
Synthetic Data for AUV Technical Vision
Systems Testing

Aleksandr Kamaev1, Sergey Smagin1, Viacheslav Sukhenko2, and
Dmitry Karmanov1

1Computing Center of FEB RAS, Khabarovsk, Russia
2Pacific National University, Khabarovsk, Russia

kamaev_an@mail.ru

Abstract. Development of the autonomous underwater vehicle techni-
cal vision systems is impossible without precise debugging and testing.
Due to the factors described in the paper, such testing in most cases
cannot be implemented with the help of real AUV. Therefore, the us-
age of the procedurally generated virtual testing areas is suggested. The
algorithm for generation and visualization of the seabed 3D model that
is suitable for AUV technical vision systems testing and debugging is
described. This algorithm allows building of high detailed surface of the
seabed, where each part is absolutely unique and does not contain re-
peating texture patterns. Also, software system “AUV Vision Debugger”
that consists of seabed generator and AUV simulator is considered. The
simulator provides interaction between generated seabed, AUV model,
and technical vision system that is currently being tested.

Keywords: AUV, computer vision, procedural, texturing, height map,
tessellation, fractal noise, seabed, simulator.

Introduction

Complexity of the underwater navigation and inability to organize communica-
tion with high capacity data exchange between autonomous underwater vehicle
(AUV) and operator leads to necessity of onboard technical vision systems de-
velopment to improve underwater vehicle autonomy. High reliability and quality
operation in various conditions is required from such systems. Their develop-
ment and further usage is impossible without precise debugging and testing.
Currently testing process organization and testing data obtaining becomes a
serious problem.

At present time, testing areas with markers and targets located on seabed
and specifically equipped pools are used for tasks of testing and debugging. Such
methods are well suited for testing AUV devices and equipment, but they are
not applicable for AUV technical vision systems testing and debugging because
of following reasons.

1. Obtaining data from AUV is a time consuming and expensive process. It
includes not only mission accomplishment itself, but also transportation to

Mathematical and Information Technologies, MIT-2016 — Information technologies

126

testing area and device launching that is unacceptable especially at the early
stages of development.

2. It is not always possible to obtain necessary data for testing from areas with
different types of relief due to geographic reasons.

3. It is impossible to evaluate vision system accuracy while using data from
real testing areas, because there are no other ways to measure seabed with
the required accuracy level (up to cm) on large areas.

4. It is impossible to interfere in the vision system work at any required time.

5. There is a risk to lose the AUV due to technical vision system errors.

To avoid all mentioned problems of real data usage in AUV technical vision sys-
tem testing and debugging processes, it is suggested to replace real experiments
with tests in virtual environment. The software system “AUV Vision Debugger”
that allows holding such tests is considered in the paper.

1 Related Work

Usage of the virtual simulations for tasks related to AUV is an actively devel-
oping research area. Currently a lot of modeling software for different purposes
is developed. The workbench [1] supports 3D visualization and can be applied
for missions planning. The simulator [2] is intended for AUV control systems
developing. The modeling software system [3] is designed to be used for AUV
operators learning. The system [4, 5] allows debugging of different systems and
devices of AUV in virtual environment. Since AUV technical vision systems are
using feature points and their descriptors [6–8], such requirements as high levels
of detail (up to one pixel), absolute uniqueness of all relief parts and absence
of repeated texture patterns are imposed to seabed model. These requirements
make it impossible to use existing modeling software for AUV vision systems
testing and debugging.

Generation and visualization of the seabed 3D model, that has good enough
quality for AUV vision system testing and debugging, is the most complex task.
Despite large number of existing methods for landscape generation [9], they can-
not be directly applied for procedural seabed model synthesis. Methods based
on fractal brushes [10] allow obtaining a landscape of needed form, but they
require long time of artist work. Approaches based on multifractals [11, 12] do
not provide enough control over the result that is necessary for generating the
seabed of required form. Methods based on modeling of the physical process of
landscapes formation [13, 14], do not take in account the specifics of the under-
water relief formation processes. The methods of fractal interpolation [15] require
basic constraints, but they do not solve problem of obtaining such constraints.
Creation of the seabed 3D model that will be suitable for AUV technical vision
system testing and debugging requires complex approaches and combinations of
different generation methods.

