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Abstract. Simulation of living systems often requires numerous compu-
tational experiments on the same model for different parameter values.
This paper describes the design of a user-friendly workflow automation
system LiFlow for simulation of living systems, which is capable of con-
ducting such a large series of computational experiments on supercom-
puters. The system provides a convenient interface for preparing input
experimental data, executing the experiments on a supercomputer, and
storing experimental results in a storage system. A distinctive feature of
LiFlow is its simplicity and usability—the system is intended to be used
by researchers in mathematical biology and biophysics without extensive
knowledge in parallel computing. The paper provides examples of the use
of the LiFlow system for simulation of the human heart left ventricle.

Keywords: parallel computing systems, supercomputers, living system
simulation, computational workflow, computational experiment repro-
ducibility.

1 Introduction

Simulation of living systems requires significant computational resources. Such
investigations are certain to be rather time-consuming and, thus, are hard to
be conducted in a reasonable time without parallel computing systems and su-
percomputers. However, the use of parallel computing systems requires a high
degree of qualification in computer science, which many researchers involved in
living systems modeling do not possess or want. Moreover, the data prepara-
tion for computational experiments is routine and time-consuming. The user
needs to copy data to a supercomputer, compile the source code if necessary,
enqueue the jobs with the supercomputer resource manager, and keep track of
their completion. Such routine tasks should be automated.

Living system simulation often demands a large number of computational
experiments on the same model but with varying parameter values. Nowadays,
researchers have to prepare the configuration, input data, and the desired pa-
rameter values, and then separately execute the simulation software for each
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experiment. With the number of required computational experiments increasing
up to hundreds or even thousands, which is typical for living systems simulation,
manual preparation and execution of experiments becomes very labor-intensive
and often nearly impossible. In such a case, scientists often execute only a frac-
tion of the required computational experiments, which negatively affects the
research results, hence the need to automate the execution of series of computa-
tional experiments with varying parameter values.

Another problem that researchers in simulation of living system often face
is non-reproducibility of computational experiments. This problem is directly
related to the large number of computational experiments that scientists have
to carry out in order to obtain meaningful results. Due to pressure for publish-
ing, scientists devote little time to keeping the records of experimental details,
especially in case of hundreds or thousands of experiments. In addition, many
other factors can affect computational results, such as a change in the version
of the compiler or a required library on the supercomputer. Automated record-
ing of experimental details and storage of simulation results can help to ensure
reproducibility of the computational experiments.

We developed LiFlow (Llving system simulation workFLOW), a workflow
system that addresses this need for automation. LiFlow provides the scientists
with a convenient graphical user interface (GIU) that allows to prepare and
execute a series of computational experiments on a parallel computing system
with a single click.

One of the important goals of creating the LiFlow system was to make the
initial learning process of the workflow tool very simple. Otherwise, busy scien-
tists will not invest their time in studying the capabilities of the new system,
and it will be useless.

The LiFlow system is primarily intended for simulation of living systems; we
provide some examples of using LiFlow to simulate the human heart left ventri-
cle. However, LiFlow could also be used in other areas that require conducting
a large number of computational experiments on parallel computing systems.

2 Related Work

To bridge the gap between researchers and software engineers and reduce exper-
iment preparation time, scientific computation workflow systems [1] are being
developed. The most frequently used among them are Taverna, Kepler, and
Triana. Taverna [2] is an open source workflow system particularly focused on
bioinformatic applications and services; it is based on the XScufl language. Ke-
pler [3] is a scientific workflow system that builds on the Ptolemyll system,
which is a visual modeling tool written in Java. Triana [4] is a GUI-based work-
flow system for coordinating and executing a collection of services. All these
tools have some visual interfaces that allow graphical composition of operations.
The systems provide the ability to integrate distributed computing resources,
applications, data sets, and tools for computational experiments. In addition,
the systems hide the complexity of distributed computing systems from users,
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enabling them to describe the workflow graphically. The existing systems for
scientific computing workflows are able to use the computing resources of vari-
ous types (GRID, supercomputers, distributed systems, etc.), data stores (local,
network, cloud), and tools (visualization, statistical processing, etc.); they also
include provenance tracking, either as an integral part or as an optional module.
As a result, such systems are very complicated and difficult to install, maintain,
and use. Their main disadvantage is the fact that creating a new component
can require considerable efforts and a detailed knowledge of the workflow sys-
tem architecture. However, when simplified workflows are sufficient, there is no
need for unwieldy options with a lot of settings. On the contrary, computational
experiments should preferably launch “in one click.”

