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Abstra
t

This paper des
ribes a new method of the tree-like stru
ture represen-

tation in data bases. The developed method of �nding relationships be-

tween nodes is based on the unique prime fa
torization theorem whi
h

states that every natural number 
an be written as a produ
t of prime

numbers. The developed method is implemented using NVIDIA graph-

i
s pro
essing unit parallel 
omputing and NVIDIA CUDA te
hnology.

The paper analyzes the pro
ess of tree 
onstru
tion with the developed

method applied, represents the algorithms of GPU-based pro
essing of

trees 
oded using the developed method, and also the results of perfor-

man
e snapshot.

1 Introdu
tion

Computer systems are developing rapidly, pro
essor ar
hite
tures are 
hanging, the main and disk memorysizes

are in
reasing. Nowadays the rapid in
rease of power and data volumes allows for the development of high-

performan
e data management and pro
essing systems.

A large amount of data in the world in one form or another is 
urrently represented as a hierar
hy or mutual

dependen
y where some pie
es of information depend on the others.

What is more, data management systems are beginning to migrate from the disk-oriented te
hnology to the

memory-oriented. The development of DBMS has led to integrating in-memory te
hnology support by many

database management systems. [GBE13℄

Data pro
essing in the main memory enables a 
onsiderable in
rease of the data pro
essing rate in favor of

safety. Modern DBMS, supporting in-memory te
hnology pro
ess data in the memory mirroring 
hanges to the

disk.

The appli
ation of memory-oriented data pro
essing te
hnologies together with the new methods of represent-

ing trees using GPU 
omputing 
an in
rease the data pro
essing rate.

This resear
h aims to develop a new method of hierar
hy-representation in databases that exhibits high

performan
e in tree manipulation operations.
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2 Related Works

This work is devoted to the des
ription of the developed method of representing trees in databases. The develop-

ment of the method was initially-oriented towards the maximum parallelization of tree pro
essing and maximum

independen
e of node 
ode from other node 
odes. The paper fo
uses on a radi
ally new method of representing

trees in relational and nonrelational databases, and also demonstrates that the GPU 
omputing of hierar
hi
al

relationships 
an be more e�e
tive than the CPU. The developed method of representing trees is oriented towards

the parallel pro
essing mode with the use of a GPU.

2.1 Methods of Representing Trees

All the methods of representing trees in databases 
an be put into two 
ategories:

� methods of representing trees in non-graph databases;

� methods of representing trees in graph and hierar
hi
al databases.

The following methods belong to the �rst 
ategory:

� The adja
en
y list method of relational hierar
hi
al modeling.

The adja
en
y list method is based on the storage of dire
t parent-
hild relationships. Ea
h 
hild in a treelike

hierar
hy relates to its parent whi
h is at one level higher. Using this hierar
hy property, a table-level relational

dependen
e 
an be 
reated.

� The materialized path method.

A materialized path is a string �eld that 
onsists of element names separated by a separator 
hara
ter [Tro03℄.

Parents' names of a node for whi
h a materialized path is built are used as the materialized path elements.

� The Nested Sets method.

The Nested Set method implies that there are two additional �elds for the node des
ription: a tree 
oding

using the algorithm for the nested sets 
oding introdu
ed by Joe Celko [Cel12℄ [Cel℄ [Cel04℄, is done as follows:

moving down the left side of a tree, it's ne
essary to travel through all the subtrees beginning with the leftmost

to the rightmost and assign ea
h node an auto in
rement value. When moving down the tree, an auto in
rement

value is as signed to the variable responsible for the interval starting point (½left bound�); when moving up - to

the variable responsible for the interval end (½right bound�).

� The nested intervals method.

The nested intervals method, introdu
ed in [Tro05℄, is based on the materialized path 
oding using a �nite


ontinued fra
tion [q1, q2, . . ., qn], where [q1, q2, . . ., qn], where q1, q2, . . ., qn are the steps of a materialized

path. Rational numbers a/b, where a >= b >= 1 and GCD(a, b) = 1 are used as tree element 
odes.