Mathematical and Information Technologies, MIT-2016 — Information technologies

127

2 Program System “AUV Vision Debugger”

Structural scheme of the developed program system for AUV technical vision
algorithms testing and debugging – “AUV Vision Debugger” is shown in Fig.
1. This system consists of two programs: seabed 3D model generator and AUV
simulator. The generator is a GUI program that allows building a seabed 3D
model from the set of user defined parameters using approaches described in
section 3. The simulator is a program that simulates AUV dynamic in virtual
environment and allows user to observe all AUV movements by controlling the
view camera. The physical model used by simulator is described in section 4.

Fig. 1. Structural scheme of the program system “AUV Vision Debugger”.

One of the simulator’s capabilities is a selection of the controlling program –
technical vision system combined with control system. The procedure of vision
system testing and debugging may be different for different development stages
and tasks that system must solve. Therefore, specific control system is required
to implement testing of concrete vision system task. “AUV Vision debugger”
does not impose any limitations on organization of technical vision and control
systems and their interaction, and provides universal interface with simulator.

The simulator runs the controlling program and scans its standard output
stream with approximately 50 Hz frequency to detect passed commands. As an
answer to the commands the simulator writes messages to the standard input
stream of the vision system and saves graphical information in the file system if
required.

Commands supported by simulator can be divided into three groups: con-
trol commands, state requests and image requests. Control commands serve to

Mathematical and Information Technologies, MIT-2016 — Information technologies

128

change such states of AUV parts (see section 4.1 for parts description) as posi-
tion, orientation, power and etc. State requests can be used to know informa-
tion about AUV position, orientation and velocity, distances to objects (if AUV
equipped with sonar) and etc. As an answer to state requests, the simulator
passes state information to the standard input stream of AUV technical vision
system. Image requests are necessary for obtaining images with debug informa-
tion from AUV onboard cameras. Images and debug information are not passed
directly through standard input stream, but stored in file system. Instead, a
notification that images are ready to use is passed to the input stream. The de-
bug information contains accurate camera external and internal parameters and
distances from camera to image pixels. Using this information, the controlling
program can evaluate results produced by the technical vision system and make
conclusions about the system’s accuracy.

Thus, “AUV Vision Debugger” provides just a physical and visual model
of environment and AUV. Development of the control system for testing AUV
technical vision algorithms is the user’s responsibility.

3 Generation and Visualization of the Seabed 3D Model

The algorithm that was developed for “AUV Vision Debugger” to generate and
visualize the seabed 3D model has five stages: generation of low frequency relief
map (section 3.1), fractal noise computation to increase level of details (section
3.2), 3D model mesh building (section 3.3), model refinement during visualiza-
tion (section 3.4) and texturing (section 3.5).

3.1 Relief Map

Relief map H = (𝐻𝑖𝑗), 𝑖 = 1, 2, ..., ℎ, 𝑗 = 1, 2, ..., 𝑤, where 𝑤 and ℎ – map’s size,
defines relief height 𝐻𝑖𝑗 in point (𝑗 · 𝑟𝑒𝑠, 𝑖 · 𝑟𝑒𝑠), where 𝑟𝑒𝑠 is map resolution
specified in meters per point (m/p). The maps with 𝑟𝑒𝑠 = 10 m/p and 𝑤, ℎ 6
1000 were used in the “AUV Vision Debugger”. Such maps can describe the
seabed with length up to 10 km that is more than enough for AUV technical
vision algorithms testing and debugging.

The relief map contains such basic seabed elements as coast, shelf, continental
slope, ocean bed, submarine canyons and mountains (Fig. 2a). These elements
are defined by user through setting a few parameters’ values, and they do not
require specific artist knowledge.

Contours of the basic elements are specified with fractal lines and heights
are interpolated, using different interpolation functions, based on distances to
defined contour lines (Fig. 2b).

