
Usable Design Space Exploration in
AutoFOCUS3

Johannes Eder, Sebastian Voss

fortiss GmbH
Software and Systems Engineering

Guerickestr. 25, 80805 Munich, Germany
{eder,voss}@fortiss.org

Abstract. Software-intensive embedded systems are characterized by
an increasing number of features that implement complex functional-
ities. To effectively manage this complexity, development processes in
general, and model-based approaches in particular, support the develop-
ment of such systems as model-based approaches have been considered
a central design approach to deal with increasing complexity in software
and hardware development.

A valid system design and configuration, especially a safety-critical sys-
tem design, has to fulfill a corresponding set of requirements describing
all desired system constraints and objectives. In general, these constraints
may be contradicting and correspond to different dimensions (e.g. timing,
safety, energy, cost, etc.). Thus, considering all system constraints during
system design is a manually unsolvable task. To support the system de-
signer, usable Design Space Exploration methods are needed. Therefore,
a proper tool implementation is needed that supports the usability.

In this paper, we describe a Design Space Exploration process which
aims to explore the architectural design space during system design. This
process has been implemented in the open source CASE tool AutoFO-
CUS31 with the focus on usability.

1 Introduction

The design space of distributed embedded systems is characterized by an ever
increasing number of features, like for example in automotive vehicles. Due to
this growing complexity, the process of manually exploring possible designs for
these systems is getting even harder for system designers. Therefore, a design
space exploration process is needed, which guides the system designer in a semi-
automatic way to explore possible design solutions.

In this paper, we describe such a semi-automatic Design Space Exploration
process which has been implemented in AutoFOCUS3. AutoFOCUS3 is a
CASE Tool that allows for seamless, model-based development of distributed,
embedded systems.

1 http://af3.fortiss.org

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 51

Copyright © 2016 held by the author(s)



The goal of our approach is to provide a usable Design Space Exploration
(DSE) process, enabling the system designer to calculate, explore and compare
different design alternatives during system design. These design alternatives sat-
isfy all requirements (constraints) that are of interest for the system design.
Naturally, such requirements are mostly contradicting. Due to this fact, a semi-
automatic approach is proposed, where not only one single final design can be
calculated. In fact, it enables trade-off analysis by automatic generation of pos-
sible (optimized) design alternatives, that can then be evaluated by a system
designer.

2 Related work

In this section, we will shortly introduce related work concerning this paper. On
the one hand AutoFOCUS3 and some related case studies and on the other
hand other existing DSE frameworks.

2.1 CASE tool AutoFOCUS3

AutoFOCUS3 is a scientific CASE tool, which supports the development of
component based, reactive distributed embedded systems on different levels of
abstraction [1, 2]. It is based on the notion of streams and stream processing
functions introduced in [3]. The tool has been used in several industrial case
studies, e.g. for modeling a Siemens train automation system [4]. [5] and [6] are
other examples where AutoFOCUS3 was applied in a case study.

AutoFOCUS3 also provides a design space exploration process, which will
be explained in more detail in the next section.

2.2 DSE frameworks

There are a variety of widely used UML/SysML modeling tools like IBM Rhap-
sody, PTC Integrity, Enterprise Architect and Papyrus. Until now, they do not
offer any design space exploration techniques. Research-wise however, there are
a few frameworks existing, which offer DSE techniques.

Here we will mention two of them. There is e.g. the FORMULA framework [7]
which uses a formal specification language to encode a model driven architecture.
The Z3 SMT solver is then used to enable model synthesis, providing design
alternatives.

The CoBaSA tool provides a language for expressing system constraints [8].
This tool then uses PBSAT or SAT solvers to generate optimized solution archi-
tectures, which satisfy all given constraints.

The difference from AutoFOCUS3 to the tools mentioned above is that
AutoFOCUS3 has a strong focus on usability. This entails, e.g., that the tool
provides a user interface which is easy to use and understand. In particular, this
means that the user is only exposed to as little formalism as possible, while still
being able to use the power of these methods.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 52

Copyright © 2016 held by the author(s)



3 The AutoFOCUS3 Design Space Exploration Process

A usable, tool-supported DSE process starts with a pre-defined model of the
system (e.g. using SysML [11]). We consider such system models to be basically
divided into several models, which represent different levels of abstractions:

Logical Architecture The logical architecture represents the functionality of
the system in terms of components. These components can be either hierarchi-
cally composed or represent a behavior (like for example a state-automaton).
Components can have typed input and output ports. Communication can be
realized by through channels, which connect ports with each other.

Technical Architecture The technical architecture consists of all hardware
parts of the system, independently from its functionality. This architecture ba-
sically represents execution units which are connected to communication units
(e.g. bus), sensors and actuators.

