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Abstract

The purpose of the research is to increase the fault tolerance of high-
speed special processors for digital signal processing (DSP). Achieving
this goal is possible due to parallelization of computations. It is shown
in the paper that, to provide signal processing in real time, it is neces-
sary to use algebraic structures having the properties of a ring and a
field, in particular, a residue number system (RNS) and a polynomial
residue number system (PRNS). Application of new modular technolo-
gies in the DSP problems, due to parallelization at the level of opera-
tions of independent low-bit data processing, allows not only to increase
the speed of computing, but also to ensure obtaining the correct result
in the conditions of interference in the transmission and the equipment
failure. This paper presents a new algorithm for error correction on the
basis of calculation of a truncated convolution. The use of this algo-
rithm allows developing special processors for digital signal processing
(SP for DSP), capable of maintaining the state of operability in the
case of failures due to reconfiguration of the structure.

Introduction

Modern information-communication systems widely use special processors (SP), which, using a mathematical
model of orthogonal frequency division multiplexing (OFDM), allow ensuring high interference immunity, the
transmission of information in real time, stability with respect to multipath propagation of radio waves, and
a number of other advantages. An improvement of the performance of the special processor for DSP can be
achieved by the use of parallel computing techniques. However, this leads to a decrease in reliability of the
computing system. It is possible to resolve this contradiction by using corrective non-positional modular codes.
Therefore, the expansion of the corrective capacity of modular codes, as well as the development of a new method
of finding and fixing errors that allow improving the fault tolerance of SP for DSP, is a crucial task.

Main Part. The Purpose of Research

Each sphere of application of the special processors for DSP imposes specific requirements for the composition
and structure of the computing device. With the development of networks and data transmission systems, a
trend is observed: increasing the requirements for the data transmission speed, reliability and quality of the
services provided. This leads to revitalization of the work on the development of new organization principles of
radiocommunication.
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In recent years, there has been an increased interest in the use of perspective types of signal-code designs of OFDM
(Orthogonal Frequency Division Multiplexing). However, along with some advantages, the SP for OFDM, using
a mathematical model of fast Fourier transform (FFT), have several shortcomings. These include insufficient
speed of orthogonal transformation of signal, as well as an increase in the complexity of SP for OFDM, which
leads to a decrease in its reliability.
It is possible to eliminate these shortcomings due to providing the property of fault tolerance during the operation
of SP for DSP. Therefore, the aim of this work is to improve the fault tolerance of SP for DSP by expanding the
corrective abilities of PRNS codes and using new methods of finding and correcting errors.

The Material and Methods of Research

Modular codes are currently widely used in many fields. For example, in [Moh02, Omo07, Yat13], the feasibility
of using the codes of residual classes system when performing the FFT is demonstrated. The use of low-bit
residues and parallel data processing allow improving the execution speed of the FFT. In [Cher95], the usage of
modular codes for the construction of digital filters is suggested. In the papers [Gor14, Jun11, Kal15, Chu13],
the methods and algorithms for improving the fault tolerance of the residue classes SP are shown. The work
[Step16] presents a way to correct the errors due to failures in the operation of the AES algorithm encoder. The
satellite communication systems may become a priority use of the modular code [Pash05]. Using the modular
code allows improving the efficiency of realization of the spaced-out reception. In [Kat13], an example of the
modular code application in the systems of secondary processing of navigation data is given. Using the RNS code
has allowed increasing the computation speed and reducing the errors in determining the space-time coordinates
of the client.
Using the modular codes of a polynomial residue number system (PRNS) allows improving the efficiency of
implementation of DSP by switching from the processing of one-dimensional signals to the processing of multi-
dimensional signals using an isomorphism generated by the Chinese Remainder Theorem (CRT) [Gor14, Kal14].
The PRNS code is a set of residues A(z) = (a1(z), a2(z), . . . , ak(z)), where A(z) ≡ ai(z) mod pi(z), i = 1, 2, . . . , k,
obtained by dividing the polynomial A(z) by pairwise relatively prime modules pi(z). The application of PRNS
allows carrying out the digital processing in parallel





X1(s) =
d−1∑
j=0

x1(j)b1
jl mod p1(z)

...

