
Community-based software development for MDE tools

Jordi Cabot1,2, Javier Luis Cánovas Izquierdo
2
, Valerio Cosentino2

1 ICREA

Barcelona, Spain

jordi.cabot@icrea.cat
2 UOC

Barcelona, Spain

{jcanovasi,vcosentino}@uoc.edu

Abstract. Many open source projects stagnate after an initial push and end-up

fading away. In this talk we will argue that, most of the time, the reason has

nothing to do with the quality of the software itself but with the project's

inability to attract and support a healthy community around it. The community

of contributors and also the users must take an active role. MDE tools are not an

exception to this challenge. We will review several actions and strategies that

OSS project managers of MDE tools could put into practice to reverse this

situation, mostly taken from other disciplines like social science, economy and

political science.

1 Introduction

Effective collaboration requires adequate technical solutions, but they alone are not

enough. Adoption of good organizational practices and development processes within

the development team is also a must. This is especially true when we have distributed

teams as it is typically the case in most complex software projects nowadays.

Getting these collaboration models to work at a large scale is very challenging.

That is why many software projects decide to embrace the principles of Open Source

Software. According to the Open Source Initiative 1 : "OSS development is a

development method that harnesses the power of distributed peer review and

transparency". OSS is typically developed in a collaborative manner via online code

hosting platforms like GitHub. This is the main difference with respect to proprietary

software: not only the code is open (free for everybody to access and modify) but also

the development is (supposedly) performed in the open which favours the

collaboration of the whole community behind the software, including its users. This

active participation of end users in the development process is already defended all

agile methodologies.

This distinction was clearly illustrated in the well-known essay, and later a book,

"The Cathedral and the Bazaar" [1] based on the author's observations of the

1 https://opensource.org/

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 45

Copyright © 2016 held by the author(s)

development of Linux kernel that the author tested and validated on his own open

source project later on. This essay contrasts two development models: the Cathedral

model where code is developed by a restricted set of developers and the Bazaar

model where development is a collaborative endeavor and users are co-developers

allowing for rapid code improvement, effective debugging and aligned software

evolution. This "co-developer" role does not mean users contribute code, it highlights

the fact that users are key members of the software community, have a say in it and

can contribute in any form or shape they are able to, e.g. submitting bug reports,

feature requests or just giving feedback on any aspect of the software.

Nevertheless, in practice, many OSS projects are not as open as they should be.

Yes, their source code is freely accessible but the management of the project and its

leadership is not transparent and hardly ever follows any kind of democratic practices,

making it extremely difficult for users and the community in general to influence the

development of the project. For instance, we manually analyzed the twenty-five most

popular projects in GitHub and found out that only one (4%) explicitly described how

user contributions would be managed, with another 28% giving partial hints. This

means that 68% had no explicit governance model
2
. Absolutely none of them were

democratic (i.e. end users could not vote in any way not even to elect people to

represent them). This situation is similar in other open source platforms. For instance,

in Eclipse they even have established an award to the most open project to "recognize

the open source project that best exemplifies the openness, transparency and diversity

expected of great open source projects"
3
.

And this is not the only problem. Most projects struggle to attract contributors. In

fact, more than two thirds of all projects in GitHub have only one or two contributors

[2], which of course limits a lot of the interaction they may have with the users of that

software specially if they have a large user base. Therefore, we can conclude the OSS

model, as it is now, is broken. This affects the long-term sustainability of the projects,

with many projects failing and getting abandoned in the very early stages, see [3] for

some statistics.

This is especially relevant for the MDE community which, as a "new" tool

ecosystem, has largely depended on community contributions to develop and

industrialize [4] all kinds of modeling tools.

In this paper we will explore the main challenges of OSS development from a

community perspective and how we believe a more community-based software

development process could help overcome them.

2 State of the art

Open source software development has been widely studied and from several

different points of view. Our literature review on works studying GitHub OSS

projects resulted in over 100 papers to classify [5].

2 A governance model describes the roles that project participants can take on and the process for decision making

within the project (OSS watch)
3 https://bugs.eclipse.org/bugs/show_bug.cgi?id=484321

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 46

Copyright © 2016 held by the author(s)

Most papers analyze software projects from a code-centric perspective meaning

that their focus is the analysis of the projects' source code by evaluating, for instance,

(1) the use of programming languages, (2) the type of license they apply, (3) the

folder structure of the project, (4) the technological domain, or (5) the potential

vulnerabilities and complexity of the code.

Instead, only a few works analyze the social part of the software development

process, trying to understand how developers are internally organized and work

together in the project. Some studies aim at providing a static view of the organization

behind OSS projects, in particular, to analyze: (1) the different kinds of communities

(e.g. [6]), (2) its structure (e.g.[7], [8][2][9]), (3) its diversity (e.g. [10], [11], [12]), (4)

the profile of the users in the community (e.g. [13], [14]). or (5) their popularity (e.g.

