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Abstract

Various real-world problems can be formulated as the task of count-
ing the models of a propositional formula. This problem, also called
#SAT, is therefore of practical relevance. We present a formal frame-
work describing a novel approach based on considering the formula in
question together with its negation. This method enables us to close
search branches earlier. We formalize a non-dual variant and argue
that our framework is sound.

1 Introduction

The problem #SAT consists in determining the number of models of a propositional formula. Applications can be
found in a variety of real-world domains, such as reasoning [Rot96, LvBP06], model-based diagnosis of physical
systems [Kum02], product configuration in the automotive industry [KZK10], planning [PBDG05], and frequent
itemset mining [HLM12]. The breadth of these applications emphasizes the practical relevance of #SAT.

Birnbaum and Lozinskii presented an algorithm for counting propositional models based on the Davis Putnam
Procedure [BL99]. In [JP00], the authors extend this method by splitting the formula in question into subformulae
over disjoint sets of variables. The model count is then obtained by multiplying the model counts of these
subformulae. In Cachet [SBB+04] clause learning and component caching are combined. sharpSAT [Thu06]
builds upon Cachet introducing a new component caching scheme. Projected model counting was implemented
in [KMM13, ACMS15]. Finally, in [BSB15], a parallel approach is implemented.

With a similar motivation as [FSB16] but for #SAT instead of QBF in the spirit of [NOT06], we present a
formal framework describing a #SAT solving procedure based on DPLL, called Abstract Dual #DPLL, and a
formalization of a non-dual variant and argue that our framework is sound. The basic idea of our dual approach
consists in executing DPLL on a formula as well as on its negation. In our counting algorithm, we follow the
main idea presented in [BL99]. We implement our framework in SWI-Prolog [WSTL12] making use of the PIE
system [Wer16]. First experiments showed the suitability of our approach. While a dual approach was addressed
in QBF [GSB13, FSB16], we are not aware of any work on #SAT aiming in this direction.

The paper is structured as follows: After giving some background information, in Sect. 3 we present the
rules for dual propositional model counting underlying our counting procedure. In Sect. 4 we introduce our
framework and argue about its soundness. By means of an example, in Sect. 5 we demonstrate the operation of
our framework as well as of a non-dual variant, before in Sect. 6 we conclude and point out future work. Our
notation is based on the one introduced in [HMPS14].
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2 Preliminaries

2.1 Propositional Satisfiability and Model Counting

Let V be a fixed finite set of propositional variables. A literal L is either a variable A (positive literal) or a
negated variable ¬A (negative literal). We denote with var(L) the variable of L. The complement L of a literal L
is its negation, i.e., L = ¬A if L = A, and L = A if L = ¬A.

A propositional formula F over variables in V is in conjunctive normal form (CNF), if it is a conjunction of
clauses. A clause is a disjunction of literals. We denote with VF the set of variables occurring in F .

We define an interpretation I as a mapping from the set of variables V to the set of truth values {>,⊥}. If
I(A) ∈ {>,⊥} for all A ∈ V, then I is called a total interpretation. Otherwise, I is said to be a partial inter-
pretation. An interpretation may be represented by a sequence of literals containing no pair of complementary
literals where each literal occurs at most once. An empty sequence is represented by (). Let I = (L1, . . . , Lm)
be a sequence of literals representing an interpretation over V. We say that a literal L ∈ I iff L = Lk for a
k ∈ {1, . . . ,m}. Let I ′ = (Lm+1, . . . , Ln) be another sequence of literals representing an interpretation over V.
We define the concatenation of I and I ′ as II ′ = (L1, . . . , Ln). With ILI ′ = (L1, . . . , Lm, L, Lm+1, . . . , Ln) we
denote the concatenation of I, L, and I ′. Note that for II ′ and ILI ′ to represent interpretations, they have to
meet the requirements given above. We interpret a sequence of literals over different variables also as a set of
literals as well as the (possibly partial) interpretation which sets all its literals to true and vice versa. In the rest
of this paper, I will denote an interpretation assuming an appropriate representation.