Xk(s) =
d−1∑
j=0

xk(j)bk
jl mod pk(z),

(1)

where xi(j) ≡ x(j) mod pi(z); bi
±jl ≡ b±jl mod pi(z);Xi(s) ≡ X(s) mod pi(z); b is the primitive root; x(j) is the

input sequence of the signal; X(s) are the spectral components of the input signal; d = 2v − 1 is the dimension
of the input vector.
However, the transition to parallel computing leads to an increase in the circuit expenses, which negatively
affects the reliability of operation of the SP for DSP. It is possible to resolve this contradiction by giving them
the property of fault tolerance. The use of modular codes allows solving this problem. In this case, the expansion
of the corrective abilities of the PRNS codes will increase the efficiency of this solution.
It is shown in [Gor14] that, to correct a single-bit error, i.e., a distortion of one digit of the residue of the PRNS
code, ∆ai(z) = zn, where n = 0, . . . , deg pi(z) − 1, it suffices to have two control bases pk+1(z), pk+2(z), for
which

deg pk−1(z) ≤ deg pk(z) ≤ deg pk+1(z) ≤ deg pk+2(z), (2)

where deg pi(z) is the degree of the irreducible polynomial pi(z); k is the number of working bases.
A PRNS code is considered to be admissible, if

deg A(z) < P1(z) =

k∏

i=1

pi(z), (3)
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where P1(z) is the range of admissible combinations.
The introduction of redundant modules leads to extension of the PRNS code range

P (z) =

k+2∏

i=1

pi(z) = P1(z)

k+2∏

i=k+1

pi(z) = P1(z)P2(z). (4)

An error, transforming a correct combination A = (a1(z), a2(z), . . . , ak+2(z)) into the combination A∗ =
(a1(z), . . . , a∗i , . . . , ak+2(z)), realizes a transition of the code beyond the limits of the range P1(z), where
ai(z) ≡ A(z) mod pi(z), a

∗
i (z) = ai(z) + ∆ai(z) is a distorted residue of the PRNS code, ∆ai(z) = zn is

the depth of the error n = 0, . . . , deg pi(z)− 1.
Consider a situation where an error has occurred with respect to one base pi(z), but several bits are distorted
in the residue. This error will be called a single-bit error. If two control bases satisfying the condition (2) are
used in the ordered PRNS code, this code is capable of correcting single-bit errors that distort several bits of
one residue of the PRNS code.
Let an error with respect to the i-th base occur in the PRNS code. Then the code has the form

A∗(z) = (α1(z), . . . , α∗
i (z), . . . , αk+2(z)), (5)

where α∗
i (z) = αi(z) + ∆αi(z).

If an error occurred with respect to the j-th base, the PRNS code has the form

A∗∗(z) = (α1(z), . . . , α∗∗
j (z), . . . , αk+2(z)), (6)

where α∗∗
j (z) = αj(z) + ∆αj(z), j 6= i.

Since modular codes are non-positional codes, the positional characteristics (PC) are used for the detection and
correction of errors in these codes. They show the location of an erroneous code combination of the modular
code with respect to the range P1(z). The work [Gor14] presents an algorithm and a circuit realization of the
calculation of an interval number, the physical meaning of which is defined as L(z) = [A(z)/P1(z)] . If the
PRNS code does not contain errors, i.e., deg A(z) < deg P1(z), then the value of the interval number is zero,
i.e., L(z) = 0. If an error occurs in the PRNS code, L(z) 6= 0. Let us determine the intervals within which the
erroneous code combinations of PRNS fall

L∗(z) =

[
A∗(z)

P1(z)

]
=

[
(A(z) + ∆α∗

i (z)Bi(z)) mod P (z)

P1(z)

]
, (7)

L∗∗(z) =

[
A∗∗(z)

P1(z)

]
=

[(
A(z) + ∆α∗∗

j (z)Bj(z)
)
mod P (z)

P1(z)

]
, (8)

where P (z) =
k+2∏
i=1

pi(z) is the complete range of the PRNS code.