As an example, 
onsider how the 
ode for a materialized path ½3.2.2� is 
reated using a 
ontinued fra
tion:

3 +
1

2 + 1
2

=
17

5

To transform a materialized path to a rational expression the 
onvergen
e prin
iple 
an be used, while for

the inverse transformation the algorithm for the gradual trun
ation should be used, that in 
ase of a rational

expression is the same as Eu
lid's algorithm for �nding GCD [Gai99℄.

� Modi�
ations and 
ombinations of the afore-named methods.

There are also modi�
ations of the given methods that 
an �x the inherent problems [Kol09℄ [vor14℄ [MT11℄.

For example, in [MT11℄ the improvement of the nested intervals method is introdu
ed through the interval


oding in the residue number system (RNS). Using RNS enables redu
ing the length of numbers used by storing

a number as a short length remainder. Representing node 
odes as numbers expressed in RNS enables parallel

pro
essing of not only di�erent tree nodes but also one and the same node remainder. Thus, the maximum

parallelization of data pro
essing is in
reased. In [vor14℄ the method of storing nested intervals expressed in

RNS is introdu
ed that solves some problems of sorting numbers expressed in RNS and the index 
onstru
tion.

Su
h methods as the Materialized Path, nested intervals and modi�
ations of the both in
lude the data on


hildren and/or parents in the key while 
oding and 
an be pro
essed in parallel with su�
ient e�e
tiveness.

The methods of representing trees in graph and hierar
hi
al databases are di�
ult to 
lassify as most of graph

databases use their own formats and stru
tures of data representations.

In some 
ases pointers are used for linking neighbor nodes. The pointers are bound to the data that appear

in ar
s. In its stru
ture this hierar
hy model is similar to the adja
en
y lists.

Other [Kup86℄ [KV93℄ graph databases use a table model for storing relationship ar
s.

Another format of storing graph data is XML and XML-based formats [MS11℄ [BELP℄.
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Figure 1: Representation types of dependent data

Fig. 1b and 1a illustrate the aforesaid. Fig. 1b illustrates a relational representation of hierar
hi
al data in

DB, while Fig. 1a illustrates data representation in the form of a graph.

The illustration data exemplify the storage of hierar
hy data in databases.

One of the distin
tive features of graph databases is the base 
hosen for database obje
ts representation,

relations between the data, 
omplex obje
ts and their attributes.

All graph databases are based on a mathemati
al des
ription of a graph that determines graph manipulation

operations. A graph model depends on the base, for example: a dire
ted or undire
ted graph, marked or

unmarked graph nodes, weighted and unweighted ar
s.

Some models su
h as GOOD, GMOD, G-Log, Gram represent both the s
heme and entity as a named digraph.

LDM is an ex
eption whose s
hemes are digraphs with leaves representing data and internal nodes represent

stru
tured data. LDM 
onsists of a table with two-
olumns, ea
h of whi
h asso
iates entities with data types

(primitive, tuple or set). A more detailed des
ription of graph models is represented in [AG08℄.

2.2 GPU Data Pro
essing

Graphi
s pro
essing unit seems to be an advan
ed high�performan
e platform for 
omputing. The basi
 distin
-

tive feature enabling GPU's high performan
e is its ar
hite
ture having a great number of ALU. The GPU and

CPU ar
hite
tures are 
ompared in [PT11℄. A number of works [BS10℄ [HKOO11℄ point to the advantage of GPU

pro
essing of data over CPU. On average, the queries were pro
essed 5�30 times faster in relational databases.

Some works [PSHL10℄ [BMCN09℄ show the in
reased rate of sorting data using GPU. As far as hierar
hi
al and

graph stru
tures are 
on
erned, the works [HN07℄ [HKOO11℄ [WO10℄ are worth mentioning. in whi
h GPU

graph 
omputations are made and whi
h des
ribe the speedup of data pro
essing using GPU 
ompared to CPU

(when pro
essing graph stru
tures).

Hereafter, mentioning GPU 
omputing means the usage of NVIDIA CUDA te
hnology.

