
The GPU-Oriented Tree Representation Based on the

Method of Finding the Remainder

Vladimir Voronkin

vl.voronkin�raxperi.om

Andrey Malikov

malikov�nstu.ru

Elmira Azarova

elmira.azarova�mail.ru

Aleksey Shhegolev

a.wegolev�gmail.om

North-Cauasus Federal University,

Institute of Information Tehnologies and Teleommuniations,

Russial Federation

Abstrat

This paper desribes a new method of the tree-like struture represen-

tation in data bases. The developed method of �nding relationships be-

tween nodes is based on the unique prime fatorization theorem whih

states that every natural number an be written as a produt of prime

numbers. The developed method is implemented using NVIDIA graph-

is proessing unit parallel omputing and NVIDIA CUDA tehnology.

The paper analyzes the proess of tree onstrution with the developed

method applied, represents the algorithms of GPU-based proessing of

trees oded using the developed method, and also the results of perfor-

mane snapshot.

1 Introdution

Computer systems are developing rapidly, proessor arhitetures are hanging, the main and disk memorysizes

are inreasing. Nowadays the rapid inrease of power and data volumes allows for the development of high-

performane data management and proessing systems.

A large amount of data in the world in one form or another is urrently represented as a hierarhy or mutual

dependeny where some piees of information depend on the others.

What is more, data management systems are beginning to migrate from the disk-oriented tehnology to the

memory-oriented. The development of DBMS has led to integrating in-memory tehnology support by many

database management systems. [GBE13℄

Data proessing in the main memory enables a onsiderable inrease of the data proessing rate in favor of

safety. Modern DBMS, supporting in-memory tehnology proess data in the memory mirroring hanges to the

disk.

The appliation of memory-oriented data proessing tehnologies together with the new methods of represent-

ing trees using GPU omputing an inrease the data proessing rate.

This researh aims to develop a new method of hierarhy-representation in databases that exhibits high

performane in tree manipulation operations.

Copyright

© by the paper's authors. Copying permitted for private and aademi purposes.

In: A. Editor, B. Coeditor (eds.): Proeedings of the XYZ Workshop, Loation, Country, DD-MMM-YYYY, published at

http://eur-ws.org

1

Copyright c© 2017 by the paper’s authors. Copying permitted for private and academic purposes.

In: S. Hölldobler, A. Malikov, C. Wernhard (eds.): YSIP2 – Proceedings of the Second Young Scientist’s International Workshop
on Trends in Information Processing, Dombai, Russian Federation, May 16–20, 2017, published at http://ceur-ws.org.

195



2 Related Works

This work is devoted to the desription of the developed method of representing trees in databases. The develop-

ment of the method was initially-oriented towards the maximum parallelization of tree proessing and maximum

independene of node ode from other node odes. The paper fouses on a radially new method of representing

trees in relational and nonrelational databases, and also demonstrates that the GPU omputing of hierarhial

relationships an be more e�etive than the CPU. The developed method of representing trees is oriented towards

the parallel proessing mode with the use of a GPU.

2.1 Methods of Representing Trees

All the methods of representing trees in databases an be put into two ategories:

� methods of representing trees in non-graph databases;

� methods of representing trees in graph and hierarhial databases.

The following methods belong to the �rst ategory:

� The adjaeny list method of relational hierarhial modeling.

The adjaeny list method is based on the storage of diret parent-hild relationships. Eah hild in a treelike

hierarhy relates to its parent whih is at one level higher. Using this hierarhy property, a table-level relational

dependene an be reated.

� The materialized path method.

A materialized path is a string �eld that onsists of element names separated by a separator harater [Tro03℄.

Parents' names of a node for whih a materialized path is built are used as the materialized path elements.

� The Nested Sets method.

