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Abstract. In this paper we present the results of application of state-of-
the-art SAT solvers to inversion of cryptographic hash functions from the
MD family. In particular we consider the problems of finding preimages
and collisions for MD4 and MD5. To solve them we use the approach
based on reducing the original problems to Boolean satisfiability prob-
lem (SAT). The propositional encoding of the algorithms specifying the
considered functions was performed using the Transalg software system.
The features of this system make it possible to effectively augment the
SAT encodings for MD4 and MD5 hash functions with various additional
constraints that improve the effectiveness of SAT solvers on correspond-
ing instances. The effectiveness of the proposed algorithms is better than
that in a number of preceding papers. We used the developed algorithms
to find new families of two-block collisions for MD5 and to construct new
differential paths for finding single-block collisions for MD4.

Keywords: SAT, MD4, MD5, cryptanalysis, preimage attack, collision,
inversion problem, hash functions, Transalg.

1 Introduction

Let us denote by {0, 1}𝑘, 𝑘 ∈ 𝑁 the set of all binary words of length 𝑘. By
{0, 1}* we denote the set of all binary words of an arbitrary finite length (i.e.

{0, 1}* =
∞⋃︀
𝑘=0

{0, 1}𝑘, where {0, 1}0 = ∅).

Let us remind [10] that a hash function is a total computable discrete func-
tion of the kind 𝜒 : {0, 1}* → {0, 1}𝐶 , where 𝐶 is some constant representing
a length of hash value. Hash functions are used in various areas of computer
science. In particular, they are applied to speed up access to large data sets. In
cryptography, the scope of hash functions applications is also quite wide and has
both theoretical (to construct proofs in random oracle model [4]), and practical
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aspects. For example, in all state-of-the-art algorithms for constructing digital
signatures, the message to be signed is first hashed. Cryptographic hash func-
tions have to meet additional requirements, which consist in the fact that the
inversion problems of such functions should be computationally hard. In partic-
ular, the problem of finding a preimage for a given hash value and the problem
of finding collisions should both be hard. Let us remind that if there exists a
pair of messages 𝑥1, 𝑥2 ∈ {0, 1}*, 𝑥1 ̸= 𝑥2 such, that 𝜒(𝑥1) = 𝜒(𝑥2), then these
messages form a collision for hash function 𝜒.

In the present paper we describe the results of applying algorithms for solving
Boolean satisfiability problem (SAT) to finding preimages and collisions of some
cryptographic hash functions. These results are a part of actively developing di-
rection of research known as SAT-based cryptanalysis. In particular, within the
context of mentioned problems we present the results of SAT-based cryptanal-
ysis of MD4 and MD5 cryptographic hash functions. Hereinafter by inversion
problems we mean both the problem of finding preimages and the problem of
finding collisions for considered hash functions.

Let us give a brief outline of the paper. In the next section we present the
theoretical foundations of SAT-based cryptanalysis. In the third section we con-
sider finding preimages and collisions for MD4 and MD5 as special cases of SAT,
paying special attention to characteristic features of obtained SAT instances. In
the fourth section we describe new methods and results obtained using them.
The fifth section is a short review of the related works preceding our research.

2 Theoretical Foundations of SAT-based Cryptanalysis

Boolean Satisfiability Problem (SAT) consists in the following: for an arbitrary
Boolean formula 𝐹 to decide whether it is satisfiable or not, i.e. if there exists
a set of values of Boolean variables from this formula that makes it TRUE. In
general case this problem can be effectively (in polynomial time on the size of
code of 𝐹 ) reduced to SAT for formula 𝐶𝐹 in the Conjunctive Normal Form
(CNF). That is why nowadays for convenience SAT is usually considered for
some CNF. Also SAT is often understood as a search variant of the problem:
given a CNF 𝐶 to decide if it is satisfiable and if the answer is ‘Yes’ to provide
a corresponding satisfying assignment.

In the last 15 years there was achieved a dramatic progress in the devel-
opment of SAT-solving algorithms and techniques [6]. Today these algorithms
are successfully applied in symbolic verification, computational combinatorics,
bioinformatics and many other areas. In the recent years there can be seen a
growing interest to applying SAT solvers to cryptanalysis problems. The corre-
sponding direction is now known as SAT-based cryptanalysis and the number of
works related to it is steadily growing.

SAT-based cryptanalysis relies on the ability to effectively reduce inversion
problems of discrete functions to SAT. The effectiveness of these algorithms,
called propositional encoding procedures, follows from the Cook theorem [8]. Let
us consider some discrete function 𝑓 : {0, 1}* → {0, 1}* specified by a polynomial
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algorithm 𝐴. For each 𝑛 ∈ 𝑁 this algorithm specifies a function of the kind:
𝑓𝑛 : {0, 1}𝑛 → {0, 1}*. Hereinafter by inversion problem for discrete function 𝑓𝑛
we mean the following problem: given 𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒𝑓𝑛 and known algorithm 𝐴 to
find such 𝑥 ∈ {0, 1}𝑛 that 𝑓𝑛(𝑥) = 𝑦. In the context of this general problem it
is possible to consider many cryptanalysis problems. For example, suppose that
𝐴 is an algorithm which specifies hash function 𝜒 : {0, 1}* → {0, 1}𝐶 . Then for
a specific 𝑛 program 𝐴 specifies a function 𝜒𝑛 : {0, 1}𝑛 → {0, 1}𝐶 and for a
given hash image 𝑦 of some message 𝑥 we can consider the problem of finding a
preimage 𝑥′, 𝜒𝑛(𝑥′) = 𝑦, where 𝑥′ does not have to be equal to 𝑥.

