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Abstract—Supervisory Control and Data Acquisition (SCADA) 

system malware have contributed to the degradation of most 

critical installations across the globe, especially the power 

grids. This study seeks to investigate the dynamics of spread of 

malware targeted at SCADA systems on smart-grid 

electricity networks. We develop a mathematical model for 

the propagation of SCADA malware. The infectious-free and 

endemic equilibrium are obtained, with the former tested and 

found to be locally asymptotically stable. We investigate using 

numerical simulations the effects of antivirus, and the 

combination of vulnerability scanning and security patches. 

Our results emphasize the importance of the proposed 

countermeasures at reducing or eliminating the risks posed by 

the SCADA system malware.  

Keywords – SCADA; Smart Grid; Reproduction Number; 

Local Stability; Programming logic controller  

I. INTRODUCTION 

According to the 2016 Digital Cyber Crime Unit of 
Microsoft Corporation, malware attacks cost global economy 
an estimated 3 trillion US Dollars annually [1]. This is higher 
than entire GDP estimate of Africa in 2015 [2], [3], and 
approximately the external reserve of the People’s Republic 
of China which stood at about 3.17 trillion US Dollars as at 
September 2016 [4]. 

In this modern era, there is an increasing spate of 
dependency on the effectiveness and efficiency of a well-
structured electric power system, a major infrastructure in 
the economic development of a country or society and also a 
backbone to the proper functioning of other critical 
infrastructures, which very much need electric power to 
function at full capacity. These include infrastructures such 
as telecommunications, internet, water, air traffic control and 
transportation [5]. Though these infrastructures can operate 
without main power supply for a short period of time, in the 
long run, longer and larger outages in power may put them in 
jeopardy, and as a result, creating a crippling effect on the 
economy. These power outages can be as a result of 
technical or/and operational faults. However, over the years, 
they have also been caused by targeted malware attacks on 
the Supervisory Control and Data Acquisition (SCADA) 

systems, which control the flow of data and information on 
most modern power grids. 

Control systems such as SCADA systems are structured 
to achieve/maintain set goals by reducing the probability of 
unwanted behavior, to meet demand of the critical 
infrastructure the system is controlling, and to obtain 
maximum production profit. SCADA systems are mostly 
found in critical national infrastructures such as the electric 
power grid, transportation systems and oil and gas 
distributions. And it is because of their critical nature that 
these SCADA systems remain at high risk of attack from an 
instantaneously growing set of attackers, who are highly 
skilled and motivated. SCADA systems consist of several 
components including programming logic controllers 
(PLCs)/remote terminal units, which communicate with the 
SCADA servers and perform most of the supervisory and 
overriding controls, such as controlling continuous flow of 
signals, and providing enabling conditions for fault 
detention. 

To effectively run a functional power grid, there is a 
strong dependency on SCADA systems. But keeping the 
systems secure and immune to malware attacks from 
external forces, as well as internally generated errors, is very 
essential in avoiding outages. This is a massive challenge 
because of the complexity of the SCADA systems and their 
operation on real-time, as well as their connectivity to the 
internet, all of which makes the systems perform their 
various duties. 

Malware attacks have over time evolved from the more 
common internet worm and virus attacks to more precise 
attacks on target systems. While there have been significant 
damages by these internet worms and virus attacks, present 
set of malware are designed to specifically steal information 
which are considered confidential, take control of systems 
for malicious purposes, create pathways (backdoors) through 
which other attacks can be launched or cause complete 
breakdown of targeted infrastructures. A typical example of 
such malware is Stuxnet [6]. 

Malware attacks on SCADA systems vary from mere 
invasive forms (e.g. to steal confidential information or to 
analysis the traffic of power supply by the system) to more 
invasive forms (e.g. to take control of the system or to cause 
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a disruption in the normal functions of the systems) [7]. 
Figure 1 depicts a SCADA system malware attack. 

In this paper, we investigate the effectiveness of existing 
control strategies for SCADA system malware, specifically, 
the use of antivirus signatures, and also propose a new 
control strategy, which combines vulnerability scanning and 
implementation of security patches. 