The Nested Set method implies that there are two additional �elds for the node desription: a tree oding

using the algorithm for the nested sets oding introdued by Joe Celko [Cel12℄ [Cel℄ [Cel04℄, is done as follows:

moving down the left side of a tree, it's neessary to travel through all the subtrees beginning with the leftmost

to the rightmost and assign eah node an auto inrement value. When moving down the tree, an auto inrement

value is as signed to the variable responsible for the interval starting point (½left bound�); when moving up - to

the variable responsible for the interval end (½right bound�).

� The nested intervals method.

The nested intervals method, introdued in [Tro05℄, is based on the materialized path oding using a �nite

ontinued fration [q1, q2, . . ., qn], where [q1, q2, . . ., qn], where q1, q2, . . ., qn are the steps of a materialized

path. Rational numbers a/b, where a >= b >= 1 and GCD(a, b) = 1 are used as tree element odes.

As an example, onsider how the ode for a materialized path ½3.2.2� is reated using a ontinued fration:

3 +
1

2 + 1
2

=
17

5

To transform a materialized path to a rational expression the onvergene priniple an be used, while for

the inverse transformation the algorithm for the gradual trunation should be used, that in ase of a rational

expression is the same as Eulid's algorithm for �nding GCD [Gai99℄.

� Modi�ations and ombinations of the afore-named methods.

There are also modi�ations of the given methods that an �x the inherent problems [Kol09℄ [vor14℄ [MT11℄.

For example, in [MT11℄ the improvement of the nested intervals method is introdued through the interval

oding in the residue number system (RNS). Using RNS enables reduing the length of numbers used by storing

a number as a short length remainder. Representing node odes as numbers expressed in RNS enables parallel

proessing of not only di�erent tree nodes but also one and the same node remainder. Thus, the maximum

parallelization of data proessing is inreased. In [vor14℄ the method of storing nested intervals expressed in

RNS is introdued that solves some problems of sorting numbers expressed in RNS and the index onstrution.

Suh methods as the Materialized Path, nested intervals and modi�ations of the both inlude the data on

hildren and/or parents in the key while oding and an be proessed in parallel with su�ient e�etiveness.

The methods of representing trees in graph and hierarhial databases are di�ult to lassify as most of graph

databases use their own formats and strutures of data representations.

In some ases pointers are used for linking neighbor nodes. The pointers are bound to the data that appear

in ars. In its struture this hierarhy model is similar to the adjaeny lists.

Other [Kup86℄ [KV93℄ graph databases use a table model for storing relationship ars.

Another format of storing graph data is XML and XML-based formats [MS11℄ [BELP℄.

2196



W

O

R

K

S

Name: Larry

Page

W

O

R

K

S

Person 1

Company 1

Person 2

Company 2

Person 3

Sine 1998

Sine 2001

Sine 2010

Name: Joshua

Bloh

Name: Google

Name: Orale

Name: Brian

Goetz

Index lookup to �nd root Node

WORKS

Traverse relation

Traverse relation

a) Graph representation

Index lookup on Person.id

Person

Works in

Company

Id Name

PersonId

CompanyId

Sinse

1

2

3

N

Joshua Bloh

Brian Goetz

...

Larry Page

1

2

3

1

2

1

Index lookup on CompanyId

1998

2001

2010

Id Name

1

2

...

N

Orale

...

...

Google

Index lookup on Company.Name

b) Relational representation

Figure 1: Representation types of dependent data

Fig. 1b and 1a illustrate the aforesaid. Fig. 1b illustrates a relational representation of hierarhial data in

DB, while Fig. 1a illustrates data representation in the form of a graph.

The illustration data exemplify the storage of hierarhy data in databases.

One of the distintive features of graph databases is the base hosen for database objets representation,

relations between the data, omplex objets and their attributes.

All graph databases are based on a mathematial desription of a graph that determines graph manipulation

operations. A graph model depends on the base, for example: a direted or undireted graph, marked or

unmarked graph nodes, weighted and unweighted ars.

Some models suh as GOOD, GMOD, G-Log, Gram represent both the sheme and entity as a named digraph.