An interpretation I satisfies a positive literal L with variable A, in symbols I |= L, iff I(A) = >. Analogously,
I satisfies a negative literal L with variable A iff I(A) = ⊥. Since a clause C is a disjunction of literals, I |= C
iff I |= L for a literal L ∈ C. Analogously, I |= F iff I |= C for all clauses C of a formula F , since F is defined as
a conjunction of clauses. Whenever I |= F , we say that I is a model for F where I can be partial representing
a partial model or total representing a total model. The model count #F of a formula F corresponds to the
number of total models of F . Two formulae F and G are semantically equivalent, denoted by F ≡ G, iff for all
interpretations I the following holds: I |= F iff I |= G. Thus, two formulae are semantically equivalent iff they
have the same models.

The reduct of a formula F with respect to an interpretation I is given by F |I = {C|I | C ∈ F and C ∩ I = ∅},
where C|I = {L | L ∈ C and L /∈ I}. Let F = (x1)∧(x2∨x3) be a formula over V = {x1, x2, x3}. In set notation,
F = {{x1}, {x2, x3}}. Let I = {x1,¬x2} be an interpretation over V. Then, F |I = {{x3}}. Whenever F |I = ∅,
I is a model of F . We say that I satisfies F and may refer to I as a satisfying interpretation where adequate.
If ∅ ∈ F |I , we say that a conflict arises in F |I or that I falsifies F and call I a falsifying interpretation. In our
example, I neither satisfies nor falsifies F .

2.2 The Davis Putnam Logemann Loveland Procedure

The Davis Putnam Logemann Loveland (DPLL) procedure [DLL62] is based on the Davis Putnam Procedure
(DPP) [DP60] and conducts a systematic search in the space of all possible interpretations. This space can be
visualized as a binary search tree where each node represents a partial interpretation and each leaf represents
a total interpretation. DPLL can be visualized as a depth-first tree search based mainly on unit propagation,
decisions, and backtracking.

Let F be a formula and I an interpretation over V. If during search a unit clause {L} occurs in F |I , the unit
literal L must be assigned the value > to make I satisfy F . This is ensured by unit propagation. L is called
propagation literal, and we say that L’s value is implied by F |I . If there is no unit clause in F |I , a decision
literal L is chosen and assigned a value. If I falsifies F , backtracking occurs, i.e., all assignments up to the
latest decision are undone and the value of the decision literal flipped. The search continues with I modified
accordingly. For a more detailed description we refer to [DP09].

2.3 Counting Models by Means of the Davis Putnam Procedure

Let F be a formula and I an interpretation over variables V. By means of a decision with respect to a literal L,
the set of models of F is split into two disjoint sets. In one I(L) = >, in the other I(L) = ⊥. Hence,
#F |I = #F |I∪{L} + #F |I∪{L}. Based on this observation, a method for counting models based on the Davis

Putnam procedure [DP60] was presented in [BL99]. The corresponding pseudocode is depicted in Algorithm 1.
It is important to note that, unlike in SAT solving, after determining a satisfying interpretation, the search

continues until the entire search space has been processed. The model count is built recursively according to the
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function CDP(F , |V|) . F formula over a set of variables V
if F is empty then . F is satisfiable
return 2|V|

else if F contains an empty clause then . F is unsatisfiable
return 0

else if F contains a unit clause {L} then . Unit propagation
return CDP(F |{L}, |V| − 1)

else
choose a variable A ∈ V

return CDP(F |{A}, |V| − 1) + CDP(F |{¬A}, |V| − 1)
end if

end function

Algorithm 1: Counting by Davis-Putnam (CDP) [BL99].

Dec: P � I �M ;Dec P � IL̇ �M iff var(L) ∈ V and {L,L} ∩ I = ∅

NB>: P � IL̇I ′ �M ;NB> P � IL �M + 2|V|−|ILI′| iff

P |ILI′ = ∅ and I ′ contains only propagation literals

NB⊥: P � IL̇I ′ �M ;NB⊥ P � IL �M iff

∅ ∈ P |ILI′ and I ′ contains only propagation literals

End>: P � I �M ;End> M + 2|V|−|I| iff

P |I = ∅ and I contains only propagation literals

End⊥: P � I �M ;End⊥ M iff ∅ ∈ P |I and I contains only propagation literals

Figure 1: Rules in Abstract #DPLL. P is a CNF formula over variables V, I and I ′ are interpretations over
disjoint sets of variables, L is a literal and M ∈ N. The procedure is based on DPLL combined with naive
backtracking and terminates when the entire search space has been processed.

computation discussed in the previous paragraph.