Deployment The Deployment is the connection between logical and technical
architecture. The components are deployed onto execution units, where their
functionality will be executed. The communication between components, which
are mapped onto different execution units, is deployed to a communication unit
connecting these execution units.

Schedule A schedule adds timing information to a deployment. That means
starting times and durations of components deployed on execution units and
messages deployed on communication units.

Depending on the synthesis step, which will be explained in the next sec-
tion, this system model may differ. A logical architecture model and a technical
architecture model is needed in order to perform a deployment synthesis. For
synthesizing schedules a deployment model is needed.

3.1 The DSE process

Based on these models, we propose a three fold DSE-process, as depicted in
figure 1:

1. Objective and constraint modeling: Consideration of so called Explo-
ration Targets (see also [10]), namely constraints and objectives of the cor-
responding design space.

2. Model synthesis: Based on the the system model and the Exploration
Targets, different synthesis methods are implemented that explore the design
space and return Pareto efficient solutions.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 53

Copyright © 2016 held by the author(s)



System	
Model

Objectives

Constraints

Visualization

Deployment	
Synthesis

Schedule	
Synthesis

Objective and constraint 
modeling

Model synthesis Visualization

Fig. 1. The design space exploration process in AutoFOCUS3

3. Visualization: Calculated results are visualized in an (interactive) Visual-
ization process step using different visualization techniques to support the
system designer.

In the following, we describe these process steps in detail:

3.2 Objective and constraint modeling

The definition of constraints and objectives is essential as they constrain the
design space and define cost-functions in order to optimize solutions. The process
of constraint modeling limits the set of possible solutions and is (often) derived
from system requirements, such as safety requirements which require certain
safety integrity levels (SIL) [9] (e.g. that a logical component requires a SIL of
3), or timing requirements which give certain time bounds (e.g. that the overall
latency of a system should not exceed 200ms).

On the other hand, objectives describe a cost function which shall be opti-
mized. These objectives can also be derived from requirements such as minimiza-
tion of hardware costs (e.g. if it is required to have the least possible hardware
costs), or of energy consumption (e.g. if the energy consumption of the whole
system shall be kept as minimal as possible).

Therefore, AutoFOCUS3 provides a domain specific modeling language
which enables the formalization of such constraints and objectives. Equation
1 shows an exemplary constraint, which states that if a software component
is mapped to a hardware component, the software component’s SIL must not
exceed the hardware components SIL (see also [9]).

∀h ∈ HW,∀s ∈ SW, sw → hw : s.sil ≤ h.sil (1)

Equation 2 shows an exemplary objective which is a cost function over all
hardware components (financial) costs, where at least one software component
is deployed on. This function shall be minimized.

min(∀s ∈ SW
∑

∃h∈HW :s→h

h.cost) (2)

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 54

Copyright © 2016 held by the author(s)



To effectively support the system designer, constraints and objectives are
defined on a visual basis through editors. These editors offer patterns for this
language, in order to abstract the exact syntax and semantics of the language.
These patterns are provided through the graphical user interface of AutoFO-
CUS3 and do not require any knowledge of formal languages. Figure 2 shows how
equation 2 describing an objective is modeled in AutoFOCUS3. Constraints
are modeled similarly.

Fig. 2. Objective modeling via user interface in AutoFOCUS3

3.3 Model synthesis

Among all constraints and objectives, sub-sets of constraints and objectives are
defined, in order to explore a certain design space exploration problem. Such a
Sub-Set categorizes constraints and objectives modeled in the previous process
step. The selection of desired subsets (compare figure 3) provides the input of
the design space exploration problem under consideration.

The design space exploration process in AutoFOCUS3 provides synthesis
mechanisms for deployment synthesis and schedule synthesis. We provide a sym-
bolic encoding scheme, resp. a formalization describing the DSE problem as a
satisfiability problem using boolean formulas and linear arithmetic constraints.
A state-of-the-art satisfiability modulo theory (SMT) solver is used to compute
design alternatives. We use the Z3 Theorem Prover by Microsoft 2.

If a synthesis process cannot find any solutions, the user gets notified which
sub sets and which constraints in these sub sets made it impossible to synthesize

2 https://github.com/Z3Prover

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 55

Copyright © 2016 held by the author(s)



Fig. 3. Constraint sub-set definition in AutoFOCUS3

anything. Thus it is possible to check if either the constraint itself was phrased
wrong or if the requirement this constraint is derived from is wrong.

Deployment synthesis The deployment synthesis enables the exploration of
the design space of deployments from logical components to technical compo-
nents. Deployment means, that the functionality represented by a logical com-
ponent is executed as a task, on the specific electrical control unit it is deployed
on, at runtime.

