yahoo.com, ho.salami@futminna.edu.ng

Abstract—Scheduling involves assigning variables to specific

domains according to resources and wishes. Usually, many

students are ready to present seminars at the same time. In

order to maximize time, student seminars can hold

concurrently in multiple venues. Manual scheduling of student

seminars is tedious since it must be painstakingly planned to

minimize clashing of panelists, who must be present when

students present. This paper presents a genetic algorithm (GA)

for automatically scheduling parallel student seminars to

minimize clashes and inconvenience to panelists. Experimental

results show that GA-based seminar scheduling is promising.

Keywords-genetic algorithm; seminar scheduling; parallel

seminars

I. INTRODUCTION

Order is a critical factor that guarantees proper
organization of events; where there is disorderliness, there is
bound to be confusion and ultimately, loss of productivity. In
the academic community seminars are examples of events
which must be properly ordered. Student seminars are oral
presentations which are part of the requirements for students’
academic programmes. Seminars are usually coordinated by
a designated member of staff who takes into consideration
the schedules of the panelists who should be physically
present at the seminars. A student’s panelists comprise
his/her project supervisors, co-supervisors and
examiners/assessors.

In cases where many students are ready to present
seminars around the same period, two approaches can be
adopted. On one hand, students can present seminars one-at-
a-time. Even though this approach eliminates the clashing of
panelists, it creates the problem of having all panelists
available throughout the seminar presentations. On the other
hand, seminars can be scheduled to run concurrently. The
latter approach minimizes the overall seminar presentation
time, but requires that students are carefully scheduled such
that the panelists who should be on ground during the
presentations are not required to be in more that one seminar
location at any given time.

A timetable is “a table of events arranged according to
the time when they take place” [1]. Timetables are very
important for the university administration; they give
students and teachers a schedule indicating the right time and
the right place to be, the availability of the rooms, the time to
be spent by the teachers for the period, the availability of the

teachers and the students. Timetable problem is a real-life
combinational problem concerned with scheduling of a
certain number of events within a specific time frame.
Therefore, seminar scheduling is an example of the
timetabling problem.

Seminar scheduling entails arranging time slots for
seminar sessions while considering some constraints like
number of participants, capacity of the venue, number of
presentations by facilitators, and so on. Seminar scheduling
problem is a problem related to assigning variables to
specific domains according to resources and wishes. As
population of participants gets larger and larger while
resources like venues and supervisors remain constant or
diminish, manually performing scheduling under these
constraints becomes an incredibly hard problem. Also, each
defined constraint restricts the area and the problem becomes
harder, thus it takes a long time to get a solution by human-
based techniques.

The main contribution of this paper is in the use of
Genetic Algorithm (GA) to plan concurrent student seminars
in order to avoid/minimize conflicts in the seminar
schedules. GA is a search and optimization technique based
on natural genetics and natural selection [2]. The rest of this
paper is organized as follows: A review of related works is
presented in Section II. The seminar scheduling problem is
explained in Section III. In Section IV, a detailed description
of a GA for automatic seminar scheduling is presented.
Experimental results appear in Section V, while the paper is
concluded in Section VI.

II. RELATED WORKS

Although little has been written about seminar
scheduling, it is closely related to other problems that have
received significant research attention like the timetabling
problem and examination scheduling [3].

A genetic algorithm-based intelligent system was
proposed in [4] for course scheduling in higher education.
The GA helped to optimize the preparation of class
schedules. The test result obtained 99 conflicting classes
from 635 existing classes. The average non-conflict
scheduling accuracy of the system is 84.4%.

In [5], GA was used to develop an optimization-based
prototype for nurse assignment that makes daily decisions on
assigning nurses to patients. A prototype for assigning nurses

International Conference on Information and Communication Technology and Its Applications (ICTA 2016)

57

to patients with the purpose of minimizing excess workload
on the nurses was developed.

According to [6], scheduling classes is a time consuming
job for administrators. Many constraints are defined for
classrooms, faculty members, and courses, whereby, a course
may require a classroom with some minimum number of
seats and with some audiovisual equipment. Also, a faculty
member may prefer not to teach two or more courses in a
row, or may prefer teaching before certain time. In view of
these, the researcher employed GA for finding a “good”
schedule that results in an efficient use of each classroom, in
relation to time, space, and constraints.