We now present rules to determine #F based on Algorithm 1. Let P be a CNF formula over V such that
P ≡ F . #F |I = #P |I = 2m with m = |V|− |I| representing the number of unassigned variables. Now #P |I can
be computed by the following rules: Whenever I falsifies P , #P |I = 0; whenever I satisfies P , #P |I = 2|V|−|I|;
whenever #P |I is undefined, then #P |I = #P |I∪{L} + #P |I∪{L}, where var(L) ∈ V and {L,L} ∩ I = ∅.

2.4 An Abstract Framework for Propositional Model Counting

Let F be a formula over V and P be a CNF formula over V such that P ≡ F . We describe Abstract #DPLL as a
state transition system (S, ;) with a set of states S and a binary transition relation ;⊆S×S. The set of states
is defined by S := N ∪ {P � I �M | P is a CNF formula such that P ≡ F , I is an interpretation, and M ∈ N},
and ; := {;Dec, ;NB>, ;NB⊥, ;End>, ;End⊥}. In this context, P is called working formula, I is called
working interpretation, and M is called working number of models. The initial state is defined by P � ()� 0. The
terminal state is #P = #F . L̇ denotes a decision literal, i.e., a literal which was assigned a value by a decision.
Analogously, L denotes a propagation literal. The rules are presented in Fig. 1.

By means of the Dec rule, the working interpretation is extended by an unassigned decision literal L̇ whose
variable occurs in V. Naive backtracking is applied whenever the working interpretation either satisfies or falsifies
P and if it contains a decision literal, i.e., not not all possible interpretations have been tested yet. In the former
case, the model count has to be incremented by 2m, where m represents the number of unassigned variables
(NB>). In the latter case, the model count remains unchanged (NB⊥). The procedure terminates when I either
satisfies (End>) or falsifies (End⊥) P and does not contain any decision literal, i.e., all possible interpretations
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have been tested. The model count is updated accordingly.
If our framework is sound, every implementation which can be modeled by means of it is sound as well. This

comprises optimizations, such as unit propagation. Restricting our framework to a minimal set of rules simplifies
the presentation since less cases have to be distinguished and reasoned about.

3 Counting Models by Taking into Account the Negated Formula

Let F be a formula over variables V, P and N be CNF formulae over V such that P ≡ F and N ≡ ¬F ,
respectively. Then, #F = #P = 2|V| −#N . Further let I be an interpretation over V. For the reduct F |I the
same observation holds: #F |I = #P |I = 2|V|−|I| −#N |I , where |V| − |I| represents the number of unassigned
variables. Given F , P , N , and V, we define the counting algorithm c taking as input I:

R1: c(I) = 0 if ∅ ∈ P |I Conflict in P |I
R2: c(I) = 2|V|−|I| if P |I = ∅ I |= P
R3: c(I) = 2|V|−|I| if ∅ ∈ N |I Conflict in N |I
R4: c(I) = 0 if N |I = ∅ I |= N
R5: c(I) = c(I ∪ {L}) + c(I ∪ {L})

where var(L) ∈ V and {L,L} ∩ I = ∅
else

If a conflict in P |I arises, I can not be extended to any total model for F , and the model count is 0 (R1).
Whenever I |= P , I can be extended to 2|V|−|I| total models for F , where |V| − |I| is the number of unassigned
variables (R2). In case of a conflict in N |I , I is a model for F and can be extended to 2|V|−|I| total models for
F (R3). Whenever I |= N , I can not be extended to a total model for F , and the model count is 0 (R4). If both
P |I and N |I are undefined, #F |I = #P |I∪{L} + #P |I∪{L} (R5) [BL99].