[15], [16]). Other works focus more on the community dynamics by analyzing the

interactions between community members and the project or among members

themselves. such as the social ties and patterns among contributors (e.g.[17], [18]),

the social and technical factors that motivate people to contribute to a given project

(e.g. [19]) and assignment algorithms that recommend developers to open tasks (e.g.

[20]).

Open Challenges. Based on this literature review we can conclude that (open-

source) software development faces the following challenges:

 It is not as open as you would expect (the code is open, the management and

decision-making of the project is not) which leads to a number of

governance, decision and leadership problems,

 it has strong difficulties in attracting new contributors (specially technical

ones) to enlarge the project community with the most appropriate profiles to

get the project advance fast (including, for instance, both improvements /

additions at the code level and decisions on issues and bugs prioritization for

future releases),

 it is unable to manage its community efficiently, integrating all different

profiles (owners, contributors, users,...) in a way they all can smoothly

interact and collaborate to make the project evolve aligned with their needs,

which hampers people's experience with open source thus threatening the project's

sustainability and future success.

We believe these problems are shared across all domains of OSS and therefore

MDE is not an exception, though there is a lack of specific studies on MDE OSS

tools. In the following we provide some ideas to tackle these issues.

3 Community-based software development: a Roadmap

We believe any significant gain in OSS development implies shifting our main focus

of attention from the analysis of code aspects in the software repository to the analysis

of the people behind that code, either as developers, owners or users.

The following figure illustrates this change of perspective, highlighting how we go

from the current developer centric view (kind of a meritocracy where only core

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 47

Copyright © 2016 held by the author(s)

developers have the right to decide) to a community that now collaborates together

and has the tools it needs to manage this collaboration. The left-hand side summarizes

our perception of the current situation where users, either technical users contributing

new patches of code or non-technical users just reporting bugs or asking for new

features, have no real influence on the core project management team that lives in a

bubble. The right-hand side shows what happens when this isolation "bubble" is burst

and everybody has the chance to have an active (and decisive) participation. From this

point on, we can say that there is a real community behind the project. And this

community is not alone either but it is part of a larger ecosystem of OSS communities

that can collaborate with each other for further global optimizations.

Fig. 1. Developer-centric vs Community-based software development

This community-driven process will be enabled by borrowing and adapting to the

software development field techniques from the domains of political science,

sociology (e.g. social/behavioural informatics), economics and ecology that have

been studying a diverse range of communities for centuries. Among all of them, we

would like to highlight three main open research areas of interest (Fig. 1 b) we believe

specially important:

A1. Bring Transparency and Democracy to OSS development, by facilitating

projects to open up all aspects of the project (and not only its source code) via the

definition of a precise governance model setting up the foundations of a participative

process. Open source communities are not as open as they seem as discussed above

and their governance is an open research challenge [21]. As an example, their lack of

transparency and frequent anti-democratic decision procedures can scare away

potential contributors/users
4
 and hamper its alignment with the needs of the

community. At the very least, a clear definition of the project's governance model

would be necessary (e.g. using this DSL [22]). The adaptation of different kinds of

political systems (including different types of democratic models, e.g. representative,

4 Even if, for whatever reason, a certain project is NOT looking for contributors, stating this clearly (transparency)

would avoid misunderstandings.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 48

Copyright © 2016 held by the author(s)

participative, liquid,...) to the specific context of OSS and helping projects transition

their internal organization to one of these systems if they wish so is work in progress.

A.2. Increase the number of contributors to OSS projects, by providing projects

with innovative tools to attract new contributors and favor their long-term

involvement in the project. OSS projects need contributors to progress [13][23]. New

retribution models (inspired from the study of market economy, in particular

matching markets where money is not the main factor [25]) to convince more people

to join, gamification strategies to increase their participation and profiling tools to

help project owners identify and reach out potential candidates (to cover technical

gaps or increase diversity) cross-profiling the project needs with online profiles in

social networks are necessary.

A.3. Optimize internal project collaborations by giving to project owners the

tools they need to identify collaboration bottlenecks and to individual users the

motivation and information they need to be more effective. Effective collaboration

requires more than setting up theoretical good conditions for it. A continuous

monitoring of the community structure and exchanges taking place would allow

detecting early on possible misconfigurations in the community giving the

opportunity to act on them as soon as possible. Most of the possible issues can be

detected by representing the community as a directed multigraph and adapting graph

algorithms to collect some metrics on it (connected components, low density areas,

key nodes,...). These metrics will then be compared with a range of acceptable values

derived from a benchmark of "successful" projects to identify worrisome deviations.

References

[1] E. S. Raymond, The Cathedral and the Bazaar. O’Reilly Media, 2001.