3.2 Fractal Noise

The relief details that have frequency more than 1/(2𝑟𝑒𝑠) m−1 cannot be rep-
resented by H map. Meanwhile, to provide correct work of technical vision al-
gorithms on distances from seabed that could be reached with onboard light

Mathematical and Information Technologies, MIT-2016 — Information technologies

129

Fig. 2. Relief map: a – basic elements, b – low-frequency model.

equipment, accuracy up to millimeters is required. To improve relief level of de-
tails we will use fractal noise that consists of summed Perlin noise functions,
taken at following frequencies:

f𝑙 = (𝑓𝑙𝑖) =
2𝑖−1

𝑟𝑒𝑠
, fℎ = (𝑓ℎ𝑗) =

2𝑗+𝑛𝑙

𝑟𝑒𝑠

where 𝑖 = 0, 1, ..., 𝑛𝑙, 𝑗 = 0, 1, ..., 𝑛ℎ, 𝑛𝑙 = ⌊log2(2·𝑟𝑒𝑠)⌋, 𝑛ℎ = ⌊log2(𝑝−1
𝑤 2−𝑛𝑙𝑟𝑒𝑠)⌋,

𝑝𝑤 – drawing fragment size (pixel of the screen or AUV camera) in meters. If
fragment size could not be computed, the desired accuracy should be directly
assigned to 𝑝𝑤. Low frequencies f𝑙 will be added to seabed 3D model and high
frequencies fℎ will be utilized during visualization process.

Amplitudes on the same frequencies may be different for different seabed
parts, depending on their slope roughness and some random factor. Let S = (𝑆𝑖𝑗)
be the slope map (Fig. 3a) and R = 𝑅𝑖𝑗 be the roughness map (Fig. 3b), where
𝑖 = 1, 2, ..., ℎ, 𝑗 = 1, 2, ..., 𝑤,

𝑅𝑖𝑗 = min

(︂
1,
𝜎(𝐻𝑖𝑗)

𝜎𝑚𝑎𝑥

)︂
,

𝑆𝑖𝑗 =
2 arccos(𝑛𝑖𝑗,𝑧)

𝜋
,

where 𝜎(𝐻𝑖𝑗) is standard deviation of high frequency part of height map in
9×9 neighborhood (weighted with Gauss function with 𝜎 = 2) of the point 𝐻𝑖𝑗 ,
𝜎𝑚𝑎𝑥 is a normalization factor and n𝑖𝑗 = (𝑛𝑖𝑗,𝑥, 𝑛𝑖𝑗,𝑦, 𝑛𝑖𝑗,𝑧) is a normal to low
frequency part of height map in point 𝐻𝑖𝑗 .

We divide the frequencies range (f𝑙, fℎ) into three groups each of which is
controlled by own basis function 𝜑𝑖(𝑓), 𝑖 = 1, 2, 3, – Fig. 4a. The logarithmic
scale is used on the charts; at this scale functions 𝜑𝑖(𝑓) are piecewise-linear. As
well we introduce functions of roughness and slope influences on the 1st and 2nd
frequency groups:

I𝑅1(𝑟) = 0.45𝑟2 + 0.05, I𝑆1(𝑠) =

{︃
6𝑠2 − 8𝑠3, 𝑠 6 0.5

(8𝑠− 2)(𝑠− 1)2, 𝑠 > 0.5
,

Mathematical and Information Technologies, MIT-2016 — Information technologies

130

Fig. 3. a – slope map S, b – roughness map R.

I𝑅2(𝑟) =
𝑟

2
, I𝑆2(𝑠) =

8

9
max(0, 𝑠− 0.25)2.