Another possible solution to the problem is to use an environment that pro-
vides the integration of application software packages with supercomputers. An
example of such system is DiVTB [5], which provides user-friendly graphical in-
terface where parameters of a computational experiment can be specified, and
the experiment can then be executed on a supercomputer. However, such sys-
tems do not provide automation of the tasks that are popular in living systems
modeling—such as launching of a series of computational experiments with the
same model but varying parameter values; also, they do not support metadata
tracking.

To solve the reproducibility problem special software tools can be used. They
provide the ability to automatically capture and store for future use all the
environment of a computational experiment, such as the simulation software, the
input and output data, the hardware and software configuration of the computing
system, etc.

There are two basic methods used by the reproducibility improvement tools.
One method is based on executing experiments in a virtual environment, such
as virtual machines or cloud [6]. After an experiment completes, the snapshot of
the virtual machine is saved together with the simulation software, the output
data, the experimental log, and so on. Furthermore, the snapshot can be made
publicly available; other scientists can use it to reproduce the experiment and
cite in their papers. Unfortunately, this approach is not suitable for parallel
computing systems because virtualization considerably reduces the performance
of such systems. In addition, such approach will require capturing the snapshots
of all nodes in the cluster that were used for running the experiment, which is
not feasible.

The second method is based on capturing the snapshot not of the entire
virtual machine but of the simulation software executable and the output data.
This approach is used in the CDE system (Code, Data, and Environment pack-
aging) [7]. However, a package prepared by the CDE system depends on the
software configuration of the computational system. Although the configuration
of a personal computer or a virtual machine is relatively easy to replicate, it
can be very difficult to adjust the configuration of a parallel computing system.
Most of such systems are shared among a great number of users; only qualified
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administrators can install or configure the software. Hence, such approach is also
not suitable for parallel computing systems.

In order to ensure the reproducibility of computational experiments, we
aimed at integrating LiFlow with Sumatra [8], which is an open source tool
to support reproducible computational research. The Sumatra system [8] aims
to capture the information required to recreate the computational experiment
environment instead of capturing the experimental context itself. Sumatra uses
the source code of the program instead of the binaries, stores the logs of the com-
pilation process, and saves the information about all dependencies and general
operating system configuration. Furthermore, Sumatra provides the ability to
store the output data for future use in a database. In addition, Sumatra allows
to index and search the data about experiments carried out, including addi-
tional information provided by scientists. For example, if experimental data was
published, scientists can add tags with the name of the paper (and, perhaps, ad-
ditional information such as the figure or table with the data) to the experiment
record in the catalog. This allows researchers to quickly find the information re-
quired to reproduce the experiment they are interested in among a large number
of experiment records. Unfortunately, Sumatra lacks a convenient desktop user
interface. Although Sumatra is a standalone project, it can be used as a library
for third-party development and has its own API. LiFlow can use Sumatra for
capturing and storing the information of previously conducted experiments in
the database.

3 LiFlow system

3.1 Workflow

Workflow in the LiFlow system corresponds the one shown in Fig. 1. During
the first stage, researchers prepare the description of the so-called experiment
series, which is a set of experiments with the same model and varying parameter
values. The preparation includes the selection of simulation software that will
implement the required model, generation of the configuration files with the
required parameters, and creation of the input data files for each experiment.
Next, the experiments are launched on a parallel computing system.

Preparing the data Conducting Saving Processing the
for a series of experiments on a > the results » results of the series
experiments supercomputer in the archive of experiments

Fig. 1. LiFlow system workflow

When the experiments are completed, the obtained results are automatically
stored in the archive in a form ready for processing (visualization, statistical
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processing, etc.). Thus, a user is only required to create a description of the
experiment series, all the rest is done automatically. In addition, the user is able
to process the results of experiments from the archive manually using third-party
tools.

3.2 Computational Package

Similarly to the CDE system, LiFlow uses the concept of a computational pack-
age that contains all the information required to execute a series of experiments.
The LiFLow computational package consists of the following components:

— Source code of the simulation software, which can be loaded from a code
repository of a version control system, such as Git.

