
Towards a Corpus of Use-Cases for
Model-Driven Engineering Courses

Dimitrios S. Kolovos1 and Jordi Cabot2

1University of York, UK – dimitris.kolovos@york.ac.uk
2ICREA UOC, Spain – jordi.cabot@icrea.cat

Abstract. Having taught Model-Driven Engineering courses for a num-
ber of years, in this paper we reflect on the importance of selecting ap-
propriate use-cases for students to explore related principles and tech-
nologies. We discuss examples on both ends of the spectrum and we
present guidelines for selecting use-cases that are pragmatic and moti-
vating without being excessively complex.

1 Introduction

While the value of teaching software modelling and model-driven engineering at
University level is increasingly recognised [1], effective teaching continues to be
a challenging task. The authors of this paper have been somewhat unsuccessful
in the past in convincing students about the potential of MDE. We believe a key
reason for this is the poor choice of use-cases and examples we show in class.
Based on our experience and on extensive discussions with colleagues, in this
paper we wish to propose examples of alternative use-cases that have a potential
to overturn the current situation.

2 Background

In our experience, to maintain the interest of students in a course they need
to see practical value in the technologies and techniques they are taught. For
software engineering courses this makes the selection of motivating use-cases a
critical point. On top of the bad modelling practices discussed in [2], we have
identified that use-cases we use often suffer from the following weaknesses that
can end up demotivating students instead of sparking their interest.

Unrealistic Domains In an attempt not to overwhelm students with the com-
plexity of developing fully-functional systems, educators often use unrealistic
application domains. For example, a common use-case – variants of which we
have used in the past – is to ask students to develop a DSL for modelling book
libraries1 and then write model-to-text transformations that generate HTML
reports from library models or define additional validation constraints. This use-
case has two advantages: the DSL contains concepts that students can relate to,
1 help.eclipse.org/mars/topic/org.eclipse.emf.doc/tutorials/clibmod/clibmod.html

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 14

Copyright © 2016 held by the author(s)



and it exercises most of the features of metamodelling technologies (inheritance,
containment/non-containment/opposite references). On the other hand however,
it is rather unlikely that one would implement a real-world library management
system using models instead of e.g. a relational database as a data persistence
format.

Artificial Development Processes Another common use-case to demonstrate
model-to-model transformation is the (infamous) UML to RDBMS example.
Here, students are typically asked to develop a transformation that produces a
relational schema from a UML class diagram. This is a complex transformation
that exercises many features of contemporary transformation languages, how-
ever, at the end of the process students end up with a model of a relational
schema that is of little practical use. An additional model-to-text transforma-
tion can be used to produce SQL that can set up a database, however, this is
not very helpful either as in practice students would then still need to interact
with the database using low-level SQL commands. Extending the use-case and
asking students to also generate code that can provide a high-level object ori-
ented interface to the database from first principles is a rather complex task and
the results are unlikely to be of comparable quality to object-relational frame-
works like Hibernate. An alternative would be to ask students to produce e.g.
Hibernate-based code, however this means that a complex framework Hibernate
would have to be taught first – which is a major deviation from the aims of an
MDE course.

In our experience, a significant proportion of highly-skilled students quickly re-
alise the discrepancy between such use-cases and the practices and processes
they would need to employ in a real world situation and gradually lose interest.

Non-Iterative Development Scenarios Students who – despite the poor
selection of use-cases – can see a potential in the principles of MDE, often ques-
tion its cost-effectiveness. In our view, this is largely because in most use-cases,
students are shown how to develop an appropriate modelling language to model
a system and then spend the bulk of their effort on developing model-to-model
and model-to-text transformations that can transform their models to working
code. When the use-case ends there, students can feel puzzled as they have spent
a substantial amount of effort to develop and debug non-trivial transformations
only to produce code – that they could have written manually with a fraction of
the effort – once. Since it is well understood that developing MDE infrastructure
takes a few iterations/product instances to pay off, it is important that this is
highlighted to students by adding more than one change-adapt iterations to the
development scenario.

3 Towards a Corpus of Use-Cases for MDE Courses

Although previous work (e.g. [2]) has identified the importance of selecting ap-
propriate use-cases, there is a lack of concrete proposals in the literature. In this

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 15

Copyright © 2016 held by the author(s)



section we attempt to outline a few use-cases that address some of the issues
above, as a starting point for discussion towards building a community-wide
body of concrete use-cases that can be reused in MDE courses worldwide.

3.1 Auto-Synchronised (Opposite) References in Java

Java lacks support for auto-synchronised (opposite) references. For example, con-
sider the Customer and Invoice classes in Listing 1.1. While conceptually the
Customer.invoices and Invoice.customer references are linked to each-other (i.e.
setting customer c1 as the customer of invoice i1 should ideally automatically
add i1 to the invoices of c1 ), in the absence of built-in support for declaring
this relationship, developers need to maintain the two references in sync manu-
ally as demonstrated in Listing 1.2. This is clearly tedious and error-prone. To
achieve automated synchronisation, a developer would need to extend the imple-
mentation of Invoice.setCustomer(...) and also the behaviour of the add() and
remove() methods of the list returned by Customer.getInvoices(). While this is
certainly feasible, it is a mundane and repetitive task that would benefit from
MDE-style automation.