Analytical Hierarchy Process (AHP) and GA have been
combined to create a time table schedule that matches most
of the teachers’ preferences [7]. The approach consists of the
integration of a satisfaction function to the genetic algorithm.
The parameters of the satisfaction function are the teachers’
loads and a set of scores calculated using the analytical
hierarchy process. The key point of AHP in calculating the
scores is the pairwise comparison of a set of teachers’
criteria. The new approach was consequently a combination
of AHP and GA, and it gives rise to a new methodology to
solve the time table problem that is called AHP/GA.

Researchers in [8] presented an experimental
investigation into solving the Assignment model using GA
and Simulated Annealing. Various parameters affecting the
algorithms are studied and their influence on convergence to
the final optimum solution was shown. While solving this
problem through GA, a unique encoding scheme was used
together with Partially Matched Crossover (PMX).

In their work, [9] combined the attributes of fuzzy logic
and Genetic Algorithm to create a Fuzzy Genetic Heuristic
(FGH) Algorithm which they used to solve the university
course timetable problem. They posit that fuzzy logic models
are easy to comprehend because they use linguistic terms and
structured rules but do not come with search algorithms.
Unlike GA, fuzzy models adopt techniques from other areas
such as statistics and linear system identification. Thus they
harnessed GA’s search ability by merging both paradigms
and created FGH algorithm, which describes Fuzzy Set
model using GA search attribute. FGH uses an indirect
representation featuring event allocation priorities and
invokes a timetable builder routine for constructing complete
timetable.

The work reported in [3] focused on the preference-based
conference scheduling (PBCS) problem, in which
preferences of conference attendees are taken into
consideration. PBCS was formulated as an integer
programming problem. Since the formulation is NP
complete, simulated annealing was used to obtain good
solutions to a PBCS for a real life conference that involved
scheduling 213 sessions over 10 time-blocks for 520
attendees who had preferences.

III. SEMINAR SCHEDULING PROBLEM

The seminar scheduling problem (SSP) is concerned with
arranging concurrent student seminars in such a way that no
panelists are required to be in more than one seminar at the
same time, and the movement of panelists to different venues
is minimized. A student’s panelists are his/her research
supervisors and examiners/assessors. Examiners must be

present during a student’s seminar because they ask
questions and based on the student’s response, determine if
the student can proceed to the next stage of study or not. It is
important for supervisors to be present during their
supervisees’ seminars because they might be required to
clarify issues related to their supervisees’ research.

Let S = {s1, s2, s3 … sNS} be a set of NS students and let L
= { l1, l2, l3 … lNL} be a set of NL lecturers. The panelist
matrix P is a NS x NL matrix. The entry Pij in the matrix is 1
if the j

th
 lecturer lj is a panelist for the i

th
 student si.

Otherwise, the entry is zero. A sample of the panelist matrix
is shown in Fig. 1. From the first row of the matrix, l2 and l3

are panelists for s1. Furthermore, from column one of the
matrix, l1 is a panelist for only s3. Let the number of periods
(i.e., time slots) and venues be denoted by NP and NV,
respectively. Assume that the NS students are to be
scheduled concurrently in NV venues within NP periods. Let
a session be defined as a combination of a venue and a
period. Fig. 2 shows how sessions are numbered from
periods and venues. Note that the number of sessions, NSS =
NV * NP.

SSP involves assigning students to different sessions
such that certain hard and soft constraints are satisfied. Hard
constraints are constraints that need to be satisfied for a
solution to be feasible. Soft constraints are constraints that
must not necessarily be fulfilled, that is, they are allowed to
be violated.

The hard constraints for the SSP are:

 Each student shall present exactly one seminar.

 Only one student can present a seminar in a given
session.

 All the panelists for a student must be present during
the student’s seminar.

 No panelist can be in more than one venue at a time.
 The only soft constraint considered seeks to minimize

inconvenience resulting from lecturers moving from one
venue to another at different time periods:

Each panelist should remain in one venue throughout the
entire seminar presentations.