Thus, this synthesis method needs, besides the constraint and objectives
sub sets, models of logical component architecture and technical architecture as
input. Given all these three artifacts one can explore design space of possible
deployments.

Schedule synthesis The schedule synthesis enables the exploration of the tim-
ing behavior of a system. Given the input of a deployment (mapping) model
(which could have been synthesized in the previous step), this mechanism syn-
thesizes possible solutions of execution times of tasks and messages while con-
sidering given constraint and objective sub sets.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 56

Copyright © 2016 held by the author(s)



3.4 Visualization

The last DSE process step is the visualization of the calculated design alterna-
tives. According to the given objectives in the previous synthesis step the results
can be displayed in a 3D visualization or spider chart (compare figure 4), where
each axis can be assigned one objective. They may also be visualized in a table
where each column displays one objective. For schedules a gantt chart is provided
which displays the (timed) sequence of tasks and messages.

By using these visualization techniques, a system designer is supported to
select the desired solution. This solution includes information (either deployment
or schedule information, depending on the performed synthesis step), that can
be transferred back into the system model.

Another iteration of the DSE process can then be performed if necessary. For
instance, if one wants to explore the design space of possible schedules with a
recently chosen deployment.

Furthermore, it is also possible to go one or even two steps back to alter the
previous steps. Either to model new constraints and objectives and/or to adapt
the constraint and objective sub sets which where used for synthesis.

Fig. 4. Visualization of DSE results in AutoFOCUS3

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 57

Copyright © 2016 held by the author(s)



4 Conclusion

In this paper, we have presented a Design Space Exploration process imple-
mented in the CASE tool AutoFOCUS3. This process is in particular usable,
due to the fact that it guides the system designer through all the required steps
of a DSE. Moreover the process provides easy to use formalization methods,
which do not require any knowledge in the field of formalization.

References

1. AutoFocus 3 - A scientific tool prototype for model-based development of
component-based, reactive, distributed systems, Hölzl, Florian and Feilkas, Mar-
tin, Model-Based Engineering of Embedded Real-Time Systems, 317–322, 2010,
Springer

2. AutoFOCUS 3: Tooling concepts for seamless, model-based development of embed-
ded systems, Aravantinos, Vincent and Voss, Sebastian and Teufl, Sabine and Hölzl,
Florian and Schätz, Bernhard, Joint proceedings of ACES-MB, p. 19, 2015

3. Specification and development of interactive systems: focus on streams, interfaces,
and refinement, Broy, Manfred and Stølen, Ketil, 2012, Springer Science & Business
Media

4. A formal systems engineering approach in practice: an experience report, Böhm,
Wolfgang and Junker, Maximilian and Vogelsang, Andreas and Teufl, Sabine and
Pinger, Ralf and Rahn, Karsten, Proceedings of the 1st International Workshop on
Software Engineering Research and Industrial Practices, 34–41, 2014, ACM

5. M. Feilkas, A. Fleischmann, F. Hölzl, C. Pfaller, K. Scheidemann, M. Spichkova,
D. Trachtenherz, A Top-Down Methodology for the Development of Automotive
Software, Technische Universität Mnchen, Tecg. Rep. TUM-I0902, 2009

6. M. Feilkas, F. Hölzl, C. Pfaller, S. Rittmann, B. Schätz, W. Schwitzer, W. Sitou,
M. Spichkova, D. Trachtenherz, A Top-Down Methodology for the Development of
Automotive Software, Technische Universität Mnchen, Tecg. Rep. TUM-I1103, 2011

7. Components, platforms and possibilities: towards generic automation for MDA,
Jackson, Ethan K and Kang, Eunsuk and Dahlweid, Markus and Seifert, Dirk and
Santen, Thomas, Proceedings of the tenth ACM international conference on Em-
bedded software, 39–48, 2010, ACM

8. Automating component-based system assembly, Manolios, Panagiotis and Vroon,
Daron and Subramanian, Gayatri, Proceedings of the 2007 international symposium
on Software testing and analysis, 61–72, 2007, ACM

9. ISO 26262 - Road vehicles - Functional safety, Geneva, Switzerland, 2011.
10. A Lightweight Design Space Exploration And Optimization Language, Diewald,

Alexander and Voss, Sebastian and Barner, Simon, Proceedings of the 19th Inter-
national Workshop on Software and Compilers for Embedded Systems, 190–193,
2016, ACM

11. OMG Systems Modeling Language (OMG SysML), Version 1.3,
http://www.omg.org/spec/SysML/1.3/, 2012

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 58

Copyright © 2016 held by the author(s)