Listing 1.1. Customer and Invoice
1 class Customer {
2 protected List<Invoice> invoices =
3 new ArrayList<Invoice>();
4
5 public List<Invoice> getInvoices() {
6 return invoices;
7 }
8 }
9

10 class Invoice {
11 protected Customer customer;
12 public Customer getCustomer() {
13 return customer;
14 }
15 public Customer setCustomer(Customer

customer) {
16 this.customer = customer;
17 }
18 }

Listing 1.2. Maintaining references in sync
1 Customer c1 = new Customer();
2 Invoice i1 = new Invoice();
3 i1.setCustomer(c1);
4 c1.getInvoices().add(i1); // Sync the two references

To automate this task, the reference synchronisation code can be generated
from a UML class diagram through a model-to-text transformation. To make
this solution practically applicable, it should be implemented to accommodate
hand-written code either through an appropriate inheritance scheme or by using
protected regions [3] which the transformation preserves during re-generation.
In the absence of such support, students are more likely to consider the use-case
artificial and lose interest.

The main advantage of this use-case is that it addresses a real limitation
of Java while not requiring knowledge of third-party libraries. A risk on the
other hand is that students will need to develop a non-trivial model-to-text
transformation to achieve this and that – as discussed above – they may consider
that they could have written the reference synchronisation code manually faster.
To mitigate this risk the use-case should involve more than one change cycles
and/or large class diagrams that would reinforce the benefits of automation.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 16

Copyright © 2016 held by the author(s)



3.2 Using State Machines for Behaviour Comprehension and Code
Generation

Moving away from class diagrams, in this use-case students can be presented
with a small state-machine (5-7 states) and the equivalent code in Java, and can
be asked to reason about the behaviour of the system e.g. how many distinct
states the system can be in, from which other states the system can get to a
particular state of interest, if there are any unreachable states etc. These should
be straightforward to answer by inspecting the state machine but less obvious by
reading through the Java code. The first aim of this use-case would be to demon-
strate that models can help with understanding and reasoning about complex
behaviour, which becomes much harder to grasp at the level of imperative code.

In a next step, a significantly larger state machine can be introduced which
is not amenable to visual inspection, to demonstrate the need for automated
model analysis capabilities (e.g. querying, validation, reachability analysis). In
a final step, a model-to-text transformation can be used to produce an iden-
tical executable Java implementation of the state machine from the high-level
model. Again, in each of the latter steps, multiple state machines should be in-
volved to demonstrate how the initial effort spent to develop the queries and
transformations pays off after a few iterations.

3.3 Wedding Organisation DSL

Moving away from UML, the aim of this use-case is to demonstrate the useful-
ness of constructing domain-specific languages (DSL) when existing modelling
languages are not a good fit for the problem at hand. We also wish to steer away
from generating executable code to demonstrate the breadth of applicability of
MDE techniques. In line with our discussion so far, the DSL – and its supporting
model management activities – should be relatively simple but genuinely prac-
tical for solving the problem at hand (unlike the library example discussed in
Section 2).

In this use-case, from models conforming to a wedding event DSL such as
the one displayed in Figure 1 students can be asked to generate (1) personalised
invitation cards in HTML/LaTeX (if a guest is allocated to a table it means
that they have been invited to the post-wedding dinner and another sentence
needs to be added to the invitation card), (2) lists that will guide guests to their
tables at the venue. Students can be asked to use a validation language to check
models conforming to the DSL for the presence of conflicts (i.e. guests involved
in a “conflict” should not be sitting on the same table), or even to employ a
constraint solver to suggest an acceptable allocation of guests to tables.

Although at a first glance this use-case appears to be similar in nature to the
library use-case discussed in Section 2 in our view it differs in a few key aspects.
First, it represents a domain for which there is no existing widely-used software
that students can compare against. By contrast, in the library management do-
main, students are likely to compare the produced MDE solution against existing
library management systems (e.g. university library) that they are familiar with,

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 17

Copyright © 2016 held by the author(s)



with an unfavourable outcome for the MDE solution. Second, and perhaps most
important, in the absence of out-of-the-box user-friendly software, the proposed
MDE solution is arguably a sensible way to support this activity in practice.

Fig. 1. Wedding DSL

Listing 1.3. Invitation card template
1 Dear [%=guest.fullName%],
2
3 Together with their families
4
5 Tom and Mary
6
7 invite you to celebrate their marriage
8

9 Sunday October 5th, 2015 at 14:00 at
York Minster

10
11 [%if(Table.all.exists(t|t.guests.

includes(guest)){%]
12 Dinner and dancing will follow at the

Rosewood Inn,
13 12 Gillygate, York
14 [%}%]

4 Conclusions

In this paper we have highlighted the importance of selecting appropriate use-
cases for MDE courses, and identified a number of common weaknesses that they
can present. In an attempt to stimulate discussion towards a more convincing
and inspiring MDE curriculum, we have outlined three concrete use-cases which,
in our view, are pragmatic without being excessively complex. As further work,
we plan to apply and validate these use-cases in our institutions and to start an
initiative for building a corpus of examples with similar intentions on top of an
appropriate technical infrastructure (e.g. GitHub organisation, Wiki).

References

1. Marian Petre. UML in Practice. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 722–731, Piscataway, NJ, USA, 2013.
IEEE Press.

2. Richard F. Paige, Fiona A. C. Polack, Dimitrios S. Kolovos, Louis M. Rose,
Nicholas Matragkas, and James R. Williams. Bad modelling teaching practices.
In ACM/IEEE MoDELS Educators Symposium (EduSymp), 2014.

3. Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack.
The Epsilon Generation Language, pages 1–16. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 18

Copyright © 2016 held by the author(s)