Fig. 3 shows two ways of scheduling student seminars
within two venues and two periods. Panelists (obtained from
Fig. 1) are shown alongside each student. Panelists causing
hard constraint violations are shown in red, while those
causing soft constraint violations are shown in green. There
are two hard constraint violations from the seminar schedule
of Fig. 3(a) since l2 and l5 are required to be in multiple
venues at the same period; l2 is required to be in venue 1 and
venue 2 in period 1, whereas l5 is required to be in both
venues in period 2. Furthermore, there are two soft constraint
violations from Fig. 3(a); l3 moves from venue 1 to venue 2,
while l4 moves from venue 2 to venue 1. There are no hard
constraint violations on Fig. 3(b). The only soft constraint
violations are as a result of l2 and l5 changing venues.

IV. GENETIC ALGORITHM

Genetic Algorithm (GA) is a search algorithm which
mimics the survival of the fittest strategy that occurs in the
natural world [7]. It is an iterative search technique
developed based on evolutionary genetics which seeks the
best of a set of solutions [10]. GA follows five phases
namely: generating an initial population, evaluating the

International Conference on Information and Communication Technology and Its Applications (ICTA 2016)

58

fitness of the chromosome, selection, crossover and
mutation. The process of selection, crossover and mutation
are iterated until the optimal solution is obtained [11]. This
algorithm explores the search space and makes use of the
generated knowledge to find a better population. A flowchart
of the standard GA is presented in Fig. 4. The performance
of GA is usually evaluated in terms of convergence rate and
the number of generations to reach the optimal solution.

Figure 1. A Panelist Matrix with Four Students and Five Lecturers

Period 1 Period 2

Venue 1 Session 1 Session 4

Venue 2 Session 2 Session 5

Venue 3 Session 3 Session 6

(a)

Period 1 Period 2 Period 3

Venue 1 Session 1 Session 3 Session 5

Venue 2 Session 2 Session 4 Session 4

(b)

Figure 2. Sessions (a) three venues and two periods (b) two venues and

three periods

Period 1 Period 2

Venue 1 s1 (l2, l3) s4 (l4, l5)

Venue 2
s2 (l2, l4) s3 (l1, l3, l5)

(a)

Period 1 Period 2

Venue 1 s1 (l2, l3) s3 (l1, l3, l5)

Venue 2
s4 (l4, l5) s2 (l2, l4)

(b)

Figure 3. Constraint violations (a) Hard and soft constraints violations (b)

Soft constraints violations

A notable characteristic of GA is that it is a parallel
population-based search with stochastic selection, crossover
and mutation [12]. Secondly, GA works on the chromosome

which is an encoded version of potential solution parameters
rather than optimizing the parameters themselves [12].
Thirdly, GA uses fitness values obtained from objective
functions without other artificial over engineered black box
mathematics [7]. The user typically chooses the best
structure of the last population as the final solution. The
algorithm is complete when one of the following occurs: a
specified tolerance threshold is achieved; a specified number
of generations has passed; a specified amount of
computational time has passed; or the solution fitness has
plateaued [13].

The inputs to the GA for solving the SSP are the number
of venues NV, the number of periods NP, and the panelist
matrix P. The output of the GA is the seminar schedule
similar to those shown in Fig. 3.

A. Chromosome Representation

Each chromosome is a row vector having NS genes. The
value in each gene determines the session in which a student
presents his/her seminar. For example, the value of the first
gene states the session during which s1 presents, the value of
the second gene specifies the session during which s2
presents, and so on. Because each student must present in a
unique session, the values in the chromosome are distinct
integers ranging from 1 to NSS. It is noteworthy that this
chromosome representation ensures that the first two hard
constraints are always satisfied. Fig. 5 shows how the
seminar schedules shown in Fig. 3 are encoded as
chromosomes. The chromosome in Fig. 5(a) indicates that
s1, s2, s3 and s4 present in the first, second, fourth and third
sessions respectively, while Fig. 5(b) shows that s1, s2, s3
and s4 present in the first, fourth, third and second sessions,
respectively.

B. Fitness Function

As mentioned in Section IV(A), the first two hard
constraints have been taken care of from the chromosome
representation. The third hard constraint is assumed to hold
all the time. Thus once a student appears in a session, all the
student’s panelists are assumed to be present. The fitness
function therefore handles the last hard constraint and the
only soft constraint. The last hard constraint states that
panelists can only be in one place at a time. A clash occurs
when a panelist is required to be in different venues at the
same period. Similarly, the soft constraint seeks to eliminate
the inconvenience of panelists moving from one venue to the
other. The fitness function F for the GA can be described
mathematically using (1).