CUDA (Compute Uni�ed Devi
e Ar
hite
ture) is a NVIDIA te
hnology designed for the development of

appli
ations for massive parallel 
omputing units. Due to a great number of ALU. GPU implements the thread

model of 
omputation: there are input and output data that 
onsist of the same elements whi
h 
an be pro
essed

independently. The elements pro
essing is performed by the kernel.

A kernel is a fun
tion exe
uted on GPU and 
alled from CPU. A kernel is 
omposed of a grid of multiple

threads grouped into a hierar
hy.

The highest level � grid � 
orresponds to the kernel and groups all the kernel threads. A grid is a one- or

two-dimensional array of blo
ks. Ea
h blo
k is a one/two/three-dimensional array of threads. Furthermore, ea
h

blo
k is an entirely independent set of intera
ting threads.

3 Prin
iples of Tree Constru
tion

By ½tree� we will understand a 
onne
ted a
y
li
 graph 
omposed of a set of nodes n = (k, d), where k is the

node 
ode, d is data asso
iated with the node:

T = {n} = {(k, d)}

Let us de�ne for a node n operations key(n) = k a

ess to the node 
ode, data(n) = d a

ess to data asso
iated
with the node.
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Denote by the node identi�er a prime number unique within node Ids. Let us introdu
e a set of primes I,
representing primes in in
reasing order of their values:

I = s1, s2, . . . , sm, . . .

Let us 
all a produ
t of the node parent identi�ers by the node Id the node 
ode.

The 
ode of a tree root is the root identi�er.

Let us introdu
e the operation of getting the following prime number from a set pf primes I:

next() = si, i = i + 1

Primes are needed for tree 
onstru
tion, be
ause tree de
omposition should be unique.

The usage of one and the same identi�er for more than one node is impossible.

A tree is formed as follows:

1. A prime is 
hosen as a root node.

2. Ea
h node added to the tree has a 
ode equal to the produ
t of the parent 
ode by the identi�er of the

node added.

Ea
h tree node in the 
ode en
odes the entire path starting from the root. This method of node 
ode 
reation

is similar to the Materialized Path method.

4 Tree Pro
essing Operations

Let us show admissible tree operations. Let us introdu
e the fun
tion of �nding the remainder on dividing a by

b:
mod(a, b) = a − b · ⌊a

b
⌋

The following tree operations are admissible:

1. add(T, d, nparent), where nparent is parent node, d is data added to the tree � operation of adding a node

to the tree.

Pre
ondition:

exists(T, nparent)

Realization:

T := T ∪ {n(key(nparent) · next(), d)} (1)

Predi
ate exists(T, n) determines if the node n existing in the tree T :

exists(T, n) := ∃n ∈ T

2. Operation of sear
hing a node with the 
ode k in the tree node(T, k).

node(T, k) := {x ∈ T |key(x) = k} (2)

3. Operation of sear
hing node parents in the tree parents(T, k).

parents(T, k) := {x ∈ T |mod(k, key(x)) = 0 ∧ k 6= key(x)} (3)

4. Operation of sear
hing a dire
t parent parent(T, k).

parent(T, k) := MAX(parents(T, k)) (4)

5. Operation of sear
hing a subtree subtree(T, k).

subtree(T, k) := {x ∈ T |mod(key(x), k) = 0} (5)

6. children(T, k) � operation of sear
hing dire
t 
hildren.

children(T, k) := {x ∈ T |k = key(parent(T, key(x)))} (6)

7. Operation of subtree removal remove(T, k).
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Realization:

T := {x ∈ T |mod(key(x), k) 6= 0} (7)

8. Operation of transferring a subtree rooted nold to a new parent nnew move(T, nold, nnew).
Pre
ondition:

exists(T, nold) ∧ exists(T, nnew) ∧ mod(key(nnew), (nold)) 6= 0

Realization:

T := T ∪ {x ∈ subtree(T, key(nold))|
|n(recalcKey(T, key(x), key(nold), key(nnew)), data(x))} (8)

where recalcKey(T, k, kold, knew) is an operation of node 
ode re
al
ulation:

recalcKey(T, k, kold, knew) :=
k

kold
∗ knew

Considering the possibility of exe
uting parallel operations with a tree as a set, the following features should

be noted:

1. The possibility of parallel tree pro
essing using GPU.

Tree operations (2, 3, 4, 5, 6) that do not modify the tree have no need for intera
tion with other nodes. All

su
h operations 
an be pro
essed in parallel or simultaneously. Parallelization of tree manipulation operations

up to one thread per node is possible.