If the code combinations do not fall into one and the same interval, then we have

L∗(z) + L∗∗(z) ≥ 1. (9)

Let the combination A(z) = 0. Then expressions (7) and (8) can be represented in the form

L∗(z) =

[
(∆α∗

i (z)Bi(z)) mod P (z)

P1(z)

]
, (10)

L∗∗(z) =

[(
∆α∗∗

j (z)Bj(z)
)
mod P (z)

P1(z)

]
. (11)

It is known that the orthogonal bases of the PRNS code are defined in the following way

Bi(z) = mi(z)
P (z)

pi(z)
= mi(z)

P1(z)pk+1(z)pk+2(z)

pi(z)
(12)
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Bj(z) = mj(z)
P (z)

pj(z)
= mj(z)

P1(z)pk+1(z)pk+2(z)

pj(z)
(13)

We substitute equalities (12) and (13) into expressions (10) and (11). Then we get

L∗(z) =

[
(∆α∗

i (z)mi(z)pk+1(z)pk+2(z)) mod P (z)

pi(z)

]
, (14)

L∗∗(z) =

[(
∆α∗∗

j (z)mj(z)pk+1(z)pk+2(z)
)
mod P (z)

pj(z)

]
. (15)

As is known, the interval number runs over all the values modulo P2(z) =
k+2∏

i=k+1

pi(z). Then expressions (14)

and (15) can be represented as follows

L∗(z) =

(
∆α∗

i (z)mi(z)

pi(z)

)
mod P2(z), (16)

L∗∗(z) =

(
∆α∗∗

j (z)mj(z)

pj(z)

)
mod P2(z). (17)

Let us use the isomorphism generated by the Chinese Remainder Theorem, and move on to the multi-dimensional
representation of the intervals in the form of the modular code

L∗(z) =
(
L∗
k+1(z), L∗

k+2(z)
)

=

(∣∣∣∣
∆α∗

i (z)mi(z)

pi(z)

∣∣∣∣
+

pk+1(z)

,

∣∣∣∣
∆α∗

i (z)mi(z)

pi(z)

∣∣∣∣
+

pk+2(z)

)
, (18)

L∗∗(z) =
(
L∗∗
k+1(z), L∗∗

k+2(z)
)

=

(∣∣∣∣
∆α∗∗

j (z)mj(z)

pj(z)

∣∣∣∣
+

pk+1(z)

,

∣∣∣∣
∆α∗∗

j (z)mj(z)

pj(z)

∣∣∣∣
+

pk+2(z)

)
. (19)

Suppose that in the event of errors with respect to the i-th and j-th bases of the PRNS code, where j 6= i , the
coincidence of intervals takes place. Then the expression (9) assumes the form

L∗(z) + L∗∗(z) = 0. (20)

Thus, we arrive at the equalities

∣∣∣∣
∆α∗

i (z)mi(z)

pi(z)

∣∣∣∣
+

pk+1(z)

−
∣∣∣∣
∆α∗∗

j (z)mj(z)

pj(z)

∣∣∣∣
+

pk+1(z)

= 0, (21)

∣∣∣∣
∆α∗

i (z)mi(z)

pi(z)

∣∣∣∣
+

pk+2(z)

−
∣∣∣∣
∆α∗∗

j (z)mj(z)

pj(z)

∣∣∣∣
+

pk+2(z)

= 0. (22)

Let us convert to a common denominator. We get

∣∣∣∣
∆α∗

i (z)mi(z)pj(z) + ∆α∗
j (z)mj(z)pi(z)

pi(z)pj(z)

∣∣∣∣
+

pk+1(z)

= 0, (23)

∣∣∣∣
∆α∗

i (z)mi(z)pj(z) + ∆α∗
j (z)mj(z)pi(z)

pi(z)pj(z)

∣∣∣∣
+

pk+2(z)

= 0. (24)

However, the values ∣∣∆α∗
i (z)mi(z)pj(z) + ∆α∗

j (z)mj(z)pi(z)
∣∣+
pk+1(z)

6= 0, (25)