Plots of these functions are presented at Fig. 4b, c. We define a united influ-
ence function for 𝑖-th frequency group that unites roughness, slope and random
factors:

𝜓𝑖(x) = max (0,min (1, I𝑅𝑖(R(𝑥1, 𝑥2)) + I𝑆𝑖(S(𝑥1, 𝑥2)) + 𝜆𝑖P𝑖(x))) , (1)

where x = (𝑥1, 𝑥2, 𝑥3) is a space point, 𝑖 = 1, 2, R(𝑥1, 𝑥2) and S(𝑥1, 𝑥2) are the
values obtained from R and S by means of bilinear interpolation, 𝜆 ∈ [0..1] is
user defined coefficient of the random influence on 𝑖-th group,

P𝑖(x) =

4∑︁

𝑗=0

1

2𝑗
P

(︂
2𝑗

𝑟𝑒𝑠
(M𝑖x + T𝑖)

)︂
,

where 𝑖 = 1, 2, 3, P(x) is a Perlin noise function [16], M𝑖 is a random rotation
matrix, and T𝑖 is a random translation vector. The noise amplitude in x point
corresponding to frequency 𝑓

A(x, 𝑓) =
𝛾

𝑓

(︃
2∑︁

𝑖=1

𝜑𝑖(𝑓)𝜓𝑖(x) + 𝜑3(𝑓)

(︂
sin (2𝜋P3(x)) + 1

2

)︂)︃
, (2)

where 𝛾 – coefficient defining general roughness of height differences on all fre-
quencies. Recommended value lies in range 𝛾 ∈ [0.5..1]. Using amplitude (2) we
define noise in x

N(x, 𝑡) =

𝑛𝑡∑︁

𝑖=0

A(x, 𝑓𝑡𝑖)P(𝑓𝑡𝑖x). (3)

3.3 Building of 3D Model

For mesh construction we will use approach [17], but unlike [17], we will build
mesh during generation step on CPU and not at rendering time on GPU. We

Mathematical and Information Technologies, MIT-2016 — Information technologies

131

Fig. 4. a – functions 𝜑𝑖(𝑓), b – functions I𝑅1(𝑟),I𝑅2(𝑟), c – functions I𝑆1(𝑠), I𝑆2(𝑠).

define relief density in point x = (𝑥1, 𝑥2, 𝑥3)

𝜌(x) = 𝑥3 − H(𝑥1, 𝑥2) + N(x, 𝑙), (4)

where value H(𝑥1, 𝑥2) is obtained from H by means of bilinear interpolation.
Surface 𝜌(𝑥) = 0 defines seabed. To obtain 3D model of seabed surface 𝜌(𝑥) = 0
is approximated using marching cubes algorithm [18]. Figure 5 depicts result of
such approximation.

Fig. 5. Seabed 3D model.

Mathematical and Information Technologies, MIT-2016 — Information technologies

132

3.4 Visualization

It is necessary to tessellate mesh during visualization to provide size close to one
pixel for all visible triangles. The most of modern GPUs supported hardware
accelerated tessellation with subdivision by up to 64 parts for each triangle side.
Such subdivision will not be enough for mesh triangles located near the camera.
Therefore, tessellation based on precalculated triangles sets (PTS) is suggested
for these triangles.

Each triangle side could be divided into 2𝑛𝑖 parts, where 𝑖 = 1, 2, 3 is an index
number of triangle side (counterclockwise numeration), and 𝑛𝑖 = 0, 1, ..., 𝑛𝑚𝑎𝑥.
AUV operation distance to seabed and onboard cameras resolution allows to
choose 𝑛𝑚𝑎𝑥 = 9 that leads to 𝑁 = (𝑛𝑚𝑎𝑥 + 1)3 = 1000 of different variants
of tessellation. Let us consider 𝑗-th tessellation set, 𝑗 = 1, 2, ..., 𝑛, that consists
of 𝑁𝑗 triangles. Each triangle of 𝑗-th set is described by three vertices v𝑗𝑘𝑡 =
(𝑣𝑗𝑘𝑡1, 𝑣𝑗𝑘𝑡2), 𝑘 = 1, 2, ..., 𝑁𝑗 , 𝑡 = 1, 2, 3 (counterclockwise numeration). Values
𝑣𝑗𝑘𝑡1 and 𝑣𝑗𝑘𝑡2 are coordinates of 𝑡-th vertex of 𝑘-th triangle of 𝑗-th set, they
defined in the coordinate system with basis vectors represented by 1st and 3rd
sides of 𝑘-th triangle and origin in the intersection point of these sides – Fig. 6a.