2. The order of re
ords in tree representation in the memory in�uen
es only the order of re
ords in the result

set and does not in�uen
e the number of re
ords in it (the result set).

3. The usage of primes in a tree in the sequential order is optional.

5 GPU Computation of Trees

Ea
h node represents a pair: {node 
ode: pointer to node properties}. Let us 
all this pair a re
ord. Sin
e the

node properties 
an represent a sequen
e of dynami
ally-sized free �elds, ea
h node 
ode is asso
iated with the

pointer to properties lo
ation in the �le rather than the properties themselves.

In the �le data is stored as a sequen
e of re
ords. When downloading, re
ords are divided as follows: keys are

re
orded into GRAM, pointers to the properties are re
orded into RAM. Downloaded data (keys and pointers)

is stored as a sequen
e. For su
h form of representation it is important that the order of re
ords in RAM is

stri
tly the same as in GRAM. When swapping some nodes in GRAM, it is ne
essary to swap nodes in RAM in

a similar way.

When exe
uting a query, say, a lookup query, all the re
ords in the tree are reviewed. The query result is


omputed on-the-�y, 
omputing the desired result while exe
uting the query. Thus the sear
h is not narrowed.

To save the time of the pro
essing result transfer to RAM, the GPU makes a bit map of the query result, in

whi
h the bit set denotes a node 
orresponding to the query, the removed denotes a non-
orresponding node, Fig.

2). The bit map is formed in kernels (a kernel is a fun
tion exe
uted on the graphi
s 
ard) of query exe
ution;

as a result, one map bit 
orresponds to ea
h node. For example, with a 4-byte key the size of data transmitted

through the bus (between GPU and CPU) is de
reased by 32 times.

To get 
ertain nodes in the resulting sele
tion, it is ne
essary to �nd set bits in the bit map. The ordinal

number of a set bit is a number of a storage 
ell in RAM (and GRAM) in whi
h the data address of the found

node (the found node 
ode) is stored.

Let us 
onsider the pro
ess of exe
uting some tree operations. Ea
h operation is exe
uted for ea
h node in

the set.

The whole tree pro
essing is realized on GPU.

The result of 
omplex query pro
essing, for example a 
ommon parent sear
h, is formed as a result of uniting

bit maps of ea
h query result, thus avoiding long operations of ea
h node sear
hing.

For example commonParents(A, k, r) operation of sear
hing 
ommon parents for two nodes with the 
odes k
and r looks like this:

commonParents(A, k, r) := parents(A, k)
⋂

parent(A, r).

For �nding 
ommon parents, the most rational (with regard to the time of �nding a solution) method is exe
uting

two queries for parent sear
h for ea
h node and uniting bit maps of the queries results through the bitwise AND
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Figure 2: Bitwise AND s
heme

operator (Fig. 2). Uniting of bit maps as well as 
al
ulations take pla
e in GPU. The GPU exe
ution of the

bitwise AND operator for a 4-byte whole requires four multipro
essor 
y
les without 
onsidering memory a

ess

delay (4 
y
les for the shared memory).

6 The Experiment Results

To 
he
k the developed method of representing trees, the DBMS prototype was designed supporting the basi


operations of data manipulation: insertion, deletion, transfer, sear
h. Sear
h and transfer queries are exe
uted

on GPU, insertion and deletion are exe
uted on CPU. The developed DBMS prototype does not 
a
he data.

Reading is performed dire
tly from the disk. Queries are not 
a
hed either. The result of sear
h query is a bit

map returned to the 
lient in the form of a 
ursor. At the next 
ursor re
ord query, the sear
h for the next set

bit in the map takes pla
e, then reading of the do
ument and key 
orresponding to the bit lo
ation in the map.