∣∣∆α∗
i (z)mi(z)pj(z) + ∆α∗

j (z)mj(z)pi(z)
∣∣+
pk+2(z)

6= 0, (26)

Hence, the assumption of the coincidence of intervals under the occurrence of a single-bit error in different bases
of the PRNS code while using two control bases satisfying condition (2) is incorrect. Thus, the PRNS code is able
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to correct any errors that occur with respect to one base. Consider a new algorithm for detecting and correcting
errors in the modular code. To correct an error in the PRNS code, we use positional characteristics (PC). In
the paper [Gor14], an algorithm and a circuit realization of calculation of an interval number are presented. In
[Lie99], the leading coefficients of a generalized polyadic system are used as PC. In [Ham12], the algorithm of
projection of the PRNS code is proposed to be used for the error correction. However, the algorithms mentioned
above require substantial circuit and time expenses. It is possible to reduce them by virtue of a PC-truncated
convolution. To perform the transition from PRNS into a positional representation (PR), we use

A(z) =

k+1∑

i=1

ai(z)Bi(z) mod P (z) =

k+1∑

i=1

|ai(z)mi(z)|+pi(z)
Mi(z), (27)

where Bi(z) is the orthogonal basis; Mi(z) = P (z)/pi(z); mi(z) is the weight of the basis; Bi(z) ≡ l mod pi(z).
Suppose that an error has taken place with respect to the j-th base of PRNS, its depth being equal to ∆a∗j (z).
Let us transform the erroneous PRNS code into PR

A∗(z) =

k+1∑

i=1

|ai(z)mi(z)|+pi(z)
Mi(z) +

∣∣∆a∗j (z)mj(z)
∣∣+
pj(z)

Mj(z). (28)

Analysis of (28) shows that going beyond the working range P1(z) is caused by the second term. To perform the
correction, we need to calculate the quantity Mi(z) for each base of PRNS. Then we calculate the degree of the
working range

N = deg P1(z) =

k∑

i=1

deg pi(z) (29)

In the polynomials Mi(z) we drop the digits, the degree of which will be less than N − deg pi(z) = Ni. As a
result, we obtain the constants Ki(z). If the PRNS code does not contain an error, then deg A(z) < deg P1(z).
In this case, the convolution of the products of the residues ai(z), the basis weight mi(z) and the constants Ki(z)
must be equal to zero

S(z) =

k+1∑

i=1

|ai(z)mi(z)|+pi(z)
Ki(z) = 0. (30)

If the code A∗(z) =
(
a1(z), a2(z), . . . , a∗j (z), . . . , ak+1(z)

)
contains an error, than the convolution equals

S(z) =

k+1∑

i=1

|ai(z)mi(z)|+pi(z)
Ki(z) +

∣∣∆a∗j (z)mj(z)
∣∣+
pj(z)

Kj(z) =
∣∣∆a∗j (z)mj(z)

∣∣+
pj(z)

Kj(z). (31)

Based on the value of S(z), one can determine the location of the error and its depth.

Results of Research and Their Discussion

Let us carry out the calculations of the numbers of the intervals L(z), into which the erroneous combinations of the
PRNS code fall under the occurrence of errors inside one residue. Suppose that we choose p1(z) = z+1, p2(z) =
z2 +z+1, p3(z) = z4 +z3 +z2 +z+1 as the information moduli of PRNS, while p4(z) = z4 +z3 +1 and p5(z) =

z4+z+1, as the control moduli. The range of admissible combinations P1(z) =
3∏

i=1

pi(z) = z7+z6+z5+z2+z+1.