The ensuing contents of this paper are organized thus: 
Section II describes related works. Section III introduces the 
proposed model, as well as its variables and parameters. In 
Section IV, the equilibrium points, effective reproduction 
number and the local stability of the infectious-free 
equilibrium point are presented. Section V presents the 
numerical simulations and analysis of obtained results. The 
study is finally concluded in Section VI. 

II. RELATED WORKS 

The need to fully grasp the dynamics of the spread of 
various malwares has over the years necessitated the 
formulation of various models. The use of epidemiology in 
many of the  models has been inspired by the near 
similarities which the spread of malware share with 
biological virus [8]. Mathematically, epidemiology has 
developed quite rapidly since the mid 20th century [9].  

One main procedure used in epidemiology is application 
of a compartmental model, where the population is divided 
into various sectors according to their epidemic status. 
Another important procedure entails the use of a system of 
differential equations. 

Many existing models of malware propagation find their 
root in some classical classic epidemiology models including 
[10]–[13], and often consider malware attacks on computer 
systems. For instance, [9] developed an SIR model to 
determine the dynamics of malware attacks on computer 
networks. Misra, Verma and Sharma [14] also focused on 
computer network. Their model considered two states: 
infected and susceptible. The effect of anti-malware was 
equally investigated. Liu, Liu, Liu, Cui, and Huang [15] 
proposed a new compartmental model. They however 
investigated the effect of heterogeneous immunization on the 
spread of the malware. Piqueira, Vasconcelos, Gabriel and 
Araujo [16], on their part, considered more states. 
Specifically, using simple systems identification techniques, 
they developed a model named SAIC (Susceptible, 
Antidotal, Infectious, Contaminated), based on the SIR 
model [10]–[12]. In [17], the SIS model was modified to 
include what was termed a re-introduction parameter, which 
represents the  re-introduction of an existing computer virus 
or the introduction of a new virus. 

Few studies have considered spread of malware on other 
systems. One of these is the work of [18]. They combined 
generic epidemiological models with graph theory to model 
and monitor the evolution of malware that target telephony 
networks, specifically, the Private Branch eXchanges (PBX). 

In modeling attacks on SCADA systems, studies have 
considered different SCADA systems, and focused on 
various attacks. While many have modeled other attacks few 
studies have attempted malware attacks on SCADA 
networks. 

On smart-grid/electric power systems, [19] presented a 
framework that models a category of cyber-physical 
switching vulnerabilities. Chopade, Bikdash, and Kateeb 
[20] proposed a flexible and extensible framework for 
survivability of smart –grid and SCADA systems. They 
considered survival under severe emergencies, vulnerabilities 
and WMD attacks. The work of [21] focused on the 
development of a novel hierarchical method applied to Petri 
nets to model coordinated attacks on smart grid, while that of 
[22] entailed the simulation and evaluation of the impacts of 
data integrity attacks on automatic generation control. 

Regarding other SCADA systems, [23], focusing on 
stealthy deception attacks, proposed some enhanced 
hydrodynamic models which were used for detection of 
physical faults and cyber attacks to automated canal systems; 
while an aspect-oriented model for evaluating the security of 
automotive cyber-physical systems was proposed by [24]. 
They focused on four attacks: man-in-the-middle, fuzz, 
interruption and replay attacks. 

On the other hand, in modeling attacks that affect any 
type of SCADA system, [25] and [26] proposed models for 
intrusion detection. While in the former, the models were 
Modus/TCP-based, in the latter study, behavioral modeling 
was applied. Another study, by [27], entails a SCADA 
security framework which includes real-time monitoring, 
anomaly detection, impact analysis, and mitigation 
strategies, and the proposal and evaluation of a new 
algorithm which considers both password policies and port 
auditing for evaluating cybersecurity.  

One of the few studies, however, that considered 
malware propagation on SCADA networks is [28]. The 
authors modeled Stuxnet attack using Boolean Logic Driven 
Markov Processes (BDMP). 

III. FORMULATION OF MODEL 

A model formulation involves a process whereby the 
basic assumptions of the model are clearly stated while 
relating these assumptions from the real world to the 
mathematical model [12]. The assumptions of the proposed 
model include: 

 The entire population is divided into four (4) states 
i.e. the Vulnerable Class, the Infectious Class, the 
Immune Class and the Recovered Class; all based on 
their epidemiological status. 