The performan
e test of the developed method of representing trees was 
arried out in 
omparison with

DBMS MongoDB. MongoDB was 
hosen as the popular and high performan
e DBMS. As an index, MongoDB

uses B+tree. For hierar
hy representation in MongoDB the Materialized Path was 
hosen as a hierar
hy re
ord

type.

6.1 Test Set

A tree-like database is used as a set test. As a DB base, the All-Russian Classi�er of Addresses (KLADR) is

used. [kla℄

Data is represented as a tree with 2.5 million nodes. Ea
h node has a di�erent number of 
hildren. The tree

is not balan
ed. The height of the tree is 5 levels.

For running experiments the KLADR referen
e was extended. The original referen
e guide has unused �elds

and o

upies approximately 400 MB of the disk spa
e.

Ea
h tree node has the �elds represented in Table 1.

It is ne
essary to dis
riminate between a geographi
al division and a tree node to whi
h the geographi
al

division is atta
hed.

The �elds represented in Table 1 are 
ommon �elds for the both DBMSs in the test. MongoDB uses the

Materialized Path (�eld ½matPath�) to store the hierar
hy data. In the �eld ½matPath� the DBMS prototype

stores the node 
ode whi
h is the produ
t of parents Ids by the node Id.

The data sets are the same for the both DBMSs tested.

To 
he
k the performan
e of the method of hierar
hy representation in 
omparison to the analogues, a series

of tests were 
ondu
ted.
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Table 1: Tree node �elds

Node name Data type Des
ription

name 
har[32℄ node name

matPath var
har[128℄ node materialized path

objName 
har[16℄ name of obje
t asso
iated with node

objData var
har[10000℄ data atta
hed to obje
t

gpsX �oat obje
t 
oordinate X in GPS 
oordinate system

gpsY �oat obje
t 
oordinate Y in GPS 
oordinate system

level int obje
t nesting level in a

ordan
e with KLADR

objType 
har[8℄ obje
t type in a

ordan
e with KLADR

objCode 
har[16℄ obje
t 
ode in a

ordan
e with KLADR

A Cold Startup, with all the tests being done, was performed for ea
h DBMS ½warm-up�. After that, all the

tests were 
arried out. Before testing of ea
h DBMS the 
omputer was rebooted.

Ea
h test was repeated three times. The test results represent the average re
eived value.

The power supply plan was set to ½peak performan
e� and also all the power-saving fun
tions were turned o�.

For ea
h DBMS the following tests were performed: re
ord addition, subtree sele
tion, sele
tion of all the

node parents, tree traversal, node 
ode sear
h.

Testing of node addition time was performed as follows: the time of all the nodes addition was taken into


onsideration. After that, the result was divided by the total number of nodes.

The sele
tion of all the node 
hildren assumes obtaining a 
ursor for the node 
hildren, with reading them

from the disk. 3500 queries were exe
uted during this test.

The sele
tion of all the parents also assumes obtaining a 
ursor for the result set, with reading re
ords from

the disk. Similarly, 3500 queries were exe
uted during this test.

Tree traversal assumes reading the whole tree.

The sele
tion of threads with reading assumes exe
ution of 10,000 queries. After obtaining the 
ursor for


hildren, all the 
hildren are read out from the disk. This test allows determination of the real DBMS performan
e

as MongoDB, when obtaining a 
ursor, return only the �rst resulting re
ords. The rest of the re
ords are found

in the index only when reading all the previously found.

The total size of the database tested is 24.4 GB without 
onsidering the normative do
uments.

Two di�erent experiments were 
arried out using the DB tested. The �rst one in
ludes the whole database,

the se
ond one in
ludes only 100000 nodes (the number of queries and data sets are left un
hanged). The need

for doing several experiments with one data set is 
aused by the ne
essity of determining the degree of impa
t

of the re
ords number in the tree on its pro
essing performan
e.

In addition to the database tested, an experiment was set up in whi
h 100000 tree nodes were used as a test

set a materialized path was atta
hed to ea
h node as properties. The performan
e of this experiment enables

understanding the degree of impa
t of the re
ord size on the tree representation method performan
e.