LDM is an exeption whose shemes are digraphs with leaves representing data and internal nodes represent

strutured data. LDM onsists of a table with two-olumns, eah of whih assoiates entities with data types

(primitive, tuple or set). A more detailed desription of graph models is represented in [AG08℄.

2.2 GPU Data Proessing

Graphis proessing unit seems to be an advaned high�performane platform for omputing. The basi distin-

tive feature enabling GPU's high performane is its arhiteture having a great number of ALU. The GPU and

CPU arhitetures are ompared in [PT11℄. A number of works [BS10℄ [HKOO11℄ point to the advantage of GPU

proessing of data over CPU. On average, the queries were proessed 5�30 times faster in relational databases.

Some works [PSHL10℄ [BMCN09℄ show the inreased rate of sorting data using GPU. As far as hierarhial and

graph strutures are onerned, the works [HN07℄ [HKOO11℄ [WO10℄ are worth mentioning. in whih GPU

graph omputations are made and whih desribe the speedup of data proessing using GPU ompared to CPU

(when proessing graph strutures).

Hereafter, mentioning GPU omputing means the usage of NVIDIA CUDA tehnology.

CUDA (Compute Uni�ed Devie Arhiteture) is a NVIDIA tehnology designed for the development of

appliations for massive parallel omputing units. Due to a great number of ALU. GPU implements the thread

model of omputation: there are input and output data that onsist of the same elements whih an be proessed

independently. The elements proessing is performed by the kernel.

A kernel is a funtion exeuted on GPU and alled from CPU. A kernel is omposed of a grid of multiple

threads grouped into a hierarhy.

The highest level � grid � orresponds to the kernel and groups all the kernel threads. A grid is a one- or

two-dimensional array of bloks. Eah blok is a one/two/three-dimensional array of threads. Furthermore, eah

blok is an entirely independent set of interating threads.

3 Priniples of Tree Constrution

By ½tree� we will understand a onneted ayli graph omposed of a set of nodes n = (k, d), where k is the

node ode, d is data assoiated with the node:

T = {n} = {(k, d)}

Let us de�ne for a node n operations key(n) = k aess to the node ode, data(n) = d aess to data assoiated
with the node.

3197



Denote by the node identi�er a prime number unique within node Ids. Let us introdue a set of primes I,
representing primes in inreasing order of their values:

I = s1, s2, . . . , sm, . . .

Let us all a produt of the node parent identi�ers by the node Id the node ode.

The ode of a tree root is the root identi�er.

Let us introdue the operation of getting the following prime number from a set pf primes I:

next() = si, i = i + 1

Primes are needed for tree onstrution, beause tree deomposition should be unique.

The usage of one and the same identi�er for more than one node is impossible.

A tree is formed as follows:

1. A prime is hosen as a root node.

2. Eah node added to the tree has a ode equal to the produt of the parent ode by the identi�er of the

node added.

Eah tree node in the ode enodes the entire path starting from the root. This method of node ode reation

is similar to the Materialized Path method.

4 Tree Proessing Operations

Let us show admissible tree operations. Let us introdue the funtion of �nding the remainder on dividing a by

b:
mod(a, b) = a − b · ⌊a

b
⌋

The following tree operations are admissible:

1. add(T, d, nparent), where nparent is parent node, d is data added to the tree � operation of adding a node

to the tree.