Unit propagation in P |I can be simulated by rules R5 and R1:

c(I) = c(I ∪ {L}) + c(I ∪ {L})︸ ︷︷ ︸
0

= c(I ∪ {L}) if {L} ∈ P |I (1)

{L} is a unit clause in P |I , and therefore L must be set to > for I ∪ {L} to satisfy P . This implies that I ∪ {L}
falsifies P , i.e., c(I ∪ {L}) = 0 according to rule R1.

Unit propagation in N |I can be simulated by rules R5 and R3:

c(I) = c(I ∪ {L}) + c(I ∪ {L})︸ ︷︷ ︸
2|V|−|I∪{L}|

= c(I ∪ {L}) + 2|V|−|I∪{L}| if {L} ∈ N |I (2)

{L} is a unit clause in N |I , and therefore L must be set to > for I ∪{L} to satisfy N . This implies that I ∪{L}
falsifies N , i.e., I ∪{L} satisfies F and can be extended to 2|V|−|I∪{L}| total models for F according to rule R3.

4 Abstract Dual #DPLL

Let F be a formula over variables V, P and N be CNF formulae over V such that P ≡ F and N ≡ ¬F ,
respectively. Note that in particular VF = VP = VN = V. Let I be an interpretation. Clearly, I |= P iff I 6|= N
and vice versa. P and N are passed to a DPLL [DLL62] solver which works on both formulae simultaneously.
The model count is computed according to the rules introduced in Sect. 3.

If a conflict in P |I arises, I can not be extended to a total model for F , and the model count is 0. Whenever
P |I = ∅, I satisfies P and can be extended to 2m total models for F , where m is the number of unassigned
variables. This model count is added up to the number of models found so far. In both cases, the solver
backtracks chronologically and flips the value of the decision literal turning it into a propagation literal. The
search terminates if I contains no decision literal, indicating that the whole search space has been processed.

If a conflict arises in N |I , I is a model for F and can be extended to 2m total models for F , where m is the
number of unassigned variables. This model count is added up to the number of models found so far. Whenever
N |I = ∅, I satisfies N and can not satisfy F . In both cases, the solver backtracks chronologically and flips the
value of the decision literal turning it into a propagation literal. The search terminates if I does not contain any
decision literal, indicating that the whole search space has been processed.
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Dec: P �N � I �M ;Dec P �N � IL̇ �M iff var(L) ∈ V and {L,L} ∩ I = ∅

NB>: P �N � IL̇I ′ �M ;NB> P �N � IL �M + 2|V|−|ILI′| iff

(∅ ∈ N |ILI′ or P |ILI′ = ∅) and I ′ contains only propagation literals

NB⊥: P �N � IL̇I ′ �M ;NB⊥ P �N � IL �M iff

(∅ ∈ P |ILI′ or N |ILI′ = ∅) and I ′ contains only propagation literals

End>: P �N � I �M ;End> M + 2|V|−|I| iff

(∅ ∈ N |I or P |I = ∅) and I contains only propagation literals

End⊥: P �N � I �M ;End⊥ M iff

(∅ ∈ P |I or N |I = ∅) and I contains only propagation literals

Figure 2: Rules in Abstract Dual #DPLL. P and N are CNF formulae over V such that N ≡ ¬P , I and I ′

are interpretations over disjoint sets of variables, L is a literal, and M ∈ N. The procedure is based on DPLL
combined with naive backtracking and terminates as soon as the entire search space has been processed.

Whenever both P |I and N |I are undefined, an unassigned literal L is chosen and assigned a value becoming
a decision literal. The search continues with I extended by L.

In our version of DPLL, every node is visited at most once, and there is no need to remember the models
found so far, e.g., by adding blocking clauses (i.e., the negated models) to P to avoid finding models several
times. This ensures that the model count returned by the algorithm corresponds to the number of models of F .