6.2 Hardware and Software

A 
omputer with Intel

R© Core i5

TM

-4590 pro
essor running Windows 8.1 operating system was used as a 
om-

puting platform. The pro
essor is a 3.30 GHz 64 bit quad-
ore, with maximum throughput of 32 GB/se
. The

ma
hine has 8 gigabytes of memory. The graphi
s 
ard used is an NVIDIA GeFor
e GTX 760. with 1152 CUDA


ores. 4 GB of global memory, and supports a maximum throughput of 192.2 GB/se
.

CUDA 6.5 driver is used on the 
omputer. As for the software. MongoDB 2.6 is used. When testing,

exe
utable DBMS �les were used that were downloaded from the o�
ial site. The developed DBMS was 
reated

using MS VS Studio 2013 and optimization �ag �O3.

6.3 Test Results

Table 2 represents the test results. All the values are average results for a set of queries.

The results in Table 2 
on�rm a possibility of the justi�ed appli
ation of the developed method of hierar
hy

representation in databases. Su
h a result is noti
ed with large data volumes and a great number of re
ords.

If a re
ord is small, this method performan
e be
omes inferior to a 
ommon tree index (B+tree for MongoDB)
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Table 2: Query exe
ution average time

Query Represented method MongoDB

(average time, se
/test)

Node addition 768,44 14304,02

Subtree sear
h 162,01 283,25

Parent sear
h 126,08 163,00

Reading the whole tree 490,74 8 436,37

Obtaining arbitrary nodes 159,90 8 880,27

Table 3: Performan
e 
omparison of tests with di�erent data sets

Database / test Node addition Subtree sear
h Parent sear
h Node sear
h

2,5 million re
ords, 10 KB/re
ord

queries/se


MongoDB 174,78 12,36 21,47 1,13

Developed method 3253,34 21,60 27,76 62,54

100 000 re
ords, 10 Kb/re
ord

queries/se


MongoDB 162,70 23,33 93,97 5,77

Developed method 3245,34 21,09 30,02 57,22

100 000 re
ords, 20 b/re
ord

queries/se


MongoDB 8673,03 6603,77 350000 2554,74

Developed method 62500 30,04 108,97 1988,64

(Table 3). The di�eren
e is 
aused by the restri
tion to the maximum number of queries per se
ond on the part

of hardware. The minimum time of 
on�guration and startup of the empty kernel (for the 
ard tested) in the

syn
hronous mode is approximately 0.10 mse
: 
onsequently. the graphi
s 
ard 
annot exe
ute more than 10�15

thousand kernels per se
ond.

Figure 3 shows the relation of the query pro
essing time.

Disk

70%

GPU

9.9996%

CPU

20%

Data transfer

0.0004%

a) Children sear
h

Disk

69%

GPU

15%

CPU

15%

Data transfer

1%

b) Parent sear
h

Figure 3: Time distribution when exe
uting queries

Reading data from the disk takes most of the time for the both queries. The exe
ution of kernels requires a

little time. On average, the kernel exe
ution takes 4.4 mse
 that provides the maximum 227 queries per se
ond

without 
onsidering CPU operation time (for 10 KB/re
ord). When testing DB with a small re
ord size (20

byte/re
ord), the kernel exe
ution time is almost the same as the testing time for large re
ords. This results

in the method being predisposed to building hierar
hies based on �nding the remainder, dealing with a large

amount of data, the CPU pro
essing of whi
h is a long-running operation.
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7 Future Improvements

7.1 Threaded Exe
ution

So far the multithreaded software produ
t has not been developed (we mean CPU multithreading, not GPU

multithreading). Multithreaded software is an important aspe
t of future developments. If a query is pro
essed

using multithreading, the maximum speedup will be a
hieved when exe
uting data modi�
ation queries (re
ord

addition, transfer). The appli
ation of NoSQL-style nonlo
king re
ord fun
tions will enable performing database

modi�
ation operations in the asyn
hronous mode, thus improving the performan
e.

7.2 Multiple GPU Computing Support

Currently one graphi
 
ard performs all 
al
ulations. Addition of several graphi
 
ards will allow in
reasing the

terminal 
apa
ity of data bank or the query exe
ution speed through pro
essing 
hunks on ea
h graphi
 
ard

when storing the same d
it
i on di�erent graphi
 
ards.