Preondition:

exists(T, nparent)

Realization:

T := T ∪ {n(key(nparent) · next(), d)} (1)

Prediate exists(T, n) determines if the node n existing in the tree T :

exists(T, n) := ∃n ∈ T

2. Operation of searhing a node with the ode k in the tree node(T, k).

node(T, k) := {x ∈ T |key(x) = k} (2)

3. Operation of searhing node parents in the tree parents(T, k).

parents(T, k) := {x ∈ T |mod(k, key(x)) = 0 ∧ k 6= key(x)} (3)

4. Operation of searhing a diret parent parent(T, k).

parent(T, k) := MAX(parents(T, k)) (4)

5. Operation of searhing a subtree subtree(T, k).

subtree(T, k) := {x ∈ T |mod(key(x), k) = 0} (5)

6. children(T, k) � operation of searhing diret hildren.

children(T, k) := {x ∈ T |k = key(parent(T, key(x)))} (6)

7. Operation of subtree removal remove(T, k).

4198



Realization:

T := {x ∈ T |mod(key(x), k) 6= 0} (7)

8. Operation of transferring a subtree rooted nold to a new parent nnew move(T, nold, nnew).
Preondition:

exists(T, nold) ∧ exists(T, nnew) ∧ mod(key(nnew), (nold)) 6= 0

Realization:

T := T ∪ {x ∈ subtree(T, key(nold))|
|n(recalcKey(T, key(x), key(nold), key(nnew)), data(x))} (8)

where recalcKey(T, k, kold, knew) is an operation of node ode realulation:

recalcKey(T, k, kold, knew) :=
k

kold
∗ knew

Considering the possibility of exeuting parallel operations with a tree as a set, the following features should

be noted:

1. The possibility of parallel tree proessing using GPU.

Tree operations (2, 3, 4, 5, 6) that do not modify the tree have no need for interation with other nodes. All

suh operations an be proessed in parallel or simultaneously. Parallelization of tree manipulation operations

up to one thread per node is possible.

2. The order of reords in tree representation in the memory in�uenes only the order of reords in the result

set and does not in�uene the number of reords in it (the result set).

3. The usage of primes in a tree in the sequential order is optional.

5 GPU Computation of Trees

Eah node represents a pair: {node ode: pointer to node properties}. Let us all this pair a reord. Sine the

node properties an represent a sequene of dynamially-sized free �elds, eah node ode is assoiated with the

pointer to properties loation in the �le rather than the properties themselves.

In the �le data is stored as a sequene of reords. When downloading, reords are divided as follows: keys are

reorded into GRAM, pointers to the properties are reorded into RAM. Downloaded data (keys and pointers)

is stored as a sequene. For suh form of representation it is important that the order of reords in RAM is

stritly the same as in GRAM. When swapping some nodes in GRAM, it is neessary to swap nodes in RAM in

a similar way.

When exeuting a query, say, a lookup query, all the reords in the tree are reviewed. The query result is

omputed on-the-�y, omputing the desired result while exeuting the query. Thus the searh is not narrowed.

To save the time of the proessing result transfer to RAM, the GPU makes a bit map of the query result, in

whih the bit set denotes a node orresponding to the query, the removed denotes a non-orresponding node, Fig.

2). The bit map is formed in kernels (a kernel is a funtion exeuted on the graphis ard) of query exeution;

as a result, one map bit orresponds to eah node. For example, with a 4-byte key the size of data transmitted

through the bus (between GPU and CPU) is dereased by 32 times.

To get ertain nodes in the resulting seletion, it is neessary to �nd set bits in the bit map. The ordinal

number of a set bit is a number of a storage ell in RAM (and GRAM) in whih the data address of the found

node (the found node ode) is stored.

Let us onsider the proess of exeuting some tree operations. Eah operation is exeuted for eah node in

the set.

The whole tree proessing is realized on GPU.

The result of omplex query proessing, for example a ommon parent searh, is formed as a result of uniting

bit maps of eah query result, thus avoiding long operations of eah node searhing.

For example commonParents(A, k, r) operation of searhing ommon parents for two nodes with the odes k
and r looks like this:

commonParents(A, k, r) := parents(A, k)
⋂

parent(A, r).

For �nding ommon parents, the most rational (with regard to the time of �nding a solution) method is exeuting

two queries for parent searh for eah node and uniting bit maps of the queries results through the bitwise AND

5199



Figure 2: Bitwise AND sheme

operator (Fig. 2). Uniting of bit maps as well as alulations take plae in GPU. The GPU exeution of the

bitwise AND operator for a 4-byte whole requires four multiproessor yles without onsidering memory aess

delay (4 yles for the shared memory).