 Every new PLC added to the network is considered 
to be vulnerable, while a few of them are considered 
to be infected. 

 The rate at which new PLCs are added to the 
network and existing ones which die due to non-
infectious reason is assumed to be constant. 

 The active population includes all the PLCs. 

 There is a vertical transmission into the infectious 
class as a result of connectivity to the internet. 

 It is assumed that there is an external factor i.e. a 
Universal Serial Bus (USB) device that can be 
introduced into the smart grid network, as mountable 
devices, to transfer and copy files. 

 All model parameters are constant. 

 All interactions within the network occur 
homogeneously. 
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Figure 1.  Model of a SCADA system malware attack 

Another basic procedure of modelling is the description 
of the various notations, as well as the parameters used in the 
formulation of the model.  

The various notations are described below: 

 V(t), which represents the number of vulnerable 
SCADA PLCs/software-based remote terminal units 
(RTUs) within each substations over an electric 
smart grid network at time, t, after connection has 
been established. 

 I(t), which represents the number of infectious 
SCADA PLCs/RTUs within each substations over 
an electric smart-grid network at time, t, after 
connection has been established. 

 IMUN(t), which represents the number of immune 
SCADA PLCs/RTUs within each substations over 
an electric smart grid network at time, t, after 
connection has been established. 

 R(t), which represents the number of recovered 
SCADA PLCs/RTUs within each substations over 
an electric smart grid network at time, t, after 
connection has been established. 

 USB(t), which represents the number of Universal 
Serial Bus (USB) devices used by employees on any 
of the substations within an electric smart grid 
network at time, t, after connection has been 
established. 

 N(t), which represents the total number of SCADA 
PLCs/RTUs within each substations over an electric 
smart grid network at time, t, after connection has 
been established. 

 
The following are the parameters used in the model: 

 𝛼 is the constant rate at which new PLCs are, on the 
average, added to the electric smart grid network. 

 𝑝 is the probability of recruiting PLCs from 𝛼 
number of PLCs. 

 β is the constant rate of interaction of the vulnerable 
class with the infectious class. 

 𝛾 is the natural death rate or death due to non-
infectious reason. 

 𝑎1 is the proportion of time of scanning due to 
implementation of vulnerability scanning of the 
network. 

 𝑎2 is the rate of the effectiveness of detection of 
vulnerabilities due to vulnerability scanning of the 
network. 

 𝑎3 is the rate of removal of vulnerabilities due to 
implementation of security patches on the network. 

 𝜃 is the rate of vertical transmission of infected 
PLCs into the network. 

 𝜇 is the rate of recovery due to application of 
antivirus. 
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 𝛿 is the death rate due to SCADA malware attack on 
the electric smart grid network. 

 𝜑 is the rate of natural recruitment of Universal 
Serial Bus (USB) devices into the network. 

 
A VIMR (Vulnerable Class, Infectious Class, Immune 

Class and Recovered Class) model, depicted in Figure 2, is 
proposed to explain the dynamics of spread of malicious 
codes. The total size of the population is N, where N = V + I 
+ M + R, and varies with time.  

 
Figure 2.  The Flow of Malicious Codes into a Smart Grid Network 

Our main aim is to study the dynamics of SCADA 
system malware and based on our assumptions in the smart 
grid network, the dynamics of the SCADA system malware 
consists of the following system of ordinary differential 
equations: 

𝑑𝑉(𝑡)

𝑑𝑡
=  𝛼𝑝 − 𝛽𝑉 𝑡 𝐼 𝑡 − 𝛾𝑉 𝑡 − 𝑎1𝑎2𝑎3𝑉(𝑡) 

 
𝑑𝐼 𝑡 

𝑑𝑡
=  𝛼𝜃𝐼 𝑡 − 𝛽𝑉 𝑡 𝐼 𝑡 − 𝜇𝐼 𝑡 − 𝛿𝐼 𝑡 − 𝛾𝐼 𝑡  

 
𝑑𝐼𝑀𝑈𝑁(𝑡)

𝑑𝑡
=  𝑎1𝑎2𝑎3𝑉(𝑡) − 𝛾𝐼𝑀𝑈𝑁 𝑡  

𝑑𝑅(𝑡)

𝑑𝑡
=  𝜇𝐼 𝑡 − 𝛾𝑅 𝑡  (1) 

An external factor was also considered but do not 
constitute part of the population of the entire system, i.e.  
 