Fig. 6. a – PTS-based tessellation, b – invisible blocks clipping.

Using such coordinate system we can draw 𝑗-th tessellation set instead of
some mesh triangle that have coordinates p1, p2,p3, by projecting local 𝑗-th set
coordinates to the global space:

x𝑗𝑘𝑡 = 𝑣𝑗𝑘𝑡1(p2 − p1) + 𝑣𝑗𝑘𝑡2(p3 − p1) + p1. (5)

The fact that tessellation sets store coordinates independent from mesh coor-
dinates allows us to put these sets into video memory once, and then just use
through one function call. The attempt to draw a triangle is replaced by suitable

Mathematical and Information Technologies, MIT-2016 — Information technologies

133

tessellation set drawing under control of vertex shader that computes global ver-
tices coordinates using (5). Coordinates p1, p2, p3 are passed to vertex shader
as uniform parameters. The number of tessellation set 𝑗 is defined based on tri-
angle size and its remoteness from the camera to provide pixel accuracy in the
screen space.

To speed up visualization process the seabed model is divided into rectangu-
lar blocks, so that blocks number and triangles number per block would allow
iterating through them before each frame rendering. Blocks located behind cam-
era’s clipping planes are discarded. For rendering of the triangles located in
blocks that are close to the camera, the PTS-based tessellation is used. If the
block is far enough for using hardware accelerated tessellation only, it renders
by single drawing function call. The process of seabed subdivision is shown in
Fig. 6b.

After tessellation the fractal noise (3) is added to each vertex in the direction
of the interpolated normal n, computed in this vertex:

x̂ = x + n (N(x, ℎ) + 𝜌(x)) ,

where 𝜌(x) is a density function (4). The example of tessellated and amplified
with high frequency noise seabed model is presented in Fig. 7.

Fig. 7. Tessellated seabed 3D model.

3.5 Texturing

Texturing of landscapes, developing for testing AUV technical vision system has
its own specific:

Mathematical and Information Technologies, MIT-2016 — Information technologies

134

1. Only procedural textures could be used, because using of the bitmap images
leads to the appearing of repeated texture patterns that makes impossible
the testing of the algorithms based on feature points [6–8].

2. Complex relief makes impossible calculation of correct 2D texture coordi-
nates, so just 3D textures could be used.

3. Textures should be correctly represented on all scale levels that are used
during testing.

Surface type and, respectively, texture type is defined based on functions 𝜓1(x)
and 𝜓2(x) (1). The sand procedural texture with weight 𝛼 is mixed with the
stone procedural texture with weight 1 − 𝛼, where

𝛼(x) =
∏︁

𝑖=1,2

(1 − smoothstep(𝜓𝑖𝑐 − 𝛿, 𝜓𝑖𝑐 + 𝛿, 𝜓𝑖(x))) .

Smoothstep is a standard GLSL function. Constants 𝜓𝑖𝑐 define boundaries be-
tween relief types and 𝛿 is a transition width. These constants are set during
seabed generation. The Fig. 9 is obtained with 𝜓1𝑐 = 0.2, 𝜓2𝑐 = 0.12 and
𝛿 = max(0.0025, 0.05𝑝𝑤), where 𝑝𝑤 – is a drawing fragment size in meters.

Creation of procedural texture for each type of surface requires individual
approach. Sum of Perlin noise functions or cellular basis [11] is used to create
different unique texture patterns at different scales. When the screen’s pixel size
becomes too large to depict a pattern, this pattern is replaced by its average
color and intensity. A single texture could have up to three different patterns
at different scales. An example of sand and stone textures used in AUV Vision
debugger is presented in Fig. 8.

Fig. 8. Textures at different scale: sand(above) and stone covered with moss (below).