— Generator of experiment series that describes how to generate the desired
parameter values for the experiment series.

— Initial data and parameters to launch the simulation software.

A distinctive feature of the LiFlow computational package is that it describes
not one experiment but a whole series of experiments. Each experiment in the
series uses the same simulation software but different values of the model param-
eters. The parameter values for every experiment are produced by the generators,
which are a part of the software package that is based on the rules specified by
the user.

3.3 LiFlow Architecture

The LiFlow system consists of the four main components (Fig. 2). The Com-
putational Package Preparation Tool and the Experiment Execution GUI are
installed on the researcher’s personal computer, while the Experiment Execu-
tion Engine and the Parallel Computing System Adapter are deployed to the
parallel computing system.

A user creates a computational package with the help of the Computational
Package Preparation Tool and uses the Experiment Execution GUI to transmit
the package to the desired parallel computing system and run the experiment
series. Experiment Execution Engine on the computational cluster receives the
package, compiles the source code of the simulation software, and executes the
generator of the experiment series to produce a set of input data files for simula-
tion software with various parameter values. Next, the set of computational jobs
is generated with the same simulation software but different input files. The jobs
are queued on the computational cluster using the Parallel Computing System
Adapter, which interacts with the resource manager of the cluster.

Once the job is completed, the results of the experiment are automatically
recorded to the Experiment Archive on the storage system. After all the jobs in
the experiment series are completed, the Experiment Execution Engine sends an
email with the report on the experiments’ execution to the user.

The planned Sumatra module would be able to capture the environment of
the computational experiment and store it in the Experiment Catalog in order
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Fig. 2. LiFlow system architecture

to share the initial data and simulation results among the researchers and to
improve the experiments’ reproducibility.

4 Technical Details

The first stage of the LiFlow system implementation has been currently com-
pleted. The computational package in the implementation is represented by a
directory in a file system that contains the subdirectories with the following
components: the source code of the simulation software, the generator of the
experiment series, the initial data for the generator, and the script for executing
the experiments.

In the current implementation, the generator is a script that creates a series of
experiments by varying the parameters in the configuration file of the simulation
software. The LiFlow system supports two options for specifying the parameter
values:

— The range of the parameter: an initial value, a final value, and an increment.
One record in a configuration file of the generator produces the input data
for several experiments.

— The explicit parameter values declaration. The parameter values must be
specified for each experiment in the series.

The prepared computational package is transferred to the parallel computing
system using the SSH or SF'TP protocols. Next, the source code of the simulation
software is built on the computational cluster. If the build process fails, LiFlow
warns the user and sends back to him the build log file. In the case of a successful
compilation, the system runs the generator of the experiment series to produce
the input data for the experiments.
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Currently, only one version of the Parallel Computing System Adapter is
implemented, which is based on the SLURM Workload Manager [9]. The ex-
periment startup script from the computational package enqueues the generated
tasks for the series of experiments in the SLURM job queue. After the job is
complete, the LiFlow system copies the output data to the Experiment Archive
using the NFS protocol.

The scripts in the LiFlow system are written in Python. The storage of
simulation software source codes is implemented as a Git repository provided by
a third-party service.

LiFlow
LiFlow

Login
Checking directory...
u1234 Directory is Found
All necessary Files exist
Password Uploading Files, please wait...
T — Making binary Files. Please wait...
Making completed
Path Generating the initial data with experiment.py
Performing run.sh. Please, wait...
/home/example/ Tasks are queued. Making cron file...
i Cron task sheduled. Your results will be
E-Mail automatically copied to archive at the end of
u1234@example.com computating
Done
® MM () URFU
Launch

Fig. 3. LiFlow system GUI

Users are provided with a simple graphical interface, which allows one to
execute a series of experiments on a parallel computing system in one click
(Fig. 3). The user needs to select the parallel computing system to perform
the computation, specify the credentials (login and password), the path to the
folder with the computational package, and the email address (for job completion
notifications). When the user clicks the Launch button, the LiFlow system starts
the workflow process. The text output shows the current stage of the process of
setting up the experiment and, if an error occurs, specifies where did it happen.
Fig. 3 demonstrates an example of a successfully submitted experiment. The
LiFlow GUI is also written in Python using the PyQt4 library and is designed
to work both on Windows and Linux.
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A disadvantage of the current LiFlow implementation is the lack of a failover
mechanism. If an error occurs, the experiment will not be repeated. This ap-
proach is chosen because the failure can be caused not only by problems with
hardware or system software, but also, more frequently, by an error in the simu-
lation software or a wrong combination of parameters, for which the computation
cannot be performed. In such a case, restarting the experiment will not lead to
solving the problem, it will only unnecessarily load the computational cluster.
Still, a failure in carrying out one experiment does not lead to termination of
the entire experiment series.