4.1 States and Transition Relations

Based on Abstract #DPLL introduced in Sect. 2.4, we describe Abstract Dual #DPLL as a state transition
system (S, ;) with set of states S and transition relation ;⊆S×S as follows:

S := N ∪ {P �N � I �M | P , N are CNF formulae with P ≡ F and N ≡ ¬F , I is an interpretation, M ∈ N}
; := {;Dec, ;NB>, ;NB⊥, ;End>, ;End⊥}

In this context, P and N are called working formulae, I is called working interpretation, and M is called working
model count. The initial state is defined by P � N � () � 0. The terminal state is the model count of P and
therefore of F . We denote with L̇ a decision literal, i.e., a literal which was assigned a value by a decision.
Analogously, L denotes a propagation literal. The rules are presented in Fig. 2.

4.2 Rules

Dec I is extended by an unassigned decision literal L̇ whose variable occurs in V.

NB> Naive backtracking is applied whenever the working interpretation either satisfies P or falsifies N and
contains a decision literal L̇. In this case, the working interpretation has the form IL̇I ′. The model count is
incremented by 2|V|−|ILI′|, according to rules R2 and R3 specified in Sect. 3.

NB⊥ Naive backtracking is applied whenever the working interpretation either satisfies N or falsifies P and
contains a decision literal L̇. In this case, the working interpretation is of the form IL̇I ′. The model count
remains unaffected, see rules R1 and R4 specified in Sect. 3.

End> The procedure terminates with a satisfying interpretation I. This is the case when I either satisfies P
or falsifies N and contains no decision literal. The model count is incremented by 2|V|−|I|, according to rules R2
and R3 specified in Sect. 3.

End⊥ The procedure terminates with a falsifying interpretation I. This is the case when I either satisfies N
or falsifies P and contains no decision literal. The model count remains unaffected, according to rules R1 and
R4 specified in Sect. 3.
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4.3 Unit Propagation

Unit propagation is simulated by the Dec and NB> or NB⊥ rule, respectively, according to Sect. 3. In particular,
the Dec rule may be applied if a unit clause {L} occurs in either P |I or N |I .

Unit Propagation in P |I Let’s assume that after setting L to>, during the further execution of the procedure
a conflict or empty reduct results in either P |I or N |I . Naive backtracking is performed, M is updated, and L’s
value is flipped according to rules NB> or NB⊥ (see Sect. 4.2). Since L is a unit literal in P |I , the unit clause
{L} in P |I becomes empty when L’s value is flipped, and IL falsifies P . Hence, #P |IL = 0. This corresponds
to the second term in the sum of (1).

Unit Propagation in N |I Let’s assume that after setting L to >, during executing the procedure a conflict
or empty reduct results in either P |I or N |I . Naive backtracking is performed, M is updated, and L’s value is
flipped according to one of the rules NB> or NB⊥ (see Sect. 4.2). Since L is a unit literal in N |I , the unit clause
{L} in N |I becomes empty, and IL falsifies N . Hence, IL satisfies P , and #P |IL = 2|V|−|IL|. This corresponds
to the second term in the sum of (2).

4.4 Soundness

To make sure that the correct model count is returned by our framework, every node in the search tree must be
visited or counted exactly once. By this we mean that an ancestor u of a node v may be visited, but not v itself.
This can only occur if u represents a satisfying or falsifying interpretation. In this case, all its descendants,
including v, represent a satisfying or falsifying interpretation as well, and the model count determined in v
includes all of them. The naive backtracking mechanism employed in our DPLL version ensures that each node
in the search tree is visited at most once. Therefore, we have to show that our framework does not allow for
multiple visits of nodes.

The working interpretation I is extended iteratively by the Dec rule until it either satisfies or falsifies one of
P or N . If I contains a decision literal, this indicates that not all combinations of truth values of the values have
been tested yet. Chronological backtracking occurs and the value of the decision literal is flipped, i.e., another
combination of truth values will be tested in the next step. The NB> and NB⊥ rules describe this behaviour
for the case in which I is either a satisfying or falsifying interpretation, respectively. Analogously, if I contains
no decision literal, all possible combinations of truth values have been tested, and the search terminates. This
behaviour is addressed by the End> and End⊥ rules, where I is either a satisfying or falsifying interpretation,
respectively.