Mathematical and Information Technologies, MIT-2016 — Information technologies

135

4 AUV Simulator

The main tasks of the simulator are visualization of seabed and AUV models,
simulation of AUV dynamics, and computation of interactions with the envi-
ronment. Simulator also provides the possibility to observe the mission process.
“AUV Vision Debugger” was created mainly for testing and debugging of techni-
cal vision system and not for testing AUV control systems and devices, therefore
simplified AUV model (section 4.1), its dynamics (section 4.2) and interactions
with seabed (section 4.3) are used.

4.1 AUV Model

AUV model consists of parts, described in text file of the model. Each part has
its own type: shell, engine, control surface, sonar, floodlight and camera. In the
model description there could be only one shell and arbitrary number of parts
having other type. Let us consider main parameters of different types:

1. Shell is defined by its weight and 3D model in 3DS format. The coordinate
system of the shell is a basis for all other parts.

2. Engine and control surface are defined by their weights, 3D model, trans-
formation matrix, describing position and orientation relative to shell. Di-
rections and ranges of engine and control surface allowable movements and
rotations are also defined. Thrust vector and its magnitude range could be
defined for engine.

3. Sonar, floodlight and camera do not have their own weight and graphic
representation. They defined by position and orientation relative to shell.
Directions and ranges of allowable movements and rotations are also defined.
Light power could be set for floodlight and focus distance, resolution, radial
distortion, and lighting dependent errors could be set for camera.

Apart from mentioned parameters, each part has a name that allows the vision
system to interact with this part.

4.2 AUV Dynamics

From position of dynamics AUV with all its parts is considered as one rigid
body. To calculate its motion Newton–Euler equations are used. The details of
motion computation process based on forces and torques acting on the rigid
body are well described in [19]. The weight of one part (if part has weight) is
uniformly distributed between all the part’s points. The part’s points correspond
to vertices of the part’s 3D model. All relative movement of AUV parts leads to
redistribution of AUV weight and to recalculation of inertia tensor. Forces that
lead to relative movements of parts, as well as forces induced by this movement,
are not counted.

Simulator takes into account following forces: gravity force F𝑔, thrust force
of 𝑖-th engine F𝑡𝑖 ,𝑖 = 1, 2, ..., 𝑛𝑒 , where 𝑛𝑒 is engines number, pressure force F𝑝

Mathematical and Information Technologies, MIT-2016 — Information technologies

136

and hydrodynamic force Fℎ. All forces except F𝑔 induce torques relative AUV
center of mass, that accounted in motion calculation. Let us consider how these
forces act.

Gravity force is applied to AUV center of mass and pointed vertically down
F𝑔 = (0, 0,−𝑚𝑔), where 𝑚 is sum of weight of all parts, and 𝑔 is acceleration
of gravity. Thrust force F𝑡𝑖 is applied to 𝑖-th engine center of mass and directed
along thrust vector, described in AUV text file. If rotation is applied to 𝑖-th
engine then its thrust vector is also undergo this rotation. Magnitude of F𝑡𝑖 is
chosen by vision system from the range defined in model text file.

Forces F𝑝 and Fℎ are calculated for each face of AUV 3D model if this face
has nonzero area 𝑆, external unit normal vector n and located out of the shell.
Forces F𝑝 and Fℎ are applied to geometric center of the face c = (𝑐1, 𝑐2, 𝑐3):

F𝑝 = −𝜌𝑔|𝑐3|𝑆n,

Fℎ = 𝐹ℎ𝑥
−v

|v| + 𝐹ℎ𝑦
n× v × v

|n× v × v| ,

where 𝜌 is a water density, v is velocity of c relative to environment, Fℎ𝑥 and
Fℎ𝑦 are components of Fℎ in direction of v and normal to the v vector direction:

𝐹ℎ𝑥 = |n · v|𝑆 𝜌|v|
2
,

𝐹ℎ𝑦 = 𝑆
𝜌|v|√

2
n · v

√︃
1 −

(︂
n · v

|v|

)︂2

.

Presented forces are sufficient to describe AUV dynamics accurate enough for
technical vision systems testing and debugging.