The advantage of the presented above style of formulating cryptanalysis prob-
lems lies in the fact that we can effectively reduce any such problem to SAT for
some satisfiable CNF 𝐶(𝑓𝑛, 𝑦). In recent years there appeared several different
automated software systems designed to perform the corresponding reductions.
From our point of view the most interesting of them are URSA [21] and Cryp-
tol [18, 19]. In our computational experiments we used the Transalg system
[29, 30] developed by us. Let us briefly describe its functional capabilities.

The Transalg system was specifically developed to automate reducing the
inversion problems of discrete functions, specified by algorithmic descriptions,
to SAT. It is based on Cook’s ideas on propositional encoding of algorithms
[8] and King’s ideas on symbolic execution [24]. The Transalg system uses
the domain specific TA-language with C-like syntax [23] to specify considered
discrete functions. In the process of translating TA-programs to SAT it uses
standard techniques from the compilation theory. The result of the translation is
not an executable code but a set of Boolean formulas that naturally corresponds
to a system of Boolean equations. Using Tseitin transformations [37] we can
construct a SAT encoding from this set.

Thus, the initial stage of constructing a SAT instance encoding an inver-
sion problem of some discrete function consists in describing this function on a
specialized TA-language. Since TA-language is a procedural C-like language, it
is usually enough to make small changes to the existing implementation of an
algorithm written in the C language to obtain the corresponding TA-program.
The TA-language supports basic constructions typical for procedural languages
(variable, array and function declarations, assignment operators, conditional op-
erators, loops, function calls), various bit and integer operations including bit
shifting and numerical comparison.

Hereinafter, by translation we mean the process of constructing the proposi-
tional encoding of a discrete function for a given TA-program. The translation
of any TA-program consists of two main stages. At the first stage Transalg
parses the source code of a TA-program and constructs a syntax tree using stan-
dard techniques of the compilation theory [1]. At the second stage the system
employs the concept of symbolic execution [24] to construct a propositional en-
coding of a considered TA-program. The propositional encoding can be provided
in several standard formats: CNF, DNF (Disjunctive Normal Form), ANF (Al-
gebraic Normal Form). Transalg has an option of applying miminization to
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constructed Boolean formulas. For this purpose it uses the ESPRESSO Boolean
minimization library which was embedded into system as one of its modules.

Let us briefly discuss the SAT solving algorithms used in SAT-based crypt-
analysis. According to the Cook theorem, SAT is NP-hard problem. That is why
it is unlikely that there are polynomial deterministic algorithms for its solving.
Nevertheless, ‘effective’ (that make it possible to solve practical instances in
reasonable time) algorithms for solving SAT are in high demand in a number
of important areas of science, first of all in formal verification. In recent years
this demand led to a ‘boom’ in the development of strategies and heuristics for
solving SAT.

There are a number of general concepts underlying state-of-the-art SAT
solvers. The CDCL (Conflict Driven Clause Learning) concept first described
in [25] became one of the most fruitful. Since CDCL-solvers show the highest
effectiveness in application to inversion of cryptographic functions, let us briefly
describe their design features. The CDCL-solver is based on DPLL algorithm
(Davis-Putnam-Logemann-Loveland) [13], complemented by Clause Learning
technique, which allows to store the information about traversed fragments of
the search space in the form of conflict clauses. A conflict clause is a logical
implication of an original CNF 𝐶, so the conjunction of this clause with 𝐶 gives
CNF 𝐶 ′, that is satisfiable exactly on the same assignments as 𝐶 (or both are
unsatisfiable). Conflict clauses are used to derive new information and therefore
direct the search to a new path. In the worst case scenario both DPLL algo-
rithm and DPLL + CDCL algorithms are exponential. It follows from the fact
that the resolution method is exponential [20] and from the results of [3]. Nev-
ertheless, state-of-the-art CDCL-solvers are surprisingly successful when dealing
with ‘industrial’ SAT problems of large dimensions (tens of thousands of vari-
ables, hundreds of thousands of clauses). As it was already mentioned, it is the
CDCL-solvers that perform best on cryptographic tests, including the inversion
problems for hash functions.

3 Inversion Problems of MD4 and MD5 as SAT

In the present paper we apply SAT-based cryptanalysis to the problems of finding
collisions and to inversion (i.e. finding preimages) of cryptographic hash functions
MD4 [32] and MD5 [31]. Let us briefly discuss design features of these functions.