6 The Experiment Results

To hek the developed method of representing trees, the DBMS prototype was designed supporting the basi

operations of data manipulation: insertion, deletion, transfer, searh. Searh and transfer queries are exeuted

on GPU, insertion and deletion are exeuted on CPU. The developed DBMS prototype does not ahe data.

Reading is performed diretly from the disk. Queries are not ahed either. The result of searh query is a bit

map returned to the lient in the form of a ursor. At the next ursor reord query, the searh for the next set

bit in the map takes plae, then reading of the doument and key orresponding to the bit loation in the map.

The performane test of the developed method of representing trees was arried out in omparison with

DBMS MongoDB. MongoDB was hosen as the popular and high performane DBMS. As an index, MongoDB

uses B+tree. For hierarhy representation in MongoDB the Materialized Path was hosen as a hierarhy reord

type.

6.1 Test Set

A tree-like database is used as a set test. As a DB base, the All-Russian Classi�er of Addresses (KLADR) is

used. [kla℄

Data is represented as a tree with 2.5 million nodes. Eah node has a di�erent number of hildren. The tree

is not balaned. The height of the tree is 5 levels.

For running experiments the KLADR referene was extended. The original referene guide has unused �elds

and oupies approximately 400 MB of the disk spae.

Eah tree node has the �elds represented in Table 1.

It is neessary to disriminate between a geographial division and a tree node to whih the geographial

division is attahed.

The �elds represented in Table 1 are ommon �elds for the both DBMSs in the test. MongoDB uses the

Materialized Path (�eld ½matPath�) to store the hierarhy data. In the �eld ½matPath� the DBMS prototype

stores the node ode whih is the produt of parents Ids by the node Id.

The data sets are the same for the both DBMSs tested.

To hek the performane of the method of hierarhy representation in omparison to the analogues, a series

of tests were onduted.

6200



Table 1: Tree node �elds

Node name Data type Desription

name har[32℄ node name

matPath varhar[128℄ node materialized path

objName har[16℄ name of objet assoiated with node

objData varhar[10000℄ data attahed to objet

gpsX �oat objet oordinate X in GPS oordinate system

gpsY �oat objet oordinate Y in GPS oordinate system

level int objet nesting level in aordane with KLADR

objType har[8℄ objet type in aordane with KLADR

objCode har[16℄ objet ode in aordane with KLADR

A Cold Startup, with all the tests being done, was performed for eah DBMS ½warm-up�. After that, all the

tests were arried out. Before testing of eah DBMS the omputer was rebooted.

Eah test was repeated three times. The test results represent the average reeived value.

The power supply plan was set to ½peak performane� and also all the power-saving funtions were turned o�.

For eah DBMS the following tests were performed: reord addition, subtree seletion, seletion of all the

node parents, tree traversal, node ode searh.

Testing of node addition time was performed as follows: the time of all the nodes addition was taken into

onsideration. After that, the result was divided by the total number of nodes.

The seletion of all the node hildren assumes obtaining a ursor for the node hildren, with reading them

from the disk. 3500 queries were exeuted during this test.

The seletion of all the parents also assumes obtaining a ursor for the result set, with reading reords from

the disk. Similarly, 3500 queries were exeuted during this test.

Tree traversal assumes reading the whole tree.

The seletion of threads with reading assumes exeution of 10,000 queries. After obtaining the ursor for

hildren, all the hildren are read out from the disk. This test allows determination of the real DBMS performane

as MongoDB, when obtaining a ursor, return only the �rst resulting reords. The rest of the reords are found

in the index only when reading all the previously found.

The total size of the database tested is 24.4 GB without onsidering the normative douments.

