
CHESS: an open source methodology and toolset for the

development of critical systems

Silvia Mazzini, John Favaro, Stefano Puri, Laura Baracchi

Intecs S.p.A.

Pisa, Italy

silvia.mazzini@intecs.it

Abstract. This paper presents the CHESS open source methodology and toolset,

aiming to improve MDE practices and technologies to better address safety, reli-

ability, performance, robustness and other non-functional concerns, while guar-

anteeing correctness of component development and composition for critical em-

bedded systems.

Keywords: Model-based, component-based, correctness-by-construction, sepa-

ration of concerns, model transformation, contract-based, formal methods, real-

time analysis, systems/software co-engineering, open-source.

1 Introduction

The speedup of technological progress and of time to market have caused all phases

of systems development to be compressed and accelerated. At the same time designing

and building complex systems involves many different roles and expertise (for exam-

ple, software, hardware and dependability engineering), with a consequent need for

systematic and disciplined development paradigms.

A model driven engineering (MDE) approach is theoretically the ideal solution,

providing formal and semantically grounded support for the design of the system, ca-

pable of capturing the overall characteristics as well as detailed properties of all its

composing parts.

When designing software, MDE can exploit the unique opportunity that arises thanks

to the fact that software models are software themselves. This introduces the possibility

to generate a software product through a sequence of automated model transformations:

if the model in input provides all the required information and model transformations

are proved correct, the final software product is guaranteed to reflect the properties of

the model, thus implementing a correct-by-construction development process.

Despite its theoretical credentials and academic acknowledgement, however, indus-

trial level tools may be inadequate or too expensive, and MDE is still often perceived

by the industry as an extra burden, so that, in our experience, more traditional ap-

proaches are often pursued.

With the CHESS methodology and supporting toolset (originally developed in the

CHESS project [4] and then enhanced in the CONCERTO project [3] focusing on the

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 59

Copyright © 2016 held by the author(s)

development of multi-core systems and on the extensions for a wider domain coverage)

we aimed to improve MDE practices and technologies to better address safety, reliabil-

ity, performance, robustness and other non-functional concerns, while guaranteeing

correctness of component development and composition for embedded systems.

CHESS was developed as an open source project, mainly to improve its visibility,

usability and standardization. This approach is fundamental for enabling the most fruit-

ful collaboration between research and technology providers, allowing wide exploita-

tion of prototypes and thus an optimal basis for tool maturation. Moreover, in the area

of embedded critical systems targeted by CHESS, commercial off the shelf tools tend

to be extremely costly and somewhat rigid, whereas an open source technology has the

competitive advantage of its zero/low cost, while still supporting a feasible business

model, based on the providers’ offer of customizations, support, consulting and train-

ing.

2 The CHESS Component Model

The CHESS methodology relies on the CHESS Component Model, which is built

around the concepts of components, containers and connectors. It supports the separa-

tion of concerns principle, strictly separating the functional aspects of a component

from the non-functional ones.

According to the CHESS Component Model, a component represents a purely func-

tional unit, whereas the non-functional aspects are in charge of the component’s infra-

structure and delegated to the container and connectors (Figure 1).

Figure 1: Component, Container and Connector

The container [20] can be regarded as a wrapper enveloping the user’s component,

which is responsible for the realization of all non-functional properties that are specified

for the component that it embeds. The container also mediates the access of the com-

ponent to the executive services it needs from the execution platform. The connector

[17] is responsible for the interaction between components; it allows to decouple inter-

action concerns from functional concerns.

From the interaction perspective, components are considered as black boxes that ex-

pose only their provided and required interfaces. Non-functional attributes are specified

by decorating the component’s interfaces with non-functional properties; e.g. regarding

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 60

Copyright © 2016 held by the author(s)

real-time concerns the activation pattern (e.g. sporadic or cyclic) can be specified for

each component’s provided operations.

The declarative specification of non-functional attributes of a component, together

with its communication concerns, is used in CHESS for the automated generation of

the containers and connectors that embody the system’s infrastructure. In particular,

when a component is assigned to a processing unit, we can generate the container within

which the component is going to be deployed on the execution platform of the pro-

cessing unit. Indeed, the internal structure of containers depends on the non-functional

attributes required for the components they may embed. Deterministic rules need to

exist for containers to be automatically generated from the attributes set on the model.

For instance, for every computational model, execution platform pair, the set of allow-

able containers realizing internal threads and its protected objects can be defined and

factored in a library of code archetypes, which can then be later used to simplifies au-

tomatic code generation [21].