To prove that our framework returns the correct model count, we show that the rules presented in Sect. 4.2
update the working model count correctly. The Dec rule extends the working interpretation I by a decision
literal whenever the working interpretation neither satisfies nor falsifies either P or N , thus it must not alter the
number of models. In our framework, M remains unchanged when the Dec rule is applied, and the requirement
holds. The NB> and End> rules are applicable, whenever the working interpretation either falsifies N or is a
(possibly partial) model for P . Whenever it falsifies N , it satisfies P and can be extended to 2m models of P
with m = |V| − |I| denoting the number of unassigned variables. If prior to applying one of these two rules the
working model count was M , it should amount to M + 2m afterwards. The NB> and End> rules are defined
accordingly. The NB⊥ and End⊥ rules are applicable, whenever the working interpretation either falsifies P or
is a model for N . In both cases, it can not satisfy P and thus can not be extended to a model of P . The working
model count has to remain unaffected by the application of these two rules. In our framework, this is ensured
by their definition.

From these arguments it follows that our framework is sound. We further implemented the framework in
SWI-Prolog [WSTL12] making use of predicates defined in PIE [Wer16] for a second check of the rules. First
experiments showed the suitability of our approach, while a broader evaluation is ongoing.

5 Example

We demonstrate the function of Abstract Dual #DPLL by an example. Let us consider a #SAT algorithm
implementing the rules defined in Abstract Dual #DPLL introduced in Sect. 4 as well as rules UPP and UPN
addressing unit propagation in P and N , respectively. Unit propagation in P can be executed if a unit clause
occurs in P |I , and, according to (1), the model count is not affected. Unit propagation in N can be applied if
a unit clause occurs in N |I . It modifies the model count as shown in (2). We define rules for unit propagation
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using the notation of our framework to illustrate their effect. To this end, we introduce transition relations ;UPP

and ;UPN, respectively.

UPP: P �N � I �M ;UPP P �N � IL �M if {L} ∈ P |I
UPN: P �N � I �M ;UPN P �N � IL �M + 2|V|−|IL| if {L} ∈ N |I

Let F be an arbitrary formula over a set of variables V, P and N be CNF formulae over V such that P ≡ F
and N ≡ ¬F , respectively. Let I denote an interpretation over V and M the working model count. The empty
formula is represented by ∅, the empty clause by (). In this context, I is represented by a sequence of literals.

Consider as an example F = (x1∧x2)∨(x3), where #F = 5. Then, V = {x1, x2, x3}, P = (x1∨x3)∧(x2∨x3),
and N = (¬x1 ∨¬x2)∧ (¬x3). We assume that the variables are ordered in the following manner: x1 < x2 < x3.
For choosing the decision literal, various heuristics may be applied. The same applies to the choice of the unit
literal, if several unit clauses occur. In our example we define that literals are picked in ascending order of their
variable and that they are set to >. The execution trace is depicted in Table 1. Each row corresponds to an
execution step with I, P |I , N |I , and M obtained by applying the rule indicated in the second column.

Step 0 The system is initialized: P ≡ F , N ≡ ¬F , I = (), and M = 0. N |I contains a unit clause, namely
(¬x3), and I neither satisfies nor falsifies either P or N . Hence, the preconditions of the UPN rule are met.

Step 1 By means of the UPN rule, ¬x3 is propagated and appended to I which becomes I = (¬x3). M has
to be increased by 2m, where m = |{x1, x2, x3}| − |(¬x1)| = 2: M = 4. I neither satisfies nor falsifies either P
or N , and P |I contains two unit clauses, namely (x1) and (x2), and the preconditions of the UPP rule are met.

Step 2 According to our heuristic, we choose x1 and propagate it by means of the UPP rule. I = (¬x3, x1),
M remains unaltered. I neither satisfies nor falsifies either P or N . Both P |I and N |I contain a unit clause
each, namely (x2) and (¬x2), respectively, and the preconditions of UPP and UPN are met.

Step 3 We choose to propagate (x2) by means of the UPP rule. I = (¬x3, x1, x2), M remains unaltered. I
satisfies P and falsifies N . Since I contains no decision literals, the preconditions of both End> and End⊥ are
met.