Consider an error which has taken place with respect to the base p5(z), its depth being ∆a5(z) = z + 1. The

orthogonal basis will be B5(z) = m5(z)
4∏

i=1

pi(z) = z12 + z9 + z8 + z6 + z4 + z3 + z2 + z. We make use of equality

(7)

L0011
5 (z) =

[
(z + 1)

(
z12 + z9 + z8 + z6 + z4 + z3 + z2 + z

)

z7 + z6 + z5 + z2 + z + 1

]
= z6 + z4 + z4 + z = 10101102 = 5610

The research results are given in Table 1.
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Table 1: Intervals of single-bit errors of the PRNS code

pi(z) ∆ai(z) L(z) pi(z) ∆ai(z) L(z) pi(z) ∆ai(z) L(z) pi(z) ∆ai(z) L(z)
p1(z) 1 96 p3(z) 0001 9B p4(z) 0001 98 p5(z) 0001 32
p2(z) 01 A7 p3(z) 0010 136 p4(z) 0010 130 p5(z) 0010 64
p2(z) 10 14F p3(z) 0011 1AD p4(z) 0011 1A8 p5(z) 0011 56
p2(z) 11 1E8 p3(z) 0100 6C p4(z) 0100 60 p5(z) 0100 C8

p3(z) 0101 F7 p4(z) 0101 F8 p5(z) 0101 FA
p3(z) 0110 15A p4(z) 0110 150 p5(z) 0110 AC
p3(z) 0111 1C1 p4(z) 0111 1C8 p5(z) 0111 9E
p3(z) 1000 D8 p4(z) 1000 C0 p5(z) 1000 190
p3(z) 1001 43 p4(z) 1001 58 p5(z) 1001 1A2
p3(z) 1010 1EE p4(z) 1010 1F0 p5(z) 1010 1F4
p3(z) 1011 175 p4(z) 1011 168 p5(z) 1011 1C6
p3(z) 1100 B4 p4(z) 1100 A0 p5(z) 1100 158
p3(z) 1101 2F p4(z) 1101 38 p5(z) 1101 16A
p3(z) 1110 182 p4(z) 1110 190 p5(z) 1110 13C
p3(z) 1111 119 p4(z) 1111 108 p5(z) 1111 10E

Analysis of the table shows that the conducted research has confirmed the expansion of the corrective abilities
of the PRNS codes. For example, due to this, the PRNS code can correct 49 errors, while, on the other hand,
using [Gor14], one can correct only 15 errors. Hence, the use of two control bases satisfying (3) allows correcting
any errors that occur in one residue of PRNS.
Consider the application of the developed method of error correction in the PRNS code. Let the working bases
be chosen to be the polynomials p1(z) = z + 1, p2(z) = z3 + z + 1, while p3(z) = z3 + z2 + 1, to be the control

ones. Then the range P1(z) =
2∏

i=1

pi(z) = z4 + z3 + z2 + z, where deg P1(z) = 4. Then the constants M1(z) =

z6+z5+z4+z3+z2+z+1,M2(z) = z4+z2+z+1;M3(z) = z4+z3+z2+1. Let us calculate the values of weights of

the first orthogonal basis. To this end, we find d1 = M1(z) mod p1(z) =
∣∣z6 + z5 + z4 + z3 + z2 + z + 1

∣∣+
z+1

= 1.

Hence, m1(z) = 1, since d1(z)m1(z) ≡ l mod pi(z). Now we calculate the weight of the basis B2(z). We get

d2 = M2(z) mod p2(z) =
∣∣z4 + z2 + z + 1

∣∣+
z3+z+1

= 1. Since d2(z) = 1, we have m2(z) = 1. For the basis B3(z),

we obtain d3 = M3(z) mod p3(z) =
∣∣z4 + z3 + z2 + 1

∣∣+
z3+z+1

= z2 + z + 1. Since the value d3(z) 6= 1, the weight

of B3(z) equals m3(z) = z2 + 1. This is determined from the condition

|d3(z)m3(z)|+p3(z)
=
∣∣(z2 + z + 1

) (
z2 + 1

)∣∣+
z3+z2+1

=
∣∣z4 + z3 + z + 1

∣∣+
z3+z2+1

= 1.

Let us calculate the constants Ki(z). Since deg p1(z) = 1, we have K1(z) = z6 + z5 + z4. Since deg p2(z) = 3,
we obtain K2(z) = z4 + z2. Because deg p3(z) = 3, we arrive at K3(z) = z4 + z3 + z2.
Let the PRNS code A(z) = z3 + z2 + z + 1 =

(
0, z2, z

)
be delivered at the input of the correction block.