Two di�erent experiments were arried out using the DB tested. The �rst one inludes the whole database,

the seond one inludes only 100000 nodes (the number of queries and data sets are left unhanged). The need

for doing several experiments with one data set is aused by the neessity of determining the degree of impat

of the reords number in the tree on its proessing performane.

In addition to the database tested, an experiment was set up in whih 100000 tree nodes were used as a test

set a materialized path was attahed to eah node as properties. The performane of this experiment enables

understanding the degree of impat of the reord size on the tree representation method performane.

6.2 Hardware and Software

A omputer with Intel

R© Core i5

TM

-4590 proessor running Windows 8.1 operating system was used as a om-

puting platform. The proessor is a 3.30 GHz 64 bit quad-ore, with maximum throughput of 32 GB/se. The

mahine has 8 gigabytes of memory. The graphis ard used is an NVIDIA GeFore GTX 760. with 1152 CUDA

ores. 4 GB of global memory, and supports a maximum throughput of 192.2 GB/se.

CUDA 6.5 driver is used on the omputer. As for the software. MongoDB 2.6 is used. When testing,

exeutable DBMS �les were used that were downloaded from the o�ial site. The developed DBMS was reated

using MS VS Studio 2013 and optimization �ag �O3.

6.3 Test Results

Table 2 represents the test results. All the values are average results for a set of queries.

The results in Table 2 on�rm a possibility of the justi�ed appliation of the developed method of hierarhy

representation in databases. Suh a result is notied with large data volumes and a great number of reords.

If a reord is small, this method performane beomes inferior to a ommon tree index (B+tree for MongoDB)

7201



Table 2: Query exeution average time

Query Represented method MongoDB

(average time, se/test)

Node addition 768,44 14304,02

Subtree searh 162,01 283,25

Parent searh 126,08 163,00

Reading the whole tree 490,74 8 436,37

Obtaining arbitrary nodes 159,90 8 880,27

Table 3: Performane omparison of tests with di�erent data sets

Database / test Node addition Subtree searh Parent searh Node searh

2,5 million reords, 10 KB/reord

queries/se

MongoDB 174,78 12,36 21,47 1,13

Developed method 3253,34 21,60 27,76 62,54

100 000 reords, 10 Kb/reord

queries/se

MongoDB 162,70 23,33 93,97 5,77

Developed method 3245,34 21,09 30,02 57,22

100 000 reords, 20 b/reord

queries/se

MongoDB 8673,03 6603,77 350000 2554,74

Developed method 62500 30,04 108,97 1988,64

(Table 3). The di�erene is aused by the restrition to the maximum number of queries per seond on the part

of hardware. The minimum time of on�guration and startup of the empty kernel (for the ard tested) in the

synhronous mode is approximately 0.10 mse: onsequently. the graphis ard annot exeute more than 10�15

thousand kernels per seond.

Figure 3 shows the relation of the query proessing time.

Disk

70%

GPU

9.9996%

CPU

20%

Data transfer

0.0004%

a) Children searh

Disk

69%

GPU

15%

CPU

15%

Data transfer

1%

b) Parent searh

Figure 3: Time distribution when exeuting queries

Reading data from the disk takes most of the time for the both queries. The exeution of kernels requires a

little time. On average, the kernel exeution takes 4.4 mse that provides the maximum 227 queries per seond

without onsidering CPU operation time (for 10 KB/reord). When testing DB with a small reord size (20

byte/reord), the kernel exeution time is almost the same as the testing time for large reords. This results

in the method being predisposed to building hierarhies based on �nding the remainder, dealing with a large

amount of data, the CPU proessing of whih is a long-running operation.

8202



7 Future Improvements

7.1 Threaded Exeution

So far the multithreaded software produt has not been developed (we mean CPU multithreading, not GPU

multithreading). Multithreaded software is an important aspet of future developments. If a query is proessed

using multithreading, the maximum speedup will be ahieved when exeuting data modi�ation queries (reord

addition, transfer). The appliation of NoSQL-style nonloking reord funtions will enable performing database

modi�ation operations in the asynhronous mode, thus improving the performane.