5 Using LiFlow for Heart Simulation

Nowadays, the LiFLow system is integrated with the URAN supercomputer at
the Krasovskii Institute of Mathematics and Mechanics and the computational
cluster of the Ural Federal University. The system had been used on these clusters
to execute several experiments in simulation of human heart left ventricle (LV)
using the LeVen simulation system [10].

The study of the influence of the fiber direction in the LV anatomical model
on the speed and consistency of its electrophysiological activation was performed
using the LiFLow system [11]. A series of 55 experiments was performed, where
two parameters, corresponding to the direction of the fiber course in electrophys-
iological models, were varied.

The same system can be used to reproduce the results of the research manu-
ally conducted before. Two series of experiments were performed in the investi-
gation of the excitation speed of the LV myocardial tissue by using an anatomical
model that allows to change the shape of the ventricle and the direction of the
fiber course in it [12]. In one of the series of experiments, the area of the initial
activation, the fiber direction of the anatomical model, and the ratio of coeffi-
cients in the diffusion tensor of the electrophysiological model were varied. In
total, the work was based on more than 36 experiments with the parameter
values generated by certain rules.

The paper [13] describes the research in the dynamics of the spiral waves in
the LV of the human heart model with different geometry and direction of the
fiber course. In the research, several series of experiments with the anatomy that
approximate normal and pathological anatomy of the LV were carried out. In
each series of experiments, the following parameters were varied: the thickness
of the top, the value of the diffusion tensor, and the place of the initial start-up
wave. In total, the work was based on more than 84 experiments.

6 Discussion

The users of the LiFlow system, researchers in mathematical biology and bio-
physics from the Institute of Immunology and Physiology UrB RAS, provided
a generally positive feedback. Before, they needed approximately 30 minutes to
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manually prepare and run one computational experiment on a parallel comput-
ing system. With the help of the LiFLow system, they could execute a series
of dozens or hundreds of experiments in less than one hour. The users appreci-
ated the convenience of the LiFlow GUI and the ability to obtain the results of
simulation from the storage system. As a result, they do not have to deal with
the Linux operating system on the computational cluster, which is unfamiliar to
them. Overall, LiFlow helped the researchers from the Institute of Immunology
and Physiology UrB RAS to conduct computational experiments more efficiently.

As opposed to the popular scientific computation workflow systems such as
Taverna, Kepler, and Triana, which provide for building large, complex com-
putational workflows, the LiFLow system provides only one simple workflow.
However, this limitation provides an opportunity to make the LiFlow system
extremely easy to use. The complicated computational workflow systems are
especially useful in domains with standardized data formats and tools, such
as bioinformatics (the Taverna system is specifically targeted at bioinformatic
applications). However, adding new components into such workflow systems is
rather difficult. In contrast, the LiFlow system is more suitable for researchers
who write the simulation code by themselves. Unfortunately, due to the beta
version of our project, we will be able to publish the source code later.

7 Conclusion and Future Work

The paper presents the LiFlow computational workflow system intended to au-
tomate the processing of a large number of computational experiments for living
systems simulation on parallel clusters. Distinctive features of LiFlow are the
automatic generation of the input data and parameters for carrying out exper-
iment series. The system has been used for simulation of the human heart left
ventricle. The use of LiFlow can significantly reduce the preparation time of a
series of experiments, as well as make processing of their results more convenient.
Directions for future work include:

— Full integration with the Sumatra tool to ensure the reproducibility of launched
experiments.

— Developing the mechanisms of secure integration of several computational
clusters from different organizations with a single LiFLow instance in order
to share computational resources and simulation results.

— Implementing the Parallel Computing System Adapters for cluster resource
managers other than SLURM, as well as for cloud.

— Creating more advanced and flexible generators of experiment series inte-
grated with GUI.
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