In principle, there is a default 1:1 correspondence between a component and its con-

tainer. However, if – e.g., for reasons of local optimization – selected operations of

distinct components should be allocated to the same thread, then multiple components

could be allocated to a single container.

The key properties of the CHESS component model are compositionality and com-

posability. Compositionality is achieved when the properties of the system as a whole

can be determined as a function of the properties of the constituting components and

the execution environment. Composability, rather, is achieved when individual compo-

nents’ properties are preserved on component composition, deployment on target and

execution.

Compositionality and composability are guaranteed in CHESS not only for func-

tional properties, but also for non-functional properties, such as real-time and depend-

ability. This way, the ambitious goal of composition with guarantees [7] is achieved,

implementing the correctness by construction [8] theory.

3 The CHESS Design Flow

Following the CHESS methodology, the user specifies the system’s components, de-

claring their functional and non-functional properties, thus providing a Platform Inde-

pendent Model (PIM) to represent the solution to the problem, independent of any spe-

cific implementation. Then the modeler complements the PIM with information on the

target platform and the deployment plan. By using a dedicate profile language, analysis

about failure propagation is performed at PIM level, for system, SW and platform spec-

ification, to allow early dependability analysis.

Automated model transformation produces a Platform Specific Model (PSM) from

the user PIM and platform specification; in particular the containers and connectors

entities are created in the PSM. The PSM is read-only: this way the implementation

product is guaranteed to be deterministic.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 61

Copyright © 2016 held by the author(s)

Real-time analysis, such as schedulability analysis, end-to-end response time analy-

sis and analysis of different scheduling algorithms for multicore deployments, is per-

formed on the PSM, with back propagation of results to the PSM, PIM platform and

deployment models. The modeler can iterate these steps as many times as necessary

until satisfactory analysis results are obtained.

At this point, the implementation is deployed to the HW, with run-time verification

support if needed. Run-time monitoring is activated to collect live data for run-time

monitoring analyses and back propagation of results.

The CHESS methodology enables early verification, as possible inconsistencies and

integration issues will surface at the earliest stages of the process. It also supports sys-

tem-software co-engineering as a seamless process, by keeping traceability between

system level entities and requirements on one side and the corresponding software and

hardware level entities on the other side.

4 Contract-based Modeling Extensions to CHESS

Contract-based reasoning was first envisaged as an extension to CHESS in the ESA

funded FoReVer study [6] and further elaborated within the SafeCer project [5]. Com-

ponent properties are formalized in terms of contracts, composed of an assumption and

a guarantee models as formal properties, where the assumption is a constraint on the

component’s environment or usage, and the guarantee is a property that must be satis-

fied by the component - provided that the environment satisfies the assumption.

The CHESS extended methodology introduced stepwise refinement, where the de-

composition of a component is accompanied by the decomposition of its contracts, as

a central activity in the development process. Stepwise refinement is subject to formal

verification and is a key point in the overall verification process as in [9].

Support for modeling contracts and for stepwise refinement is provided in the ex-

tended CHESS toolset. Formal verification of the contract refinement is performed by

OCRA (Othello Contracts Refinement Analysis) [11] by Fondazione Bruno Kessler for

the verification of logic-based contracts refinement for embedded systems [12], which

is integrated in the CHESS extension.

This extended methodology can be exploited at its best if a library of standard qual-

ified components with associated contracts is available. In the top-down modeling pro-

cess, a library of components represents a bottom-up driver to ensure convergence to a

feasible solution based on the reuse of possibly certified components.

CHESS is currently the subject of extension and adaptation in the context of the

AMASS ECSEL project [10]. The goal of AMASS [13] is to create an open tool plat-

form, ecosystem, and self-sustainable community for assurance and certification of

Cyber-Physical Systems for different domains of interest. In particular, the project will

investigate how the usage of CHESS, that is, its contract-based component model, ver-

ification and code generation features, can enable architecture-driven assurance sup-

port.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 62

Copyright © 2016 held by the author(s)

5 The CHESS Toolset

The CHESS toolset [1] provides an integrated framework to support the CHESS meth-

odology. It assists the modeler throughout the whole development process, following

the CHESS methodology, from the definition of requirements, to the modeling of the

system’s architecture, down to the software design and its deployment to hardware

components. It also offers support for the analysis of selected real-time and dependa-

bility features (in particular, failure propagation and state-based) as well as code gen-

eration functionality to automatically generate the infrastructure code needed to imple-

ment the non-functional properties defined in the model. Generation of the infrastruc-

ture code for Ada is currently supported; of course other target languages can be ad-

dressed as well.