Since deg A(z) < deg P1(z) = 4, PRNS does not contain an error. Let us carry out the calculation of the
convolution. We determine the products of ai(z) and mi(z). We get d1(z) = |a1(z)m1(z)|+p1(z)

= 0; d2(z) =

|a2(z)m2(z)|+p2(z)
= z2; d3(z) = |a3(z)m3(z)|+p3(z)

=
∣∣z(z2 + 1)

∣∣+
z3+z2+1

= z2 + z + 1.

Let us determine the values di(z)Ki(z). We obtain d1(z)K1(z) = 0(z6+z5+z4) = 0; d2(z)K2(z) = z2(z4+z2) =
z6 + z4; d3(z)K3(z) = (z2 + z + 1)(z4 + z3 + z2) = z6 + z4 + z2. We only keep the monomials with the degrees
no less than N = 4. We obtain the truncated values S1 = 0; S2 = z6 + z4; S3 = z6 + z4. Next, we add two
truncated values Si(z) modulo two

S = S1 + S2 + S3 = 0 + (z6 + z4) + (z6 + z4) = 0.

Since the convolution S = 0, the PRNS code does not contain an error.
Suppose that an error has occurred with respect to the first base, while its depth equals ∆a1(z) = 1. Then
a∗1(z) = a1(z) + ∆a1(z) = 0 + 1 = 1. Thus, the PRNS code equals A∗(z) = (1, z2, z) = z6 + z5 + z4. Then
we have d1(z) = |a1(z)m1(z)|+p1(z)

= 1, d2(z) = |a2(z)m2(z)|+p2(z)
= z2, d3(z) = z2 + z + 1. We determine the
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product di(z)Ki(z). We get d1(z)K1(z) = z6 + z5 + z4, d2(z)K2(z) = z6 + z4, d3(z)K3(z) = z6 + z4 + z2.
The truncated values equal S1 = z6 + z5 + z4, S2 = z6 + z4, S3 = z6 + z4 + z2. Then the convolution

S = K1 +K2 +K3 = (z6 + z5 + z4) + (z6 + z4) + (z6 + z4) = z6 + z5 + z4.

Since S 6= 0, the PRNS code contains an error. In Table 2, the values of S and the corresponding errors with
respect to the working bases of the PRNS code are given.

Table 2: The values of the truncated convolutions S

Bases Error ∆ai(z) Convolution S Correcting value ∆
p1(z) = z + 1 1 z6 + z5 + z4 z6 + z5 + z4 + z3 + z2 + z + 1

p2(z) = z3 + z + 1 1 z4 z4 + z2 + z + 1
z z5 z5 + z3 + z2 + z
z2 z6 + z4 z6 + z4 + z3 + z2

After the transformation from the PRNS code to the PR code, we carry out the error correction

A(z) = A∗(z) + ∆(z) = (z6 + z5 + z4) + (z6 + z5 + z4 + z3 + z2 + z + 1) = z3 + z2 + z + 1.

Unlike other algorithms for calculating PC, this algorithm of error correction can be used in the construction
of fault-tolerant SP for DSP of residue classes, capable of maintaining the state of operability by means of the
structure reconfiguration.

Conclusion

The paper demonstrates the possibility of using modular codes in the special processors that implement DSP.
Parallelization of computations at the level of arithmetic operations allows not only providing maximum per-
formance of the SP for DSP, but gives the SP the property of fault tolerance. Using the PRNS codes allows
detecting and correcting errors that arise in the course of calculations due to failures or malfunctions of the SP
for DSP. The proofs presented here allow enhancing the corrective abilities of the PRNS codes. For example,
due to this, a PRNS code with two control bases is able to correct 49 errors, while, at the same time, using
[Gor14], only 15 errors are corrected. This paper presents a method for detecting and correcting errors, which
uses a truncated convolution of the high-order bits of orthogonal bases. The advantage of this method is that it
can detect and correct errors in the SP for DSP with reconfigurable structure. This allows maintaining the state
of operability of the PRNS SP under the disconnection of the failed computation channels and reconfiguration
of the special processor.
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