4.3 Interactions with Seabed

Collision of AUV parts with seabed surface is a very dangerous situation that
should be necessarily prevented by a technical vision system during visual navi-
gation. Therefore, it is very important to detect such situation and to inform the
vision system in the case it occurs. Informing is implemented by passing a mes-
sage to the standard input stream of the vision system. We consider a process
of detecting collision by the simulator and its reaction on this collision.

Collisions are tested on each simulation iteration for parts points. Let us
consider collision detection process for point x. The collision is tested for all
seabed model triangles that are closer to x than one meter. If there are no such
triangles then point x is above the seabed. Let p𝑖 be the vertices of triangle that
is closer to x than one meter, 𝑖 = 1, 2, 3, and n𝑖 be the normals to the model in
these vertices. To detect a collision we should perform following steps:

Step 1: Computing face normal: n = (p2 − p1) × (p3 − p1).
Step 2: Computing intersection points between rays from p𝑖 in directions

n𝑖 and plane (n,−n · x):

p′
𝑖 = p𝑖 +

n · x− n · p𝑖
n · n𝑖

n𝑖.

Mathematical and Information Technologies, MIT-2016 — Information technologies

137

Step 3: If x does not lie inside triangle (p′
1,p

′
2,p

′
3), then no collision detected,

else go to step 4.
Step 4: Finding of interpolated unit normal ñ in x point of triangle (p′

1,p
′
2,p

′
3)

with vertex normals n𝑖, by means of bilinear interpolation.
Step 5: Computing point of triangle (p1,p2,p3), corresponding to x:

x̃ = x +
n · p1 − n · x

n · ñ ñ.

Step 6: Computing of x penetration distance into the seabed surface, using
(3) and (4):

𝑑 = (x̃ + ñ (N(x̃, ℎ) + 𝜌(x̃)) − x) · ñ.
If 𝑑 > 0, then x point is located inside seabed, therefore collision happened.

If value 𝑑 > 0 computed for more than one triangle, maximum value should be
chosen.

If collision of depth 𝑑 for some point x with normal ñ is detected, then
following force is applied to x:

F𝑐 = (𝑘𝑠𝑑− 𝑘𝑑v · ñ)ñ,

where 𝑘𝑠 is an elasticity coefficient, 𝑘𝑑 is a damping coefficient, and v is a velocity
of x point. Application of F𝑐 force prevents AUV penetration into the seabed.

Conclusion

Methods and algorithms, suggested in the paper with developed program system
“AUV Vision Debugger”, allow testing and debugging of AUV technical vision
systems in virtual environment that leads to following advantages:

1. high speed and low cost of testing data acquisition,
2. ability to obtain testing data from different surface types, starting from sand

valleys and ending with rocky canyons,
3. ability to evaluate technical vision accuracy since the investigated seabed

surface is precisely known,
4. ability to interrupt system working exactly at the moment when error occurs,
5. testing result repeatability.

Currently AUV Vision Debugger allows getting high detailed images of seabed,
all parts of which are absolutely unique – Fig. 9. For further researches it is
planned to add a possibility of procedural modeling and visualization of marine
flora and fauna, including dynamically changing objects, to add more procedu-
ral textures and submarine caves network. It is also planned to learn ways of
integrating our work with existing general purpose software modeling systems.

It is evident that using of synthetic tests in “AUV Vision Debugger” does
not allow us to completely abandon the real experiments, but it significantly
reduces their amount. As a result, the time required for AUV technical vision
system development is decreased and reliability is increased.

Mathematical and Information Technologies, MIT-2016 — Information technologies

138

Fig. 9. Example of generated seabed image.

Acknowledgments. This work was supported by Russian Foundation for Basic
Research (grant 16-31-00187 mol a).