[2] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian,

“An in-depth study of the promises and perils of mining GitHub,” Empirical Software

Engineering, Sep. 2015.

[3] C. M. Schweik and R. C. English, Internet Success: A Study of Open-Source Software

Commons. The MIT Press, 2012.

[4] H. Brunelière and J. Cabot, “On Developing Open Source MDE Tools: Our Eclipse

Stories and Lessons Learned,” in OSS4MDE@MoDELS 2014, 2014, pp. 9–19.

[5] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Findings from GitHub: methods,

datasets and limitations,” in Proceedings of the 13th International Conference on

Mining Software Repositories, {MSR} 2016, Austin, TX, USA, May 14-22, 2016, 2016,

pp. 137–141.

[6] B. Vasilescu, V. Filkov, and A. Serebrenik, “Perceptions of Diversity on GitHub : A

User Survey,” in CHASE Workshop, 2015.

[7] N. Matragkas, J. R. Williams, D. S. Kolovos, and R. F. Paige, “Analysing the

‘biodiversity’ of open source ecosystems: the GitHub case,” in MSR conf., 2014, pp.

356–359.

[8] A. E. Hassan and S. Mcintosh, “Revisiting the Applicability of the Pareto Principle to

Core Development Teams in Open Source Software Projects Categories and Subject

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 49

Copyright © 2016 held by the author(s)

Descriptors,” in IWPSE workshop, 2015, pp. 46–55.

[9] M. Y. Allaho and W.-C. Lee, “Trends and behavior of developers in open

collaborative software projects,” in 2014 International Conference on Behavioral,

Economic, and Socio-Cultural Computing (BESC2014), 2014, pp. 1–7.

[10] A. Lima, L. Rossi, and M. Musolesi, “Coding together at scale: GitHub as a

collaborative social network,” in 8th AAAI International Conference on Weblogs and

Social Media, 2014, pp. 295–304.

[11] B. Vasilescu, V. Filkov, and A. Serebrenik, “Perceptions of Diversity on GitHub : A

User Survey,” CHASE Workshop, 2015.

[12] D. N. Beede, T. A. Julian, D. Langdon, G. McKittrick, B. Khan, and M. E. Doms,

“Women in STEM: A Gender Gap to Innovation,” SSRN Electronic Journal, Aug.

2011.

[13] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github: transparency

and collaboration in an open software repository,” in 15th ACM Conference on

Computer Supported Cooperative Work, 2012, pp. 1277–1286.

[14] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Leveraging Transparency,” IEEE

Software, vol. 30, no. 1, pp. 37–43, Jan. 2013.

[15] K. Aggarwal, A. Hindle, and E. Stroulia, “Co-evolution of project documentation and

popularity within github,” in MSR conf., 2014, pp. 360–363.

[16] S. Weber and J. Luo, “What Makes an Open Source Code Popular on Git Hub?,” in

ICDMW conf., 2014, pp. 851–855.

[17] M. Y. Allaho and W.-C. Lee, “Analyzing the Social Ties and Structure of Contributors

in Open Source Software Community,” in ASONAM conf., 2013, pp. 56–60.

[18] Y. Yu, G. Yin, H. Wang, and T. Wang, “Exploring the Patterns of Social Behavior in

GitHub,” in CrowdSoft Workshop, 2014, pp. 31–36.

[19] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical factors for

evaluating contribution in GitHub,” in 36th International Conference on Software

Engineering, 2014, pp. 356–366.

[20] J. Xavier and A. Macedo, “Understanding the popularity of reporters and assignees in

the Github,” in 26th International Conference on Software Engineering and

Knowledge Engineering, 2014, pp. 484–489.

[21] A. Serebrenik and T. Mens, “Challenges in Software Ecosystems Research,” in

Proceedings of the 2015 European Conference on Software Architecture Workshops -

ECSAW ’15, 2015, pp. 1–6.

[22] J. L. Canovas Izquierdo and J. Cabot, “Enabling the Definition and Enforcement of

Governance Rules in Open Source Systems,” in ICSE SEIS conf., 2015, vol. 2, pp.

505–514.

[23] R. Padhye, S. Mani, and V. S. Sinha, “A study of external community contribution to

open-source projects on GitHub,” in Proceedings of the 11th Working Conference on

Mining Software Repositories - MSR 2014, 2014, pp. 332–335.

[24] J. L. Cánovas Izquierdo, V. Cosentino, and J. Cabot, “Popularity will NOT bring more

contributions to your OSS project,” Journal of Object Technology, vol. 14, no. 4,

2015.

[25] A. E. Roth, Who Gets What — and Why: The New Economics of Matchmaking and

Market Design. Eamon Dolan/Houghton Mifflin Harcourt, 2015.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 50

Copyright © 2016 held by the author(s)