Step 4 The search terminates with I = (¬x3, x1, x2) satisfying P and falsifying N with the application of the
End> rule. All variables are assigned a value, M is increased by 20 = 1, and M = 5 is returned.

To assess the efficiency of an algorithm based on our framework, we use the number of rules applied as
performance measure without counting the initialization step. The shorter an execution trace results, the better
the algorithm performs. The execution trace of our example has length 4.

We now compare our dual approach with a non-dual one. To this end, let us consider a #SAT algorithm im-
plementing the rules defined in Abstract #DPLL (see Sect. 2.4) as well as a rule UP addressing unit propagation.
We introduce the transition relation ;UP.

Table 1: Trace of a #SAT algorithm implementing the rules of Abstract Dual #DPLL extended by unit prop-
agation. P and N are formulae such that N ≡ ¬P . I, P |I , N |I , and M denote the working interpretation,
the working formulae and the working model count after applying the rule indicated in the second column,
respectively. I is built according to the DPLL mechanism. Instead of terminating when I satisfies P , the model
count is updated, naive backtracking is applied and the search continues until all decision literals are worked on.

Step Rule I P |I N |I M
0 () (x1 ∨ x3) ∧ (x2 ∨ x3) (¬x1 ∨ ¬x2) ∧ (¬x3) 0
1 UPN (¬x3) (x1) ∧ (x2) (¬x1 ∨ ¬x2) 4
2 UPP (¬x3, x1) (x2) (¬x2) 4
3 UPP (¬x3, x1, x2) ∅ () 4
4 End> (¬x3, x1, x2) ∅ () 5
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UP: P � I �M ;UPP P � IL �M if {L} ∈ P |I

The execution trace of the non-dual algorithm executed on our previous example is depicted in Table 2.

Step 0 The system is initialized: P ≡ F , I = (), and M = 0. I neither satisfies nor falsifies P , and the
preconditions of the Dec rule are met.

Step 1 The Dec rule is applied. According to our heuristics, x1 is chosen, set to > and appended to I which
becomes I = (ẋ1). The model count remains unaltered. I neither satisfies nor falsifies P , and the preconditions
of the Dec rule are met.

Step 2 The Dec rule is applied. According to our heuristics, x2 is chosen, I = (ẋ1, ẋ2), and M remains
unaltered. Since I satisfies P and contains two decision literals, namely (ẋ1) and (ẋ2), the preconditions of the
NB> rule are met.

Step 3 Naive backtracking is applied. The number of unassigned variables amounts to 1, and the model count
is increased by 21 = 2 resulting in M = 2. The value of the decision literal ẋ2 is flipped, i.e., x2 = ⊥, and x2
is turned into a propagation literal. I = (ẋ1,¬x2) neither satisfies nor falsifies P . Since P |I contains the unit
clause (x3), the preconditions of the UP rule are met.

Step 4 Unit propagation is applied by setting x3 to >. I = (ẋ1,¬x2, x3), and P |I = ∅. I satisfies P and still
contains a decision literal, namely (x1), hence the preconditions of the NB> rule are met.

Step 5 Naive backtracking is applied. All variables were assigned a value, and the model count becomes
M = 3. I = (¬x1) neither satisfies nor falsifies P , and P contains the unit clause (x3). The preconditions of the
UP rule are met.

Step 6 The UP rule is applied by propagating x3. The working interpretation becomes I = (¬x1, x3). It
satisfies P and contains no decision literal meeting the preconditions of the End> rule.

Step 7 The execution terminates with I = (¬x1, x3) satisfying P . The number of unassigned variables is 2,
and M = 3 + 2 = 5 is returned.

The execution trace has length 7. We show that its length depends on the decision heuristics applied. Let
the order in which the decision literals are chosen be reversed. Then, in Step 1, x3 is chosen as decision literal.
After backtracking in Step 2, x3 is set to ⊥ and P |I = (x1) ∧ (x2). In Step 3, x2 is propagated by means of
the UP rule, and P |I = (x1). In Step 4, UP is applied and x2 propagated, resulting in P |I = ∅. The execution
terminates in Step 5 with the application of the End> rule, and M = 5 is returned. The execution trace has
length 5.