The CHESS toolset was developed as a set of Eclipse plugins based on MDT Papy-

rus (the Eclipse UML editor) and on the CHESS Modeling Language, which was de-

fined as an extension of the UML, SysML and MARTE modeling languages [19].

We decided to rely mainly on SysML for the modeling of requirements and for the

system level design, on UML for modeling software aspects of the system, and on

MARTE for describing the real-time aspects, staying as close as possible to the standard

modeling languages. In particular a profile has been defined on top of UML to model

failures definition and their intra/inter-components propagation, while SysML has been

extended to offer support for contract based design.

MARTE has been used and extended to be able to model real-time properties for

component instance interfaces; indeed, MARTE support which allows to specify real-

time property for component’s operations exposed through ports (through the RtSpec-

ification entity), cannot be used at component instance level, which is the most appro-

priate level where real-time properties must be provided (e.g. the periodic activation of

an operation can be different for two instances of the same component providing the

given operation).

A specific profile was also developed for the avionics domain to allow modeling and

analysis of ARINC 653 architectures [17]. This way the CHESS toolset provides an

open framework to accommodate the widest possible set of users from different do-

mains.

6 The CHESS Open Source Project

CHESS results are included in the PolarSys1 initiative, an industrial group for pro-

moting open source tools for embedded systems: the CHESS core technology is avail-

able in PolarSys as open source project [2], and CHESS interfaces are published to

enable other platform and tool providers to develop additional features for integration

with CHESS and to exploit new CHESS functionalities as they become available. The

CHESS open source initiative has received valuable input from several academic part-

ners. Since the initial contribution provided by Intecs and University of Padua, new

1 https://www.polarsys.org/

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 63

Copyright © 2016 held by the author(s)

contributors have joined the CHESS Polarsys project; in particular the Mälardalen Uni-

versity and the University of Florence provided extensions for the modelling and anal-

ysis of dependability properties of interest in their research. A proposal about extension

of the current support for contract based analysis is also currently under evaluation.

Industrial parties have expressed interest in the CHESS project, also suggesting de-

sired improvements (e.g. C code generation support). Although usage of CHESS in the

industry is nascent, very positive results from case studies performed in several research

projects have demonstrated that the CHESS approach and toolset can offer valuable

support for the development of cyber-physical systems.

The CHESS modelling environment is based upon the open source project Papyrus,

which is one of the most appreciated open source tools in the industry; in particular,

recently the Papyrus Industry Consortium2 has been created to support a model-based

engineering platform based on the domain specific and modeling capabilities of the

Eclipse Papyrus family of products. We think that having Papyrus as the baseline editor

can foster the interest around CHESS.

Use of other open source resources has permitted us to make valuable extensions.

For example, real-time analysis is performed in the CHESS toolset thanks to its inte-

gration with an extension to the MAST engine [14], making it possible to perform

schedulability analysis and end-to-end response time analysis for multi-core architec-

tures. Another example is the dependability analysis support CHESS provides: quanti-

tative state based analysis is performed via integration with the DEEM server [15] [18]

(while qualitative dependability failure logic analysis to calculate system level failure

behavior given the failure behavior of the individual components established in isola-

tion [16] is directly integrated in CHESS).

7 Discussion and Conclusions

The usage of the CHESS methodology and toolset has been experimented with in

the context of several research projects where use cases from different domains (e.g.

telecom, automotive, avionics, space, industrial automation and petroleum plants) pro-

vided an interesting testbed for validation of the process and for providing domain spe-

cific extensions to better accommodate specific needs and standards.

In some occasions, when collaborating with industrial users to validate the tool, we

found that widely acknowledged commercial tools allow a higher degree of freedom to

the user and may be easier to use in a traditional development process, if compared to

the strictly disciplined and almost guided modeling process supported by CHESS. This

can be considered as a drawback, as it requires users to have a solid academic back-

ground in modeling and imposes a slow learning curve at the beginning. However, the

higher level of freedom allowed by some commercial tools comes at the cost of pro-

ducing models for which feasibility analysis cannot always be performed in a sound

and deterministic manner.

2 https://www.polarsys.org/ic/papyrus

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 64

Copyright © 2016 held by the author(s)

By following the systematic and rigorous design process prescribed by CHESS, sup-

ported by its correct model transformations, the semantic meaning of each analysis ar-

tefact and analysis operation is guaranteed to correspond to the semantic meaning of

the modelling artefact and decoration attribute in the user model. The user model is

therefore guaranteed, by construction, to be statically analyzable for feasibility.