7.2 Multiple GPU Computing Support

Currently one graphi ard performs all alulations. Addition of several graphi ards will allow inreasing the

terminal apaity of data bank or the query exeution speed through proessing hunks on eah graphi ard

when storing the same diti on di�erent graphi ards.

When using several graphi ards, the low-speed CPU-GPU bus transfer appears to be a restrition. Despite

the fat that PCI 3.0 xl6 bus has a theoreti duel-sided exhange rate 128 GB/se and 8 GT/s (Giga Trans-

ation/s), it is restrited by the ore memory performane. In atual pratie the bus reprodution speed is

approximately 39 GB/se (on tested PC).

What is more, many motherboards espeially in the moderate prie range have only one PCI slot per 16 data

transmission lines whereas the seond one and the sueeding have x8 and x4 in general.

Even though using less lines dereases multi-ard on�guration performane by 5�15% on average, and using

multi-ard on�gurations in most ases annot reah its full potential due to the RAM restrited speed, the

bene�t from using suh on�gurations exeeds the expenses.

7.3 Hardware Restritions

Currently an important GPU restrition is lak of thread synhronization resoures on the whole graphi ard.

Thread synhronization is possible only inside bloks. Blok synhronization on GPU is impossible. User

synhronization methods are based on using �ags. Hardware synhronization of the bloks is more important as

the performane inreases ompared to the software synhronization.

Another GPU nuane is SIMT arhiteture. SIMT arhiteture allows appliation of one and the same

ommand to di�erent data. The drawbak of the arhiteture is that all the threads go through eah branh

of the ode when branhing is used even if the thread does not exeute any instrutions. In other words, some

threads are in operation, the others are idle.

It is important to note a small number of registers available for eah thread. This problem beomes aute

with a large number of threads and a omplex ode(large data type). With 100,000 threads, 16 byte size data

type and 512 threads per blok, eah blok uses 60 registers in 63 theoretially possible (the data taken from

the CUD A pro�ler). This results in a less number of threads being exeuted in parallel. For example, when the

number of registers used in a thread dropped to 13, the proessing speed of the same amount of data inreased

by almost 10 times.

When running the experiment, the redution in the number of threads per blok did not result in the expeted

performane improvement.

7.4 Key Compression

The tree proessing method desribed in the artile assumes using plural multiplying for de�ning key values.

The keys obtained by primes multipliation are exposed to a rapid inrease resulting in large-size numbers. With

100 thousand reords in a tree it is neessary to use keys whose size is more than 128 bit.

The most frequent arithmeti operations performed with keys in a tree are division, multipliation and taking

the division remainder. Hardware support of suh operations is impossible due to CPU and GPU arhiteture

harateristis. To perform arithmeti operations with suh keys, it is important to use di�erent algorithms that

are less e�ient than hardware realization of suh operations.

Using nonpositional notations will allow the size redution of the used numbers by storing a number as a small-

size remainder. When performing non-modular operations, the lak of need for onsidering the dependenies

between the remainders opens up an opportunity for the realization of e�ient parallelism. This together with

the advaned features of Kepler arhiteture (bit ontrol within warp), will allow the e�ient realization of bit

mapping and de�ning zero remainder for nonpositional notations.

9203



8 Conlusion

The paper represents a method of storing tree-like strutures in databases oriented towardsmultithread proessing

with regard to CUDA parallelization.

This projet demonstrates using GPU for hierarhial data proessing.

The result of the artile as a follows: a new method of representing trees in databases is developed, and the

realization of a hierarhial database prototype with GPU data proessing.

On average, the implemented software runs by 19 times faster ompared to the materialized path proessing

in DBMS MongoDB on CPU. Despite the query result variations, the minimum speedup was 1.29 times.