When using several graphi
 
ards, the low-speed CPU-GPU bus transfer appears to be a restri
tion. Despite

the fa
t that PCI 3.0 xl6 bus has a theoreti
 duel-sided ex
hange rate 128 GB/se
 and 8 GT/s (Giga Trans-

a
tion/s), it is restri
ted by the 
ore memory performan
e. In a
tual pra
ti
e the bus reprodu
tion speed is

approximately 39 GB/se
 (on tested PC).

What is more, many motherboards espe
ially in the moderate pri
e range have only one PCI slot per 16 data

transmission lines whereas the se
ond one and the su

eeding have x8 and x4 in general.

Even though using less lines de
reases multi-
ard 
on�guration performan
e by 5�15% on average, and using

multi-
ard 
on�gurations in most 
ases 
annot rea
h its full potential due to the RAM restri
ted speed, the

bene�t from using su
h 
on�gurations ex
eeds the expenses.

7.3 Hardware Restri
tions

Currently an important GPU restri
tion is la
k of thread syn
hronization resour
es on the whole graphi
 
ard.

Thread syn
hronization is possible only inside blo
ks. Blo
k syn
hronization on GPU is impossible. User

syn
hronization methods are based on using �ags. Hardware syn
hronization of the blo
ks is more important as

the performan
e in
reases 
ompared to the software syn
hronization.

Another GPU nuan
e is SIMT ar
hite
ture. SIMT ar
hite
ture allows appli
ation of one and the same


ommand to di�erent data. The drawba
k of the ar
hite
ture is that all the threads go through ea
h bran
h

of the 
ode when bran
hing is used even if the thread does not exe
ute any instru
tions. In other words, some

threads are in operation, the others are idle.

It is important to note a small number of registers available for ea
h thread. This problem be
omes a
ute

with a large number of threads and a 
omplex 
ode(large data type). With 100,000 threads, 16 byte size data

type and 512 threads per blo
k, ea
h blo
k uses 60 registers in 63 theoreti
ally possible (the data taken from

the CUD A pro�ler). This results in a less number of threads being exe
uted in parallel. For example, when the

number of registers used in a thread dropped to 13, the pro
essing speed of the same amount of data in
reased

by almost 10 times.

When running the experiment, the redu
tion in the number of threads per blo
k did not result in the expe
ted

performan
e improvement.

7.4 Key Compression

The tree pro
essing method des
ribed in the arti
le assumes using plural multiplying for de�ning key values.

The keys obtained by primes multipli
ation are exposed to a rapid in
rease resulting in large-size numbers. With

100 thousand re
ords in a tree it is ne
essary to use keys whose size is more than 128 bit.

The most frequent arithmeti
 operations performed with keys in a tree are division, multipli
ation and taking

the division remainder. Hardware support of su
h operations is impossible due to CPU and GPU ar
hite
ture


hara
teristi
s. To perform arithmeti
 operations with su
h keys, it is important to use di�erent algorithms that

are less e�
ient than hardware realization of su
h operations.

Using nonpositional notations will allow the size redu
tion of the used numbers by storing a number as a small-

size remainder. When performing non-modular operations, the la
k of need for 
onsidering the dependen
ies

between the remainders opens up an opportunity for the realization of e�
ient parallelism. This together with

the advan
ed features of Kepler ar
hite
ture (bit 
ontrol within warp), will allow the e�
ient realization of bit

mapping and de�ning zero remainder for nonpositional notations.
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8 Con
lusion

The paper represents a method of storing tree-like stru
tures in databases oriented towardsmultithread pro
essing

with regard to CUDA parallelization.

This proje
t demonstrates using GPU for hierar
hi
al data pro
essing.

The result of the arti
le as a follows: a new method of representing trees in databases is developed, and the

realization of a hierar
hi
al database prototype with GPU data pro
essing.

On average, the implemented software runs by 19 times faster 
ompared to the materialized path pro
essing

in DBMS MongoDB on CPU. Despite the query result variations, the minimum speedup was 1.29 times.
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