The CHESS methodology and toolset are in an advanced prototypical stage and may

need to be engineered, but we strongly believe that, being available as open source,

CHESS provides an important opportunity for the future of the development of com-

plex critical systems.

8 Acknowledgements

This work has been partially supported by the ARTEMIS-JU projects: CONCERTO

[3], CHESS [4] and SafeCer [5], the ECSEL project AMASS [14] and by the ESA

funded project FoReVer [6].

9 References

1. A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, A. Zovi and T.

Vardanega,“CHESS: A Model-Driven Engineering Tool Environment for Aiding the De-

velopment of Complex Industrial Systems”, Proceedings of Automated Software Engineer-

ing (ASE) International Conference, Essen, July 2012.

2. CHESS PolarSys project, [Online], Available: https://www.polarsys.org/projects/po-

larsys.chess [Accessed: July 15, 2016].

3. CONCERTO project: “Guaranteed Component Assembly with Round Trip Analysis for En-

ergy Efficient High-integrity Multi-core Systems”, Artemis Call 2012 333053, [Online],

Available: http://www.concerto-project.org/ [Accessed: July 15, 2016] .

4. CHESS project: “Composition with guarantees for high-integrity embedded software com-

ponents assembly”, [Online], Available: http://www.chess-project.org/ [Accessed: July 15,

2016].

5. SafeCer project: “Safety Certification of Software-Intensive Systems with Reusable Com-

ponents”, [Online], Available: http://safecer.eu/ [Accessed: July 15, 2016].

6. FoReVer project: “Functional Requirements and Verification Techniques for the Software

Reference Architecture”, ESA funded project, [Online], Available: https://es-

static.fbk.eu/projects/forever/ [Accessed: July 15, 2016]

7. T. Vardanega, “Property Preservation and Composition with Guarantees: From ASSERT to

CHESS”, in: Proc. of the 12th IEEE International Symposium on Object/Component/Ser-

vice Oriented Real-Time Distributed Computing, 2009, 125 – 132.

8. R. Chapman, “Correctness by Construction: a Manifesto for High Integrity Software”, Pro-

ceedings of the 10th Australian workshop on Safety critical systems and software - Volume

55, Pages 43-46, 2006.

9. L. Baracchi, S. Mazzini, G. Garcia, A. Cimatti and S. Tonetta, “The FOREVER Methodol-

ogy: a MBSE framework for Formal Verification”, Proceedings of DASIA Conference,

Porto, May 2013.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 65

Copyright © 2016 held by the author(s)

http://www.concerto-project.org/
http://www.chess-project.org/
http://safecer.eu/
https://es-static.fbk.eu/projects/forever/
https://es-static.fbk.eu/projects/forever/

10. AMASS project: “Architecture-driven, Multi-concern and Seamless Assurance and Certifi-

cation of Cyber-Physical Systems”, [Online], Available: http://www.amass-ecsel.eu/ [Ac-

cessed: July 15, 2016].

11. OCRA: “a command-line tool for the verification of logic-based contract refinement for

embedded systems”, [Online], Available: https://es-static.fbk.eu/tools/ocra/ [Accessed: July

15, 2016].

12. A. Cimatti and S. Tonetta, “A Property-Based Proof System for Contract-Based Design”.

EUROMICRO-SEAA 2012: 21-28.

13. A. Ruiz, B. Gallina, J.L. de la Vara, S. Mazzini and H. Espinoza, “AMASS: Architecture-

driven, Multi-concern, Seamless, Reuse-Oriented Assurance and Certification of CPSs”. 5th

International Workshop on Next Generation of System Assurance Approaches for Safety-

Critical Systems (SASSUR). SafeComp, International conference on computer safety, reli-

ability and security, Trondheim, September 2016.

14. MAST: “Modeling and Analysis Suite for Real-Time Applications”, [Online], Available:

http://mast.unican.es/ [Accessed: July 15, 2016].

15. DEEM: “DEpendability Modeling and Evaluation of Multiple Phased Systems”, [Online],

Available: http://rcl.dsi.unifi.it/projects/tools [Accessed: July 15, 2016].

16. B. Gallina and E. Sefer, “Towards Safety Risk Assessment of Socio-technical Systems via

Failure Logic Analysis” submitted to RISK 2014.