References

1. Davis, D.T, Brutzman, D.: The autonomous unmanned vehicle workbench: mission
planning, mission rehearsal, and mission replay tool for physics-based x3d visual-
ization. In: 14th International Symposium on Unmanned Untethered Submersible
Technology (UUST), Autonomous Undersea Systems Institute (AUSI), pp. 21-24.
Durham New Hampshire (2005)

2. Dantas, J.L.D., de Barros, E.A.: A real-time simulator for auv development. ABCM
Symposium Series in Mechatronics vol. 4, 499–508 (2010)

3. Hanychev V.V. Trenazhorniy compleks dlya obuchenia operatorov teleupravlyae-
mykh neobitayemykh podvodnykh apparatov razlichnykh tipov In: 6-th Russian
Conf. Tehnicheskie Problemi Osvoenia Mirovogo Okeana, pp. 50–60, Vladivostok
(2015)

4. Inzartsev, A.V, Sidorenko, A.V., Senin, R.A., Matvienko, V.Y.: Kompleksnoye te-
stirovanie programmnogo kompleksa na base imitacionnogo modeliruyuschevo kom-
pleksa. In: Podvodnie issledovaniya i robototehnika vol. 1(7), 9–14 (2009)

5. Inzartsev, A.V. et al.: Integrirovannaya informatsionno-upravlyayuschaya i mod-
eliruyushcaya sreda dlya avtonomnogo podvodnogo robota. In: 6-th Russian Conf.
Tehnicheskie Problemi Osvoenia Mirovogo Okeana, pp. 129–133, Vladivostok (2015)

6. Herbert, B. et al.: SURF: Speeded Up Robust Features. CVIU, vol. 110, 346–369
(2008)

7. Mikolajczyk, K., Schmid C.: Scale & affine invariant interest point detectors. IJCV
vol. 60, 63–86 (2004)

8. Verma A. et al.: A New Color SIFT Descriptor and Methods for Image Category
Classification. In: IRAST International Congress CACS, pp. 819–822. Singapore
(2010)

Mathematical and Information Technologies, MIT-2016 — Information technologies

139

9. Smelik, R.M., de Kraker K.J., Tutenel. T.: A Survey of Procedural Methods for
Terrain Modelling. In: CASA Workshop on 3D Advanced Media In Gaming And
Simulation (3AMIGAS), pp. 25–34. Amsterdam (2009)

10. Giliam, J.P. de Carpentier, Bidarra, R.: Interactive GPU-based procedural height-
field brushes. In: 4th International Conference on Foundations of Digital Games pp.
55-62. ACM (2009)

11. Ebert, D.S. et al. Texturing and Modeling A Procedural Approach. Morgan Kauf-
mann, Sasn Francisco (2003)

12. Schneider J., Boldte T., Westermann R.: Real-Time Editing, Synthesis, and Ren-
dering of Infinite Landscapes on GPUs In: Conf. on Vision, Modeling, and Visual-
ization, pp. 145–152. Aachen, Germany (2006)

13. Belhadj, F., Audibert, P.: Modeling Landscapes with Ridges and Rivers: bottom
up approach. In: 3rd international conference on Computer graphics and interactive
techniques in Australasia and South East Asia, pp. 447–450. ACM (2005)

14. Genevaux, J.D. et al.: Terrain generation using procedural models based on hy-
drology. ACM Transactions on Graphics (TOG) vol. 32(4), p. 163. (2013)

15. Belhadj, F.: Terrain modeling: a constrained fractal model. In: 5th international
conference on Computer graphics, virtual reality, visualization and interaction in
Africa, pp. 197-204. ACM (2007)

16. Perlin, K.: Improving noise. ACM Transactions on Graphics (TOG) vol. 21(3),
681–682 (2002)

17. Geiss. R.: Generating Complex Procedural Terrains Using the GPU. In: GPU Gems
3, pp. 7-37. Addison-Wesley (2008)

18. Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm. COMPUTER GRAPHICS vol 21(4), 163–169 (1987)

19. Baraff, D.: An Introduction to Physically Based Modeling Rigid Body Simmulation
1 — Unconstrained Rigid Body Dynamics. SIGGRAPH Course Notes (1997)

Mathematical and Information Technologies, MIT-2016 — Information technologies

140

	Table of Contents
	Synthetic data for AUV technical vision systems testing