𝑑𝑈𝑆𝐵(𝑡)

𝑑𝑡
=  𝜑𝑈𝑆𝐵 𝑡 − 𝜇𝑈𝑆𝐵 𝑡  

 

Thus, the total population of SCADA system PLCs is 
given as 
 

𝑑𝑁(𝑡)

𝑑𝑡
=  𝛼 − 𝛾𝑁 −  𝛿 − 𝛼𝜃 𝐼(𝑡) 

  
 

Letting  
 

𝐼𝑀𝑈𝑁 𝑡 = 𝑀 𝑡 ;   𝑈𝑆𝐵 𝑡 =  𝑈 𝑡 ;   𝑎𝑛𝑑𝑎1𝑎2𝑎3 = 𝑎 
 
The system in (1) above as well as the external factor 

becomes 

𝑑𝑉(𝑡)

𝑑𝑡
=  𝛼𝑝 − 𝛽𝑉 𝑡 𝐼 𝑡 − 𝛾𝑉 𝑡 − 𝑎𝑉(𝑡) 

  

𝑑𝐼(𝑡)

𝑑𝑡
=  𝛽𝑉 𝑡 +  𝛼𝜃 − 𝜇 − 𝛿 − 𝛾  𝐼(𝑡) 

    
𝑑𝑀(𝑡)

𝑑𝑡
=  𝑎𝑉(𝑡) − 𝛾𝑀 𝑡  

  

𝑑𝑅(𝑡)

𝑑𝑡
=  𝜇𝐼 𝑡 − 𝛾𝑅 𝑡  (2) 

And 

𝑑𝑈(𝑡)

𝑑𝑡
=   𝜑 − 𝜇 𝑈 𝑡  

 

IV. INFECTIOUS-FREE AND ENDEMIC EQUILIBRIUM POINTS 

AND EFFECTIVE REPRODUCTION NUMBER 

Points whereby the SCADA systems and electric smart 
grid configuration do not change with time or when no force 
is acting on the system, are known as the equilibrium points. 
We obtained the equilibrium points and also tested for 
stability of the equilibrium points. 

A. Equilibrium Points 

For equilibrium points, we have that  
 

𝑑𝑉(𝑡)

𝑑𝑡
=

𝑑𝐼(𝑡)

𝑑𝑡
=

𝑑𝑀(𝑡)

𝑑𝑡
=

𝑑𝑅(𝑡)

𝑑𝑡
= 0 

We obtain Infectious-Free Equilibrium 

𝐸0 =  
𝛼𝑝

 𝛾 + 𝑎 
, 0,

𝑎𝛼𝑝

𝛾(𝛾 + 𝑎)
, 0 

 
And the Endemic Equilibrium 

 

𝐸∗  

=  
𝜇 + 𝛿 + 𝛾 − 𝛼𝜃

𝛽
,
 𝑎 + 𝛾  𝛼𝜃 − 𝜇 − 𝛿 − 𝛾 − 𝛽𝛼𝑝

 𝛼𝜃 − 𝜇 − 𝛿 − 𝛾 𝛽
,

 𝑎 𝜇 + 𝛿 + 𝛾 − 𝛼𝜃 

𝛽𝛾
, 𝜇  

 𝑎 + 𝛾  𝛼𝜃 − 𝜇 − 𝛿 − 𝛾 − 𝛽𝛼𝑝

𝛾 𝛼𝜃 − 𝜇 − 𝛿 − 𝛾 𝛽
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B. Effective Reproduction Number and Local Stability  

A major procedure in modeling the dynamics of malware 
is the effective reproduction number denoted by 𝑅0and it 
also helps in predicting part of the population which will not 
be infected. 