There is a number of algorithmic constructions used for building crypto-
graphic hash functions. One of the most commonly used is the Merkle-Damgard
construction [27, 12], underlying such well-known families of cryptographic func-
tions as MD and SHA. This construction implies that an original message is split
into blocks of fixed size (if necessary the length of a message can be extended
using the so-called ‘padding’). During the processing of the initial message each
block is treated one at a time using special function called compression func-
tion. It converts each block into a short message, stored in specially allocated
memory registers. The values of the registers are considered as the values of the
so-called ‘chaining variables’. After processing all message blocks the concate-
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nation of current values of chaining variables gives us the hash value. At the
initial moment the chaining variables are assigned with initial values, which are
commonly known and usually are fixed in the algorithm specification. The gen-
eral scheme of Merkle-Damgard construction is shown in Figure 1 (the message
blocks that form the original message are denoted by 𝑀1, . . . ,𝑀𝑁 , the initial
values of chaining variables are denoted by 𝐼𝑉 , and 𝐻𝑁 is a final hash value).

Fig. 1. The Merkle-Damgard construction.

Let us illustrate the work of the Merkle-Damgard construction using the MD5
algorithm as an example. The MD5 algorithm begins with padding an original
message. In this process we add to it a special bit sequence 𝑝1, . . . , 𝑝𝑞, 𝑞 ≥ 65.
The bit 𝑝1 is always equal to 1, while bits 𝑝𝑞−63, . . . , 𝑝𝑞 are the binary represen-
tation of 64-bit number equal to the number of bits in the original message. Bits
(𝑝2, . . . , 𝑝𝑞−64) if they are present, are equal to 0. The parameter 𝑞 ≥ 65 is chosen
in such a way that the length of the padded message is a multiple of 512 bits.
After padding the message is divided into 512-bit blocks 𝑀 = (𝑀1, . . . ,𝑀𝑁 ).
According to the Merkle-Damgard construction an iterative process of calculat-
ing the hash value can be described by the equation:

𝐻𝑖 = 𝑓(𝐻𝑖−1,𝑀𝑖), 1 ≤ 𝑖 ≤ 𝑁,

where 𝐻0 = 𝐼𝑉 is the initial value and 𝐻𝑁 is the value of hash function.
For each 𝑖 ∈ {1, . . . , 𝑁} the value 𝐻𝑖 is the concatenation of 32-bit values of
chaining variables. At the initial moment these variables have the following
values (according to the specification of the MD5 algorithm): 𝑎=0x67452301,
𝑏=0xefcdab89, 𝑐=0x98badcfe, 𝑑=0x10325476. Concatenation of these values,
i.e. the word 𝑎|𝑏|𝑐|𝑑, forms IV.

Schematically the compression function 𝑓𝑀𝐷5 used in the MD5 algorithm is
presented in Figure 2. Let us comment the Figure 2. The function 𝑓𝑀𝐷5 receives
as input an array with the current values of chaining variables – 𝑎0, 𝑏0, 𝑐0, 𝑑0.
The corresponding values are given in form of 32-bit words. Also compression
function 𝑓𝑀𝐷5 operates with 512-bit input message block 𝑀𝑖, divided into 16
32-bit words: 𝑀𝑖 = (𝑚1, . . . ,𝑚16). The process of computing 𝑓𝑀𝐷5 can be di-
vided into 4 stages, called rounds. In each round an iterative recalculation of
chaining variables is performed, the value of each variable is updated 4 times (in
Figure 2, each round is represented by transformation 𝛷𝑗 , 𝑗 ∈ {1, 2, 3, 4}). The
transformations corresponding to the first update of chaining variables values in
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Fig. 2. MD5 compression function.

the first round are specified by the following equations:

𝑎1 = 𝑏0 + ((𝑎0 + 𝜑1(𝑏0, 𝑐0, 𝑑0) +𝑚1 + 𝑡1) ≪ 𝑠1𝑎),
𝑑1 = 𝑎0 + ((𝑑0 + 𝜑1(𝑎0, 𝑏0, 𝑐0) +𝑚2 + 𝑡2) ≪ 𝑠1𝑑),
𝑐1 = 𝑑0 + ((𝑐0 + 𝜑1(𝑑0, 𝑎0, 𝑏0) +𝑚3 + 𝑡3) ≪ 𝑠1𝑐),
𝑏1 = 𝑐0 + ((𝑏0 + 𝜑1(𝑐0, 𝑑0, 𝑎0) +𝑚4 + 𝑡4) ≪ 𝑠1𝑏).

(1)

Here, ‘+’ means addition modulo 232, ‘≪ 𝑠’ means 𝑠-fold circular left shift of
a 32-bit word, 𝑠1𝜁 , 𝜁 ∈ {𝑎, 𝑏, 𝑐, 𝑑} are known constants defined in the algorithm

specification (for example, 𝑠1𝑎 = 7, 𝑠1𝑑 = 12, 𝑠1𝑐 = 17, 𝑠1𝑏 = 22), constants 𝑡𝑘,
𝑘 ∈ {1, 2, 3, 4} are also known. The result of second recalculation of chaining
variables values is the set of values 𝑎2, 𝑏2, 𝑐2, 𝑑2 computed using formulas that
are different from (1) in that their right parts contain 𝑎1, 𝑏1, 𝑐1, 𝑑1 instead of
𝑎0, 𝑏0, 𝑐0, 𝑑0 and 𝑚5,𝑚6,𝑚7,𝑚8 instead of 𝑚1,𝑚2,𝑚3,𝑚4. Also the constants
𝑡𝑘, 𝑘 ∈ {5, 6, 7, 8} are used. The round ends after four recalculations, i.e. after
all the words 𝑚1, . . . ,𝑚16 have been used. The equations used to recalculate
chaining variables values at further rounds are generally similar to (1) with the
difference that they use other constants and functions 𝜑𝑗 . The functions 𝜑𝑗 ,
𝑗 ∈ {1, 2, 3, 4} are functions of the kind:

𝜑𝑗 : {0, 1}32 × {0, 1}32 × {0, 1}32 → {0, 1}32.

They are called round functions and are specified as follows:

𝜑1(𝑋,𝑌, 𝑍) = (𝑋 ∧ 𝑌 ) ∨ (¬𝑋 ∧ 𝑍)
𝜑2(𝑋,𝑌, 𝑍) = (𝑋 ∧ 𝑍) ∨ (𝑌 ∧ ¬𝑍)
𝜑3(𝑋,𝑌, 𝑍) = 𝑋 ⊕ 𝑌 ⊕ 𝑍
𝜑4(𝑋,𝑌, 𝑍) = 𝑌 ⊕ (𝑋 ∧ ¬𝑍)

In these formulas it is assumed that Boolean operations are performed compo-
nentwise over 32-bit words.

The sequence of data transformations listed above forms the algorithm that
defines the hash function 𝜒𝑀𝐷5 : {0, 1}* → {0, 1}128. When we fix the length of
an original message we obtain functions, the corresponding inversion problems
of which can be reduced to SAT using the techniques described above. In what
follows we use the Transalg system to perform this reduction. Below we will
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briefly consider the important stages of the process of constructing propositional
encoding of the algorithm specifying 𝜒𝑀𝐷5.

As it follows from the above, the value 𝜒𝑀𝐷5 is formed as a result of an itera-
tive recalculation of chaining variables values. The operations used in this process
are integer addition modulo 232, circular bit shift operation and bitwise conjunc-
tion, disjunction and addition modulo 2. Let 𝑎 = (𝑎𝑛, . . . , 𝑎1), 𝑏 = (𝑏𝑛, . . . , 𝑏1)
be 𝑛-bit numbers (let us use the notation in which the most significant bit is the
leftmost bit). Then the integer addition 𝑎+ 𝑏 is encoded by the following set of
Boolean formulas:

𝑐1 ≡ 𝑎1 ⊕ 𝑏1
𝑝1 ≡ 𝑎1 ∧ 𝑏1
𝑐𝑖 ≡ 𝑎𝑖 ⊕ 𝑏𝑖 ⊕ 𝑝𝑖−1, 𝑖 = 2, . . . , 𝑛
𝑝𝑖 ≡ 𝑎𝑖 ∧ 𝑏𝑖 ∨ 𝑎𝑖 ∧ 𝑝𝑖−1 ∨ 𝑏𝑖 ∧ 𝑝𝑖−1, 𝑖 = 2, . . . , 𝑛
𝑐𝑛+1 ≡ 𝑝𝑛

Here, 𝑝𝑖, 𝑖 = 1, . . . , 𝑛 are carry bits, 𝑐 = 𝑎 + 𝑏 = (𝑐𝑛+1, 𝑐𝑛, . . . , 𝑐1) represents
the result of addition. In case of integer addition modulo 232 numbers 𝑎, 𝑏 are
represented by 32-bit vectors (𝑛 = 32), and as a result of the operation we take
32 less significant bits of vector 𝑐.

As it was shown in [29], when encoding the circular shift operation it is
not necessary to create new Boolean variables. This is a consequence of the
fact that the circular shift can be considered as a process of redefinition of
relations between variables, already used at the previous stages of construction
of propositional encoding.

Operations that appear in round functions are bitwise. Thus, for example,
propositional code for the function 𝜑1(𝑋,𝑌, 𝑍) = (𝑋 ∧ 𝑌 ) ∨ (¬𝑋 ∧ 𝑍) is based
on the set of formulas of the kind:

𝑢𝑖 ↔ (𝑥𝑖 ∧ 𝑦𝑖) ∨ (¬𝑥𝑖 ∧ 𝑧𝑖), 𝑖 = 1, . . . , 32,

where 𝑢𝑖 is a Boolean variable encoding 𝑖-th component in the vector 𝜑1(𝑋,𝑌, 𝑍),
𝑋 = (𝑥1, . . . , 𝑥32), 𝑌 = (𝑦1, . . . , 𝑦32), 𝑍 = (𝑧1, . . . , 𝑧32).