)),(),(*100()(
1

iCMovementsiCClashesCF
NL

i




 

Where, NL is the number of lecturers; C is the
chromosome; and Clashes(C, i) is a function that computes
the number of times li is required to be in multiple venues at
the same period, when chromosome C is used to generate the
seminar schedule. Movements(C, i) is a function that
computes the number of times li is required to move from
one venue to another, when chromosome C is used to
generate the seminar schedule.

 Lecturers

l1 l2 l3 l4 l5

S
tu

d
en

ts
 s1 0 1 1 0 0

s2 0 1 0 1 0

s3 1 0 1 0 1

s4 0 0 0 1 1

International Conference on Information and Communication Technology and Its Applications (ICTA 2016)

59

Figure 4. Flowchart of the Genetic algorithm process [14]

Because hard constraints are more severe than soft
constraints, the former are penalized 100 times more than the
latter. The GA searches for the chromosome with the
minimum fitness value (minimum total number of clashes
and movements). The fitness values of the seminar schedule
presented in Fig. 3(a) is 202 since there are two clashes and
two movements of panelists. On the other hand, the schedule
in Fig. 3(b) has a fitness value of 2 since all hard constraints
were satisfied but panelists changed venues twice.

C. Selection

This process is used in the GA to determine which
solutions are to be preserved and allowed to reproduce and
which ones are to be discarded based on their fitness values.
The primary objective of the selection operator is to retain
the good solutions and eliminate the bad ones in a population
and still keep the population size constant. The type of
selection operator to be used is the rank selection, chosen for
its ability to allow fittest individual to be selected. The
fitness values of the chromosomes were used to sort them in
ascending order. This prevents bias towards individuals that
are highly fit, thereby reducing speedy convergence.

D. Crossover

The crossover operator is used to create new solutions
from the existing solutions available in the mating pool after
applying rank selection operator. Crossover exchanges the
gene information between the solutions in the mating pool.
Partially-mapped crossover was used in this work because it
prevents duplication of genes. Crossover operators like
single point crossovers and double point crossovers often
result in duplication of genes indicating that a student
presents in multiple sessions, violating the hard constraint
that requires each student to present his/her seminar once.

E. Mutation

Mutation is the infrequent introduction of new features
into the solution strings of the population pool to maintain
diversity in the population. Mutation was achieved by
swapping two randomly selected genes of a chromosome
based on the probability of mutation. The mutation operator
stops the algorithm from getting stuck in local minima. Fig. 6
shows how mutation swaps a pair of genes (sessions)
between two students. The first and third genes, which are
shaded were swapped during mutation.

F. Stopping Criteria

Selection, crossover and mutation were repeated after
generation of the initial population until one of the following
conditions is satisfied: (i) the best fitness value of zero is
obtained, signifying that no constraint is violated, (ii) the
maximum number of generations is reached, (iii) or the
fitness value does not improve within a preset number of
generations.

V. EXPERIMENTAL RESULTS

This section discusses experimental results used to
validate the proposed GA. The GA was implemented using
the MATLAB® simulation tool.

A. Evaluation Criteria

The fitness values and running times were used to
evaluate the performance of the developed GA-based
seminar scheduler.

B. Experimental Dataset

Eleven datasets were used to evaluate the GA-based
student seminar scheduler. Table I shows the characteristics
of each dataset. The first dataset comprises real data obtained
from the Department of Computer Science, Federal
University of Technology, Minna when Masters students of
the Department presented their final thesis seminars in April
2016. The panelist matrix for that dataset is shown in Table
II. For the other ten datasets, the number of venues, number
of periods, and the panelist matrices were randomly
generated such that each student had between two and four
randomly selected panelists. Note that the second, third,
fourth and fifth datasets have the same panelist matrix and
number of sessions, but different combinations of number of
venues and periods.

C. Experimental Setup

MATLAB R2010a was used to implement the GA. The
experiments were carried out on a computer system having a
processor speed of 2.4GHz as well as main memory capacity
of 4GB, and running the 64-bit windows 7 operating system.
The parameters used to run the GA experiments are as
follows: the GA was halted after 1,000 generations or if the
best fitness value obtained did not improve within 50
generations. The probability of mutating each gene in the
population is 0.02 while the probability of crossover is 0.9.
All the experiments were run 30 times since GA is
stochastic.