System (2) has an infectious-free equilibrium whereby 
the infective part of the population is zero while the 
vulnerable and immune remain positive denoted by  

𝐸0 =  𝑉, 𝐼 = 0, 𝑀, 𝑅 = 0 

Thus, analyzing the local stability of the infectious-free 
equilibrium give the endemic point whereby there will be a 
rise or reduction to zero when a small number of infectious 
PLCs are brought into a highly vulnerable population.  

Eliminating R, system (2) reduces to  
 

𝑑𝑉(𝑡)

𝑑𝑡
=  𝛼𝑝 − 𝛽𝑉 𝑡 𝐼 𝑡 − 𝛾𝑉 𝑡 − 𝑎𝑉(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
=  𝛽𝑉 𝑡 +   𝛼𝜃 − 𝜇 − 𝛿 − 𝛾  𝐼 𝑡  (3) 

We obtain the effective reproduction number 𝑅0 by 

investigating the local stability of the infectious-free 

equilibrium. 

 
Theorem 1: The infectious-free equilibrium is locally 

asymptotically stable whenever 𝑅0 < 1 

 

We obtain the Jacobian of system (3) at infectious-free 

equilibrium 

𝐽 =  
−(𝛾 + 𝑎) −𝛽𝑉(𝑡)

0 𝛽𝑉 𝑡 + [𝛼𝜃 − 𝜇 − 𝛿 − 𝛾]
 

Reducing the matrix to an upper triangular matrix, we 
have a characteristic equation as  

𝐽0

=

 
 
 
 
 −𝛾 − 𝑎

−𝛽𝛼𝑝

𝛾 + 𝑎

0
− −𝛽𝛼𝑝 − 𝛼𝛾𝜃 − 𝑎𝛼𝜃 + 𝛾𝜇 + 𝑎𝛾 + 𝛿𝛾 + 𝑎𝛿 + 𝛾2 + 𝑎𝛾 

𝛾 + 𝑎  
 
 
 
 



We assume our effective reproduction number to be the 

leading Eigen value, thus we assume  

𝑅0

=
− −𝛽𝛼𝑝 − 𝛼𝛾𝜃 − 𝑎𝛼𝜃 + 𝛾𝜇 + 𝑎𝛾 + 𝛿𝛾 + 𝑎𝛿 + 𝛾2 + 𝑎𝛾 

𝛾 + 𝑎


 

Since 𝑅0 < 1, thus we have a local stability, which 
implies that the malware can be curtailed through appropriate 
corresponding countermeasure parameters. 

V. NUMERICAL SIMULATIONS AND ANALYSIS 

We set out in Table I, variables and hypothetical values 
of our model.  

Similarly, population-dependent parameter values usually 
have to be inputted based on computer malware 
epidemiology and population data. We set out in Table II 
parameters and corresponding values. 

 

TABLE I.  HYPOTHETICAL MODEL VARIABLES AND POPULATION-
DEPENDENT 

S/N Variables Hypothetical values Source 

1 V 20 Assumed 

2 I 5 Assumed 

3 M 10 Assumed 

4 R 0 Assumed 

5 B 7 Assumed 

 