Table 2: Trace of a #SAT algorithm implementing the rules of Abstract #DPLL extended by unit propagation.
I, P |I and M are the working interpretation, formula and model count, respectively. During execution, I is
built according to the DPLL mechanism. Instead of terminating when I satisfies P , the model count is updated,
naive backtracking is applied and the search continues until all decision literals are worked on.

Step Rule I P |I M
0 () (x1 ∨ x3) ∧ (x2 ∨ x3) 0
1 Dec (ẋ1) (x2 ∨ x3) 0
2 Dec (ẋ1, ẋ2) ∅ 0
3 NB> (ẋ1,¬x2) (x3) 2
4 UP (ẋ1,¬x2, x3) ∅ 2
5 NB> (¬x1) (x3) ∧ (x2 ∨ x3) 3
6 UP (¬x1, x3) ∅ 3
7 End> (¬x1, x3) ∅ 5
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6 Conclusion and Future Work

The problem #SAT of determining the number of models of a propositional formula has many real-world ap-
plications. In this work, we have presented a formal framework describing a #SAT solving procedure based on
DPLL, called Abstract Dual #DPLL, including a formalization of a non-dual variant, called Abstract #DPLL,
and argued that our framework is sound. The Abstract Dual #DPLL procedure is given by 5 simple rules which
specify the decide and naive backtracking mechanisms. The application of chronological backtracking underlying
naive backtracking and the framework’s compactness facilitate the investigation of the main idea, namely to
consider a formula and its negation simultaneously in #SAT solving. We demonstrated the working of Abstract
Dual #DPLL on an example assuming an implementation enhanced by unit propagation and compared it do
a non-dual algorithm based on Abstract #DPLL enhanced by unit propagation as well. The dual algorithm
performed better, i.e., less rules were executed. This is due to the fact that in Step 1 unit propagation can be
executed on N |I , whereas in the non-dual version, a decision has to be taken. For every decision, at a later time
point backtracking occurs. This results in a longer execution trace. In this example, the performance of the dual
version does not depend from the decision heuristics applied, contrarily to the non-dual version.

Today, several #SAT solvers are available. They implement various strategies, however, to our best knowledge,
no dual approach has been presented yet. We implemented our framework in SWI-Prolog, and first experiments
on small crafted formulae are encouraging. An interesting question is whether by Abstract Dual #DPLL state-
of-the-art #SAT solvers can be modeled. relsat v2.00 [JP00] is based on DPLL, but contrarily to our framework
splits the formula under consideration into subformulae over disjoint variable sets. At present, we can not model
#SAT solving procedures making use of backjumping or CDCL, such as Cachet [SBB+04], since non-chronological
backtracking and clause learning are not supported. The performance gain of some modern #SAT solvers is due
to improved data structures. This aspect is not covered by our framework as we focus on algorithms. In order
to model countAtom [BSB15], our framework should be extended to support parallelization.

For the sake of simplicity we assume that we are given two formulae P and N over the same set of variables
which are duals of each others, e.g., models of P falsify N and vice versa. This assumption is rather strong
unless we allow additional variables, e.g., Tseitin variables, to encode negation [Tse68]. Let F be an arbitrary
formula over variables V. We denote with T (F ) the Tseitin transformation of F . The models of T (F ) projected
onto V are exactly the models of F . Therefore, our approach can be generalized to the situation in which N
contains, e.g., Tseitin variables, by projecting the models of N onto the variables occurring in P .

As future work, we will make our soundness arguments more precise and investigate completeness. We also
plan a more extensive experimental evaluation and a detailed comparison of our dual approach with non-dual
methods. We intend to extend our work to the case where the formula under consideration and its negation
communicate over “inputs” by allowing, e.g., Tseitin variables. Finally, by extending our framework to model
strategies implemented in state-of-the-art SAT solvers, such as conflict-driven clause learning (CDCL) [MS99],
we want to combine the strengths of duality of our Abstract Dual #DPLL with the strength of modern SAT
solvers to obtain a state-of-the-art model counting framework.
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