No

Yes

Mutation

Start

Initialization

Evaluation

Selection

Crossover

End

Meet stopping criteria

International Conference on Information and Communication Technology and Its Applications (ICTA 2016)

60

D. Results and Discussion

Fig. 7 shows a seminar schedule generated by GA. The
fitness value obtained from this schedule is four, since there
are no panelist clashes but panelists had to change venue four
times, as indicated by the green-colored panelists.

The second, third, fourth and fifth datasets all have 12
sessions as well as the same panelist matrix. They only differ
in the number of venues and periods. Fig. 8 shows the
relationship between the average fitness value and number of
venues for a fixed number of sessions using the four datasets.
It can be seen that as the number of venues increases, the
number of constraint violations also increases. In the extreme
case of excessive parallelism, there is only one period and
multiple venues, so all seminars take place at once, resulting
in significant constraint violations. On the other hand, when
there is only one venue, there are no constraint violations
because is no parallelism at all and each student presents in a
distinct period.

Table III shows the fitness values and execution time of
GA for all the datasets. There are no results for Dataset 9,
because the GA is programmed to compare the number of
students with the number of sessions before actual execution
starts. If the former is greater than the later, the GA displays
an error message and terminates because hard constraint(s)
are guaranteed to be violated when the number of students
exceeds the number of sessions. Otherwise, the GA proceeds
normally. The number of venues and periods for Dataset 9
are two and twelve respectively, resulting in twenty four
sessions, while the number of students is twenty seven.
Fitness values for majority of the datasets shown in Table III
are less than 100, indicating that only soft constraints were
violated. This shows that the GA is highly successful in
finding good seminar schedules.

VI. CONCLUSION

In this research work, a Genetic Algorithm was formulated

for scheduling seminars. The GA seeks to minimize clashes

among panelists and inconvenience due to panelists’ change

of venues. Experimental results show that soft constraint

violations regarding movement of panelists can hardly be

avoided, whereas hard constraint violations can be avoided

depending on the inputs to the GA. In future, we plan to

incorporate panelists’ preferences for period(s) in the GA.

Furthermore, the GA can be improved so that empty

sessions when no students are presenting do not appear

between sessions when students are presenting. For

example, sessions 3, 5 and 11 on Fig. 7 are empty, so they

should appear at later periods, so that students and lecturers

can finish with the seminar as soon as possible.

1 2 3 4 1 2 3 4

1 2 4 3 1 4 3 2
 (a) (b)

Figure 5. Chromosome representation for seminar schedule (a)

Chromosome for Fig. 3(a); (b) Chromosome for Fig. 3(b)

1 2 3 4 1 2 3 4

2 4 1 3 1 4 2 3
 (a) (b)

Figure 6. Mutation (a) Before mutation (b) After mutation

TABLE I. SUMMARY OF THE DATASETS

Dataset Number

of venues

Number of

periods

Number of

students

Number of

Panelists

1 2 7 11 13
2 6 2 6 10

3 4 3 6 10

4 3 4 6 10
5 2 6 6 10

6 3 6 15 15

7 3 8 20 18
8 3 10 25 18

9 2 12 27 20

10 3 15 30 20
11 2 20 40 20

TABLE II. PANELIST MATRIX FOR FIRST DATASET

S
tu

d
e
n

ts

Lecturers

 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 0 0 1 0 0 0 0 0 1 0 0 0

2 0 1 1 0 1 0 0 0 0 0 0 0 0

3 0 1 1 0 0 0 0 0 0 0 0 0 1

4 1 0 1 0 0 0 0 0 0 0 1 0 0

5 0 0 1 0 0 0 0 1 1 0 0 0 0

6 1 0 0 0 0 1 0 0 0 0 0 1 0

7 1 1 0 0 1 0 0 0 0 0 0 0 0

8 0 1 0 0 0 0 1 0 0 0 0 0 0

9 1 1 0 0 0 0 0 0 0 0 0 0 0

10 1 1 0 0 1 0 0 0 0 0 0 0 0

11 1 0 0 0 0 0 1 0 0 0 0 0 0

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Venue 1 s1

(l1, l4, l10)

 s11

(l1, l7)

s9

(l1, l2)

 s8

(l2, l7)