Referenes

[AG08℄ Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput. Surv.,

40(1):1:1�1:39, 2008.

[BELP℄ U. Brandes, M. Eiglsperger, J. Lerner, and C. Pih. Graph markup language (graphml).

[BMCN09℄ Ranieri Baraglia, Via G Moruzzi, Gabriele Capannini, and Frano Maria Nardini. Sorting using

BItoni netwoRk wIth CUDA. LSDS-IR Workshop, (July), 2009.

[BS10℄ P. Bakkum and K. Skadron. Aelerating sql database operations on a gpu with uda: Extended

results. Tehnial report, University of Virginia Department of Computer Siene, 2010.

[Cel℄ Joe Celko. Trees in SQL.

[Cel04℄ Joe Celko. Hierarhial SQL, 2004.

[Cel12℄ J. Celko. Joe Celko's Trees and Hierarhies in SQL for Smarties. Joe Celko's Trees and Hierarhies

in SQL for Smarties. Elsevier/Morgan Kaufmann, 2012.

[Gai99℄ A. T. Gainov. Number Theory. Part I. Resoure book. Novosibirsk State University. Faulty of

Mehanis and Mathematis., 1999.

[GBE13℄ Marel Grandpierre, Georg Buss, and Ralf Esser. In-Memory Computing tehnology - The holy grail

of analytis? Deloitte & Touhe GmbH Wirtshaftsprüfungsgesellshaf, (07), 2013.

[HKOO11℄ Sungpak Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Aelerating CUDA graph

algorithms at maximum warp. Proeedings of the 16th ACM symposium on Priniples and pratie

of parallel programming - PPoPP '11, page 267, 2011.

[HN07℄ Pawan Harish and P. J. Narayanan. Aelerating large graph algorithms on the gpu using uda. In

Proeedings of the 14th International Conferene on High Performane Computing, HiPC'07, pages

197�208, Berlin, Heidelberg, 2007. Springer-Verlag.

[kla℄ KLADR - the All-Russian Classi�er of Addresses.

[Kol09℄ M.A. Kolosovskiy. Data struture for representing a graph?: ombination of linked list and hash

table. CoRR, 2009.

[Kup86℄ Gabriel Mark Kuper. The Logial Data Model: A New Approah to Database Logi. PhD thesis,

Stanford, CA, USA, 1986. UMI order no. GAX86-08173.

[KV93℄ G. M. Kuper and M. Y. Vardi. The logial data model. ACM Transations on Database Systems,

18(3):379�413, 1993.

[MS11℄ Anders Møller and Mihael Shwartzbah. Xml graphs in program analysis. Si. Comput. Program.,

76(6):492�515, 2011.

[MT11℄ A. Malikov and A. Turyev. Nested intervals tree enoding with system of residual lasses. IJCA

Speial Issue on Eletronis, Information and Communiation Engineering, ICEICE(2):19�21, 2011.

10204



[PSHL10℄ Hagen Peters, Ole Shulz-Hildebrandt, and Norbert Luttenberger. Fast in-plae sorting with uda

based on bitoni sort bitoni sort. In Parallel Proessing and Applied Mathematis, pages 403�410.

2010.

[PT11℄ Jonathan Palaios and Josh Triska. A Comparison of Modern GPU and CPU Arhitetures: And

the Common Convergene of Both. pages 1�20, 2011.

[Tro03℄ Vadim Tropashko. Trees in SQL: Nested Sets and Materialized Path. 2003.

[Tro05℄ Vadim Tropashko. Nested intervals tree enoding in sql. SIGMOD Reord, 34(2), June 2005.

[vor14℄ DBMS Index for Hierarhial Data Using Nested Intervals and Residue Classes. Young Si. Int. Work.

Trends Inf. Proess., 2014.

[WO10℄ Yangzihao Wang and John Owens. Large-sale graph proessing algorithms on the gpu. Tehnial

Report January 2011, UC Davis, 2010.

11205