All of these procedures can be described using the TA-language. The result
of the translation of the constructed TA-program is the CNF 𝐶(𝜒𝑀𝐷5,𝑚) that
encodes the calculation of 𝜒𝑀𝐷5 for an input of a fixed length 𝑚. To obtain the
problem of inversion for this function in the form of SAT instance one has to add
to this CNF the specific value of the hash, for which we want to find a preimage,
in the form of unit clauses. To construct the SAT encoding for finding a collision
(in general case, the k-block collision) two similar TA-programs are used, result-
ing in the construction of two CNFs 𝐶1(𝜒𝑀𝐷5,𝑚) and 𝐶2(𝜒𝑀𝐷5,𝑚) over disjoint
sets of variables. Then we construct the CNF 𝐶1(𝜒𝑀𝐷5,𝑚) ∧ 𝐶2(𝜒𝑀𝐷5,𝑚) to
which we append the conditions specifying that functions outputs are equal,
while functions inputs are not. From the properties of translation procedures
used in Transalg, it follows that the resulting CNF, hereinafter denoted by 𝐶
has as many satisfying assignments as there are collisions of length 𝑚. We will
say that CNF 𝐶 encodes the problem of finding collisions of the corresponding
hash function (MD5 or MD4).
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4 Solving Inverison Problems for Hash Functions from
MD family via SAT

Apparently, the first example of applying SAT solvers to cryptanalysis of hash
functions can be found in paper [22]. In this work, there were considered the
problems of finding collisions of hash functions from MD family in form of SAT.
However, in [22] the collisions for the unweakened algorithms have not been
found. From this perspective the first successful experience was presented in
[28]. In this paper there was implemented the SAT-version of the famous differ-
ential attack by X. Wang. Using this attack, first introduced in [38, 39], one can
effectively construct single-block collisions for MD4 and two-block collisions for
MD5. Below let us briefly consider the main stages of the Wang scheme.

Thus, consider two messages 𝑀 = (𝑀1, . . . ,𝑀𝑁 ), and 𝑀 ′ = (𝑀 ′
1, . . . ,𝑀

′
𝑁 ),

𝑀 ̸= 𝑀 ′. Let
𝐻𝑖 = 𝑎|𝑏|𝑐|𝑑,𝐻 ′

𝑖 = 𝑎′|𝑏′|𝑐′|𝑑′

be the values of chaining variables after calculating hash values for message
blocks number 𝑖 ∈ {0, 1, . . . , 𝑁}. Consider the following relation:

𝛥𝐻𝑖 = 𝑎− 𝑎′|𝑏− 𝑏′|𝑐− 𝑐′|𝑑− 𝑑′

in which we use integer differences modulo 232 between the corresponding values
of chaining variables. Given this notation a differential path for a considered
hash function can be defined as follows:

𝛥𝐻0
(𝑀1,𝑀

′
1)−−−−−−→ 𝛥𝐻1

(𝑀2,𝑀
′
2)−−−−−−→ . . .

(𝑀𝑁−1,𝑀
′
𝑁−1)−−−−−−−−−−→ 𝛥𝐻𝑁−1

(𝑀𝑁 ,𝑀
′
𝑁 )−−−−−−→ 𝛥𝐻𝑁 = 𝛥𝐻

It’s obvious that 𝛥𝐻0 = 0. If 𝛥𝐻 = 0, then the corresponding messages 𝑀
and 𝑀 ′ form an 𝑁 -block collision. If for some reasons there were selected a
particular type of differences 𝛥𝐻𝑖, 1 ≤ 𝑖 ≤ 𝑁 and of differences between the
intermediate values of chaining variables during the calculation of 𝐻 and 𝐻 ′,
then the problem of finding collisions transforms into the problem of selecting a
pair (𝑀,𝑀 ′) that satisfies the resulting differential path. This is the main idea of
differential attacks on MD family presented in [38, 39]. More specifically, in [38,
39] for the MD family hash functions there have been proposed differential paths
and described the collision finding method which consists of two simple steps:
random message selection and deterministic modification of messages to fit a
particular differential path. This method has allowed to construct single-block
collisions for the MD4 algorithm and two-block collision for the MD5 algorithm
in a reasonable time. The attacks of the described type were often applied in
later papers. Among the latest achievements in this direction there should be
noted the paper [36], in which single-block collisions for the MD5 hash function
were built using differential attacks.

As we noted above, in [28] there was implemented a ‘SAT-version’ of Wang
attack. More precisely, the Boolean constraints encoding the differential paths
from [38, 39] were added to the propositional encoding for finding collisions for
the MD4 and MD5 hash functions. To find one MD4 collision it took them
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about 10 minutes (500 seconds on average) using Minisat solver [16]. Finding
two-block collisions for MD5 proved to be much more difficult.

In our opinion the main disadvantage of [28] is the use of highly specialized
tools to construct propositional encodings, because that makes it impossible to
reproduce their experiments. In our experiments we used the Transalg system.
The encodings obtained were more compact compared to encodings presented
in [28]. Using cryptominisat solver [35] one collision for MD4 was found in a
fraction of a second and to find 10,000 collisions it took less than 2 hours. To
find two-block MD5 collisions using the encodings constructed by Transalg we
employed Plingeling and Treengeling solvers [5], the winners of the latest
SAT competitions. Using Treengeling solver we managed to isolate one special
class of two-block collisions for MD5 with the first 10 zero bytes. To find one
collision on one node of ‘Academician Matrosov’ computing cluster of Irkutsk
Supercomputer Center SB RAS (two 16-core Opteron 6276 processors + 64 Gb
RAM)1 it took from a few hours to a couple of days. There were found dozens
of collisions of this type. In Figure 3 we present one of them.