Venue 2 s3

(l2, l3, l13)

s10

(l1, l2, l5)

s7

(l1, l2, l5)

s2

(l2, l3, l5)

s5

(l3, l8, l9)

s4

(l1, l3, l11)

s6

(l1, l6, l12)

Figure 7. Generated schedule for first dataset

International Conference on Information and Communication Technology and Its Applications (ICTA 2016)

61

Figure 8. Relationship between average fitness value and number of venues

TABLE III. FITNESS VALUES AND EXECUTION TIMES FOR GA

Dataset
Fitness Value Execution Time (seconds)

Mean Min Max

Mean Min Max

1 4.20 3.00 6.00

0.90 0.56 1.64

2 501.00 501.00 501.00

0.53 0.39 0.69

3 201.27 201.00 202.00

0.51 0.37 0.74

4 102.00 102.00 102.00

0.40 0.28 0.48

5 0.00 0.00 0.00

0.01 0.00 0.02

6 112.47 109.00 115.00

1.27 0.57 3.52

7 16.83 14.00 20.00

2.21 0.96 3.71

8 24.10 20.00 29.00

2.88 1.30 4.94

9 - - -

- - -

10 23.50 20.00 28.00

2.17 1.27 6.54

11 18.17 13.00 26.00 3.94 2.17 7.09

 REFERENCES

[1] Collins Dictionary, “Timetable,” retrieved 16th October, 2015 from
https://www.collinsdictionary.com/dictionary/english/timetable.

[2] D. A. Singh, E. Leavline, R. Priyanka, and P. Priya, “Dimensionality
reduction using genetic algorithm for improving accuracy in medical
diagnosis,” I.J. Intelligent Systems and Applications, vol. 8 no. 1, pp.
67-73, 2016.

[3] S. E. Sampson, “Practical implications of preference-based
conference ccheduling.,” Production and Operations Management,
vol. 13 no. 3, pp. 205-215, 2004.

[4] A. Mardiyono, “An intelligent system for course scheduling in higher
educations,” International Journal of Information Technology and
Business Management, vol. 32 no. 1, pp. 29-34, 2014.

[5] P. Punnakitikashem, J. M. Rosenberger, D. B. Behan, R. L. Baker,
and K. Goss, “An optimization-based prototype for nurse
assignment,” Proc. 7th Asian Pacific industrial engineering and
management systems conference, 2006, pp. 17- 20.

[6] K. Ellingsen, and M. Penaloza, “A genetic algorithm approach for
finding a good course schedule,” South Dakota School of Mines and
technology 2003, unpublished.

[7] I. Sbiety, M. Dbouk, and H. Kobeissi, “Combining the analytical
hierachy process and the genetic algorithm to solve the timetable
problem,” International Journal of Software Engineering and
Applications (IJSEA) vol. 5 no. 4, pp. 39-50, 2014.

[8] A. Sahu, and R. Tapadar, “ Solving the assignment problem using
genetic algorithm and simulated annealing,” IMECS, pp. 762-765,
2006.

[9] A. Chaudhuri, and K. De, “Fuzzy genetic heuristic for university
course timetable problem, “ International Journal of Advances in Soft
Computing and its Applications, vol. 2 no. 1, pp.100-123, 2010.

[10] T. Engin, “Genetıc algorithm optimization method in the timetable
schedules of public transportation,” International Journal Of
Engineering Sciences & Research Technology, vol. 3 no. 5, pp. 555-
562, 2014.

[11] N. Kumar, and R. K. Karambir, “A comparative analysis of PMX,
CX and OX crossover operators for solving traveling salesman
problem,” International Journal of Latest Research in Science and
Technology, vol. 1 no. 2, pp 98 – 101, 2012.

[12] M. Tabassum, and K. Mathew, “A genetic algorithm analysis towards
optimization solutions,” International Journal of Digital Information
and Wireless Communications, vol. 4 no. 1, pp. 124-142, 2014.

[13] O. Al Jadaan, L. Rajamani, and C. R. Rao, “Improved selection
operator for GA,” Journal of Theoretical & Applied Information
Technology,” vol. 4 no. 4, pp. 269-277, 2008.

[14] W.-J Shyr, “Parameters determination for optimum design by
evolutionary algorithm,” INTECH Open Access Publisher, 2010.