17. A. Baldovin, A. Zovi, G. Nelissen, S. Puri, “The CONCERTO Methodology for Model-

Based Development of Avionics Software” Chapter Reliable Software Technologies – Ada-

Europe 2015 Volume 9111 of the series Lecture Notes in Computer Science pp 131-145,

June 2015.

18. “A Reusable Modular Toolchain for Automated Dependability Evaluation”, Proceeding

ValueTools '13 Proceedings of the 7th International Conference on Performance Evaluation

Methodologies and Tools pp 298-303, December 2013.

19. “CHESSML profile”, [Online], Available: https://www.polarsys.org/chess/publis/CHESS-

MLprofile.pdf [Accessed: July 15, 2016].

20. N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of software connectors.

In Pro. Of the 22nd International Conference on Software Engineering, pages 178–187,

2000.

21. M. Bordin and T. Vardanega. Atomated model-based Generation of Ravenscar-Compliant

Source Code. In Proc. If the 17th Euromicro Conference on Real-Time Systems 2005.

Joint Proceedings of EduSymp 2016 and OSS4MDE 2016 Page 66

Copyright © 2016 held by the author(s)

http://mast.unican.es/
http://rcl.dsi.unifi.it/projects/tools
https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf

	03.pdf
	Towards a Corpus of Use-Cases for Model-Driven Engineering Courses

	04.pdf
	1 Introduction
	2 Competencies – a pragmatic view
	2.1 Definitions and Terms
	2.2 Technical Learning Outcomes
	2.3 Non-technical Learning Outcomes

	3 Didactic Approaches
	3.1 MDSD Meta-Modeling
	3.2 External DSL and Model-to-Text Transformation

	4 Experiences
	5 Summary and Outlook
	References

	02.pdf
	1 Introduction
	2 Research Methods
	2.1 Overview
	2.2 Simple Class Diagram
	2.3 Subjects
	2.4 Experimental Procedure

	3 Experimental Results
	3.1 Model Reading Test
	3.2 Model Creation Test
	The goal of this test is to check the requirement analysis capability and the appropriate abstraction capability. The 12T group (38.6%) has a higher score than the 11T group (14.0%). However, the average total scores and variances of these two group...

	3.3 Model Modification Test
	Overview. The goal of this test is to check the ability of conceptual modeling, requirement analysis and appropriate abstraction. In all five problems, students need to point out the mistakes in each class diagram and describe why they are incorrect...
	Results. Figure 4 shows the percentage of questions answered correctly and incorrectly in the model modification test for the two groups. The trend of the percentage of questions answered correctly is the same for both groups. The highest percentag...

	4 Discussion
	4.1 Question 1: What kinds of criteria are suitable for novice learners when they create conceptual models with simple class diagrams?
	4.2 Question 2: Are there any differences between the programming-known group and the not-known group in terms of their level of understanding of conceptual modeling?

	5 Conclusion
	Acknowledgement
	References

	01-05.pdf
	03.pdf
	Towards a Corpus of Use-Cases for Model-Driven Engineering Courses

	04.pdf
	1 Introduction
	2 Competencies – a pragmatic view
	2.1 Definitions and Terms
	2.2 Technical Learning Outcomes
	2.3 Non-technical Learning Outcomes

	3 Didactic Approaches
	3.1 MDSD Meta-Modeling
	3.2 External DSL and Model-to-Text Transformation

	4 Experiences
	5 Summary and Outlook
	References

	02.pdf
	1 Introduction
	2 Research Methods
	2.1 Overview
	2.2 Simple Class Diagram
	2.3 Subjects
	2.4 Experimental Procedure

	3 Experimental Results
	3.1 Model Reading Test
	3.2 Model Creation Test
	The goal of this test is to check the requirement analysis capability and the appropriate abstraction capability. The 12T group (38.6%) has a higher score than the 11T group (14.0%). However, the average total scores and variances of these two group...

	3.3 Model Modification Test
	Overview. The goal of this test is to check the ability of conceptual modeling, requirement analysis and appropriate abstraction. In all five problems, students need to point out the mistakes in each class diagram and describe why they are incorrect...
	Results. Figure 4 shows the percentage of questions answered correctly and incorrectly in the model modification test for the two groups. The trend of the percentage of questions answered correctly is the same for both groups. The highest percentag...

	4 Discussion
	4.1 Question 1: What kinds of criteria are suitable for novice learners when they create conceptual models with simple class diagrams?
	4.2 Question 2: Are there any differences between the programming-known group and the not-known group in terms of their level of understanding of conceptual modeling?

	5 Conclusion
	Acknowledgement
	References