00 00 00 00 00 00 00 00 00 00 20 74 67 a6 f5 48

cb c1 6d a5 3e f7 b8 bc 67 a3 8d d9 3c 9b f5 b8

55 ed 32 06 06 0a 74 a3 0f b6 84 87 47 cf 91 d0

db 4c 6f 43 ef 64 f0 8d a4 1d 50 c6 26 df 95 fe

𝑀1 ff d1 2e c9 a0 90 aa b3 7d e7 e5 bc f2 3a 4e ab

24 b8 d4 13 4c cc 7b 1b 00 29 eb f5 53 7a 0d d1

5d 1f b7 79 af 36 ce 08 1e 44 a2 d0 51 ec 91 fb

c5 4c a2 89 75 b3 a3 84 ac 97 7f f2 7e 50 d4 56

00 00 00 00 00 00 00 00 00 00 20 74 67 a6 f5 48

cb c1 6d 25 3e f7 b8 bc 67 a3 8d d9 3c 9b f5 b8

55 ed 32 06 06 0a 74 a3 0f b6 84 87 47 4f 92 d0

db 4c 6f 43 ef 64 f0 8d a4 1d 50 46 26 df 95 fe

𝑀2 ff d1 2e c9 a0 90 aa b3 7d e7 e5 bc f2 3a 4e ab

24 b8 d4 93 4c cc 7b 1b 00 29 eb f5 53 7a 0d d1

5d 1f b7 79 af 36 ce 08 1e 44 a2 d0 51 6c 91 fb

c5 4c a2 89 75 b3 a3 84 ac 97 7f 72 7e 50 d4 56

𝐻𝑎𝑠ℎ c22664780a9766ceb57065eba36af06b

Fig. 3. An example of two-block MD5 collision with first 10 zero bytes.

Next we applied SAT approach to generate new differential paths (different
from that proposed by X.Wang et. al.) for finding collisions for the MD4 hash
function. Thus, consider the problem of computing MD4 hash values for two
different messages 𝑀 and 𝑀 ′. As we mentioned above, by 𝐻 and 𝐻 ′ we denote
hash registers, where 𝐻 is a hash image of 𝑋, and 𝐻 ′ is a hash image of 𝑋 ′.
We assume that hash images for 𝑋 and 𝑋 ′ are calculated simultaneously. The
data recorded in 𝐻 and 𝐻 ′ in a particular time moment can be considered as an

1 http://www.hpc.icc.ru/
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instantaneous configuration of memory registers of the computing device that
implements two independent copies of the MD4 algorithm. In total in the given
algorithm there are 48 such instantaneous configurations corresponding to basic
steps – each round consists of 16 steps (in the case of MD5 there are 4 rounds of
16 steps, making it a total of 64 steps). Let us denote these configurations by ℎ𝑘
and ℎ′𝑘 for registers 𝐻 and 𝐻 ′, respectively, 𝑘 ∈ {1, . . . , 48} (𝑘 = 0 corresponds
to an initial configuration). Thus, on the 𝑘-th step the configurations ℎ𝑘 and
ℎ′𝑘 contain four 32-bit numbers each, corresponding to the values of chaining
variables from the considered step. During the transition from the configuration
ℎ𝑘 to the configuration ℎ𝑘+1 only one of the four chaining variables values is
recalculated (the same holds for the transition from ℎ′𝑘 to ℎ′𝑘+1). Let us consider
the difference between 32-bit integers modulo 232 only for the values of chaining
variables that were recalculated during the transition 𝑘 → 𝑘 + 1 and denote it
as 𝛿𝑘+1.

Let 𝐶 be a CNF encoding the problem of finding collisions for the MD4 hash
function. By 𝐶𝛥 we denote a CNF, which takes the value 1 (true) if and only
if hashed messages 𝑀 and 𝑀 ′ satisfy a fixed differential path (for example, the
one from [38]). Let 𝐶𝛿𝑘=𝑐 be a CNF which takes the value 1 (true) if and only if
the value of the difference 𝛿𝑘 is equal to 𝑐 (here 𝑐 is some 32-bit number). Since
in each particular case 𝑐 is a 32-bit constant it is not difficult to go through all
possible values of 𝑐 and consider the SAT for corresponding CNFs of the kind:

𝐶 ∧ 𝐶𝛥 ∧ 𝐶𝛿𝑘=𝑐.