TABLE II.  HYPOTHETICAL MODEL POPULATION PARAMETERS 

S/N Parameter Hypothetical Values Source 

1 a Varies Assumed 

2   2 Assumed 

3   0.1 Assumed 

4   0.1 Assumed 

5   Varies Assumed 

6   Varies Assumed 

7   0.2 Assumed 

8 𝛾 0.1 Assumed 

 
Figure 3 shows the different rates of recovery due to 

application of anti-virus signatures with time i.e.(𝜇 =
0.1, 0.5, 0.9), we discovered that if the anti-virus is used at 
the rate of 10% (i.e. on 1 out of 10 systems), the infectious 
class of PLCs continue to increase instantaneously from the 
initial population of 5,000 to above 15,000 in the first two 
days of interaction with the vulnerable class. The instant 
increase then tends to stabilize a bit, mostly due to the little 
effect of the disinfected PLCs. It then rises instantaneously, 
and after the next 5 days, rises to above 25,000, at 50% (i.e. 
on 2 out of 10 systems) it increases to about 10,000 in the 
next one and half days due to interaction with the vulnerable 
class of PLCs, before it starts decreasing gradually in the 
next two to five days to little below 5,000, mostly due to the 
positive effect of the anti-virus signatures; though this 
happens with a possibility of re-infection. But at 90% (i.e. on 
9 out of every 10), the infectious population of PLCs 
increase minimally to about 7,000 in the first day due to the 
interaction with the vulnerable class before it gradually 
decreases mainly due to the very high effect of the antivirus 
signatures and the infectious population of PLCs will 
continually decline till it goes into extinction after 5days.  

Figure 4 shows the variation in the rate of natural 
recruitment of the USB devices into the network. At 10% 
usage of USB devices for transfer and copying of files, there 
is an instant increase in the population of infectious PLCs 
from the initial 5,000 to above 10,000 after just one and half 
days due to interaction between the vulnerable class and the 
USB devices plugged into the system, which of course, some 
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are infected. But population of the infectious PLCs then 
stabilizes mostly due to the implementation of anti-virus 
signatures which at this point gradually detects infected USB 
devices. After the second day, the population of the 
infectious PLCs begins a rapid decline due to the disinfection 
of the infected USB devices by the anti-virus signatures until 
it the infected power line carries goes into extinction totally 
after five days.  

Figure 5 shows the variation in the rate of vulnerability 
scanning, detection of vulnerability and implementation of 
security patches. At 10% vulnerability scanning, detention of 
vulnerability and implementation of security patches, the 
infectious population of PLCs increases from the initial 
5,000 to above 14,000 in the one and half days due to the 
interaction with the vulnerable class, then it stabilizes a bit 
and decreases gradually to about 7,000 due to the 
implementation of the security patches. At 50% vulnerability 
scanning, detention of vulnerability and implementation of 
security patches, the population of the infectious PLCs 
increases to about 11,000 in one and half days due to the 
interaction with the vulnerable class but stabilizes and then 
decreases gradually to about 5,000 (the initial population) 
mainly due to the detection and implementation of the 
security patches. But at 90% vulnerability scanning, 
detention of vulnerability and implementation of security 
patches, the population of the infectious PLCs increase from 
the initial 5,000 to almost 10,000 in the first day mainly due 
to the interaction with the vulnerable class, then stabilizes a 
bit and gradually declines until it goes into extinction in the 
next 5 days, mainly due to the effect of the vulnerability 
scanning, detention of vulnerability and implementation of 
security patches.  

From Figures 3, 4 & 5, it was discovered that there is 
always an instantaneous increase in the infectious class of 
the PLCs due to their interaction with the vulnerable class of 
the PLCs; and the consequences of this initial increase 
include power outages, damages to equipments, as well as 
financial losses. These are mainly due to the fact that these 
infectious PLCs can be used by interest groups or syndicates 
to carry out their agenda before such infections are detected 
and mitigated. 

VI. CONCLUSION 

We developed a model for the dynamics of SCADA 
system malware on smart-grid electricity networks for a 
population consisting of the Vulnerable, Infected, Immune 
and Recovered classes of PLCs or Remote Terminal Units. 
We also incorporated an external factor, the Universal Serial 
Bus (USB), and considered three control parameters: 
vulnerability scanning, detection from vulnerability scanning 
and the implementation of security patches. 

Our findings highlight the necessity of control strategies, 
viz. antivirus, vulnerability scanning, and application of 
security patches, at mitigating malware spread on SCADA 
systems. 

Future studies could consider other parameters including 
human behavior. Many studies have confirmed that many 
security breaches are the result of non-technical factors. In 
this study, the propagation was considered as a function of 
time. Propagation as a function of geographical spread and 
cost should be explored. 

 
Figure 3.  The Different Rate of Recovery due to Application of the Anti-

Virus Signatures with Time 

 
 
 

 
Figure 4.  The Variation in the Rate of Natural Recruitment of USB 

Devices into the System 

 

 

 

 
Figure 5.  The Variation in the Rate of Removal of Vulnerability due to 

Vulnerability Scanning and Implementation of Security Patches 
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