In our experiments we found that for the vast majority of possible values state-
of-the-art SAT solvers can prove unsatisfiability of CNF 𝐶∧𝐶𝛥∧𝐶𝛿𝑘=𝑐 very fast
(in a fraction of second). The solving of SAT for CNFs of the kind 𝐶∧𝐶𝛥∧𝐶𝛿𝑘=𝑐
for which we could not obtain the answer in a relatively short period of time
(a few seconds), were interrupted. Assume that 𝑐′ is the value of 𝛿𝑘 for which
the solving of SAT instance 𝐶 ∧ 𝐶𝛥 ∧ 𝐶𝛿𝑘=𝑐′ was interrupted and that this 𝑐′

is not equal to corresponding value of 𝛿𝑘 in the path from [38]. Then this value
can be considered as a candidate for the value of 𝛿𝑘 in a new differential path.
To solve the corresponding SAT instance it is possible to spend more effort
using embarrassing parallelism if necessary. If 𝐶 ∧ 𝐶𝛥 ∧ 𝐶𝛿𝑘=𝑐′ turns out to be
satisfiable, then it means that we constructed a new differential path that is
different from the Wang path in the value of 𝛿𝑘.

This algorithm has been implemented in the form of parallel MPI-program,
and launched on the computing cluster ‘Academician Matrosov’ of Irkutsk Su-
percomputer Center SB RAS. As a result, several differential paths for MD4,
that are different from the Wang path, have been found. Below in Figure 4 we
present one of the found paths, which is different from the Wang path in values 𝛿𝑘
for 𝑘 ∈ {13, 17, 20, 21}. Using this differential path and message difference from
[38] we constructed CNF 𝐶 ′ and used cryptominisat solver [35] to evaluate its
effectiveness. It took the solver 416 seconds to find 1000 collisions. When applied
to the CNF 𝐶 based on the Wang differential path it took cryptominisat 520
seconds to find 1000 collisions.
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Step 13 0x62c00000

Step 17 0xb6000000

Step 20 0xe0000000

Step 21 0xf0000000

Fig. 4. Differential path for finding single-block collisions for MD4. Only values of
differences for chaining variables that are different from that in the path from [38] are
presented.

We also applied the SAT approach to the problem of finding preimages for the
weakened version of MD4 algorithm. Despite the fact that the problem of finding
collisions for MD4 can be effectively solved, the problem of finding preimages
for the full version of this function remains computationally hard. We started
our research in this direction from reviewing the results of [15], where there were
showed that two-round version of MD4 can be easily inverted. In [14] there was
used the SAT approach to find preimages of weakened versions of MD4. Again,
the results of computational experiments from this work are hard to reproduce
due to the use of specialized tools for constructing propositional encodings of
the considered functions. In our experiments we used the propositional encoding
constructed by means of the Transalg system.

The attack on MD4, described in [15] is an iterative procedure, in which
each iteration includes two stages: random selection of some data and calculating
hashed message blocks based on the selected data. Randomly generated data is
actually supposed to fill the contents of some of the hash registers at certain
steps. Thus, the values corresponding to the chaining variable 𝑎, assumed to be
equal to a constant 𝐾 on steps 12, 16, 20, 24. This and similar constraints are
assumed also regarding other chaining variables (in total 12 constraints). The
constant 𝐾 is chosen randomly at each new iteration. Besides 𝐾 at each iteration
the value of chaining variable 𝑏 previous to the calculation of a hash value is
randomly selected (we remind that two-round version of MD4 is considered, i.e.
32 steps of algorithm). Then using the available data the blocks of the hashed
message are calculated. For this purpose the equations for calculating chaining
variables at corresponding steps are used. It is possible that as a result the value
of 𝑏 will not coincide with its randomly selected value. In this case the iteration is
considered unsuccessful. If the corresponding values coincide, then the preimage
for the hash was found.

In [14] there was proposed a SAT-attack on MD4, based on the ideas of [15].
More precisely, in [14] the constant 𝐾 was fixed to be equal to 0. The values of
the variable 𝑏 in steps preceding the calculation of a hash were not fixed. Also,
the authors of [14] rejected one of the conditions from [15]. Thus, in [14] there
were used 11 conditions. The conditions of ‘Dobbertin’ type were added to the
propositional encoding of the MD4 algorithm in the form of unit clauses. The
best result presented in [14] was succesful solving of inversion of 39-step version
of MD4, which took Minisat SAT solver [16] about 8 hours.
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In order to develop the results of [15] and [14] we built a special technique
that makes it possible to add to a propositional encoding various additional
constraints (such as the conditions of ‘Dobbertin’ type), vary it and find the
best ones in the sense of the effectiveness of inversion problem solving. The main
idea of this approach consists in the following. Let 𝐶 be a CNF that encodes
the inversion of some function and 𝑋 be a set of Boolean variables from 𝐶.
Assume that we need to add to 𝐶 new constraints that specify some predicate
over variables from a set �̃�, �̃� ⊆ 𝑋. Let 𝑅(�̃�) be a formula specifying this
predicate. Now let us introduce new Boolean variable 𝑢, 𝑢 /∈ 𝑋. Consider formula
𝐶 ′ = 𝐶 ∧ (¬𝑢∨𝑅(�̃�)). It is clear that the constraint 𝑅(�̃�) will be inactive when
𝑢 = 0. Let us call the variables similar to 𝑢 the switching variables. Varying
values of switching variables it is possible to find a set of additional constraints
that makes it possible to significantly decrease the time required to find the
preimage of the considered hash image. To work with switching variables one
can use various ‘learning’ techniques embedded into state-of-the-art SAT solvers.
In particular it is possible to consider the values of switching variables as the
so-called assumptions [17].

Hereinafter we considered the inversion of MD4 hash image

0xffffffff, 0xffffffff,0xffffffff,0xffffffff.

At the initial stage of our experiments we implemented the search over com-
binations of Dobbertin-like conditions with 𝐾 = 0. Thus we tried all possible
combinations of values of switching variables for 28 steps of the first two rounds
(228 variants in total).

The exhaustive search was performed using ‘Academician Matrosov’ com-
puting cluster of Irkutsk Supercomputer Center SB RAS (in the experiment we
employed 160 cores of Opteron 6276 processors). Each SAT instance produced
by fixing active switching variables had a time limit of 0.005 seconds. In total
the experiment took about 10 minutes. As a result there were synthesized 5
sets of values of switching variables for which the SAT solver managed to find
satisfying assignment within the time limit. Less than 5 % of all SAT instances
were interrupted due to the time limit, and more than 94% turned out to be
UNSATISFIABLE. Among the 5 found sets of values one of the sets exactly
coincided with Dobbertin conditions with 𝐾 = 0. Thus, it can be said that we
managed to synthesize the conditions presented in [15] automatically using the
SAT solver. After this we considered the problem of inversion for 39-step ver-
sion of MD4 using Transalg encodings and state-of-the-art multithreaded SAT
solvers. The best results were shown by the Treengeling solver [5]: on average
to solve one inversion problem for 39-step version of MD4 it took less than 10
minutes of work using one node of ‘Academician Matrosov’ cluster (32 cores). It
is quite surprising that we did not manage to solve inversion problem for 40-step
version of MD4 in reasonable time. We believe that we will manage to do it in
the nearest future thanks to generation of new ‘Dobbertin-like’ conditions. For
this purpose we will employ the SAT-based cryptanalysis techniques presented
in this paper.
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5 Related Works

The idea of applying SAT solving algorithms to cryptanalysis problems was first
suggested, apparently, in [9]. It is usually assumed that the first practical im-
plementation of this idea was performed in [26]. From that moment on the flow
of research in the direction of SAT-based cryptanalysis has been constantly in-
creasing. The first example of successful application of SAT-based cryptanalysis
to the cryptographic functions used in the real world can be found in [28]. In
a number of later works SAT-based cryptanalysis has also been applied quite
successfully. Thus, in [34] the problem of cryptanalysis of the unweakened A5/1
algorithm used to encrypt GSM-traffic was solved using the SAT solvers. In [35]
there were given the complexity estimations of SAT-based cryptanalysis of the
Bivium cipher. These estimations were better than similar ones for other known
methods of cryptanalysis of this cipher. In a recent paper [33] estimations from
[35] have been improved.

For the fist time the method that used differential paths to construct collisions
of cryptographic hash functions was presented in the papers by X. Wang et.al.
[38, 39]. Later there appeared a lot of different works following [38, 39]. Probably
one of the most interesting of them is the differential attack by M. Stevens [36]
that makes it possible to construct single block collisions for the MD5 hash
function.

As we already mentioned, for the first time the problem of finding collisions
for cryptographic hash functions was considered as SAT in [22]. However, real
progress in this direction has been achieved a year later in [28]. The decisive
factor in this direction was the use of SAT encodings of differential paths given
in [38, 39].

In the context of finding collisions of hash functions from the MD family
the main result of the present paper consists in using SAT to find a previously
unknown class of two-block collisions for MD5 where first 10 bytes are zeroes.
Also we described the SAT-based method for generating new differential paths
based on the known ones. Using one of the paths found by this method, we
managed to enumerate MD4 collisions faster than we could do it using the Wang
path.

The nontrivial attack on incomplete version of MD4 was first proposed by
H. Dobbertin in [15], where it was shown that the first two rounds of MD4
are not one-way. In our paper we automatically synthesized SAT equivalents of
Dobbertin constraints by showing that in some sense these constraints are the
best possible ones. For this purpose we used a special parallel SAT solver.

6 Conclusions

In this paper we presented the results of application of SAT-based cryptanaly-
sis to inversion problems of the cryptographic functions MD4 and MD5. With
regards to finding collisions (single-block for MD4 and two-block for MD5) the
effectiveness of proposed methods exceeds that of previous papers. We showed
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that SAT approach is applicable to the construction of differential paths for find-
ing collisions of cryptographic hash functions: we managed to construct a new
differential path for finding MD4 collisions. Also we applied SAT approach to
construct additional constraints that make it possible to improve the effective-
ness of finding preimages of truncated variants of the MD4 hash function. Among
the automatically synthesized constraints there were constructed the constraints
used in [15, 14]. As a concluding remark we would like to note, that SAT-based
cryptanalysis is a rapidly developing area. SAT solvers can be used not only
for cryptanalysis, but also as oracles for solving various auxiliary problems, for
example, to solve nonlinear equations over finite fields in algebraic cryptanalysis
[2]. The evident progress of computing architectures, and especially intensive de-
velopment of parallel computing technologies gives us hope that new results in
SAT-based cryptanalysis, including the problems related to cryptographic hash
functions, would not take long to appear.
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