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Abstract. The new partially invariant solution of two-dimential mo-
tions of heated viscous liquid equations is considered. For factor-system
arised the initial boundary value problem is formulated. This problem is
inverse one and describing of common motion of two immiscible liquids in
a plane channel under the action of thermocapillary forces. As Marangoni
number is small (so-called creeping flow) the problem becomes the lin-
ear one. Some a priori estimates are obtained and input data conditions
when solution tends to stationary one are found. In Laplace transforms
the exact solution is obtained as quadratures and some numerical results
of velocities behavior in layers are presented.

Keywords: Thermocapillarity, a priori estimates, conjugate initial-boundary
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1 Introduction

It is well known that in a non-uniformly heated liquid a motion can arise. In some
applications of liquid flows, a joint motion of two or more fluids with surfaces
takes place. If the liquids are not soluble in each other, they form a more or
less visual interfaces. The petroleum-water system is a typical example of this
situation. At the present time modelling of multiphase flows taking into account
different physical and chemical factors is needed for designing of cooling systems
and power plants, in biomedicine, for studying the growth of crystals and films,
in aerospace industry [1-4].

Nowadays, there are exact solutions of the Marangoni convection [5-7]. One
of the first solutions was obtained in [8]. This is the Poiseuille stationary flow
of two immiscible liquids in an inclined channel. As a rule, all such flows were
considered steady and unidirectional. The stability of such flows was investigated
in [9, 10]. As for non-stationary thermocapillary flows, studying of them began
recently [11, 12].

Thermocapillary convection problem for two incompressible liquids separated
by a closed interface in a container was investigated in [13]. Local (in time)
unique solvability of the problem was obtained in Holder classes of functions.
The problem of thermalcapillary 3D motion of a drop was studied in [14]. More-
over, its unique solvability in Holder spaces with a power-like weight at infinity
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was established. Velocity vector field decreases at infinity in the same way as
the initial data and mass forces, the temperature diverges to the constant which
is the limit of the initial temperature at infinity. The present work is devoted
to studying of solutions of a conjugate boundary value problem arising as a re-
sult of linearization of the Navier-Stokes system supplemented with temperature
equation. The description of the 2D creeping joint motion of two viscous heat
conducting fluids in flat layers is also provided here. The motion arises due to
thermocapillary forces imposed along two interfaces, after which the unsteady
Marangoni convection begins. Such kind of convection can dominate in flows
under microgravity conditions or in motions of thin liquid films.

2 Statement of the Problem

The 2D motion of a viscid incompressible heat-conducting liquid in the absence
of mass forces is described by the system of equations

𝑢1𝑡 + 𝑢1𝑢1𝑥 + 𝑢2𝑢1𝑦 +
1

𝜌
𝑝𝑥 = 𝜈(𝑢1𝑥𝑥 + 𝑢1𝑦𝑦), (2.1)

𝑢2𝑡 + 𝑢1𝑢2𝑥 + 𝑢2𝑢2𝑦 +
1

𝜌
𝑝𝑦 = 𝜈(𝑢2𝑥𝑥 + 𝑢2𝑦𝑦), (2.2)

𝑢1𝑥 + 𝑢2𝑦 = 0, (2.3)

𝜃𝑡 + 𝑢1𝜃𝑥 + 𝑢2𝜃𝑦 = 𝜒(𝜃𝑥𝑥 + 𝜃𝑦𝑦). (2.4)

Here 𝑢1(𝑥, 𝑦, 𝑡) and 𝑢2(𝑥, 𝑦, 𝑡) are the components of the velocity vector,
𝑝(𝑥, 𝑦, 𝑡) is the pressure, 𝜃(𝑥, 𝑦, 𝑡) is the temperature, 𝜌 > 0 is the density, 𝜈 > 0
is the kinematic viscosity and 𝜒 > 0 is the thermal conductivity of the liquid.
The quantities 𝜌 > 0, 𝜈 > 0 and 𝜒 > 0 are constant.

The system of equation (2.1)–(2.4) admits a four-dimential Lie subalgebra
𝐺4 = ⟨𝜕𝑥, 𝜕𝑢1 + 𝑡𝜕𝑥, 𝜕𝑝, 𝜕𝜃⟩. Its invariants are 𝑡, 𝑦, 𝑢2 and a partially invariant
solution of rank 2 and defect 3 should be sought for in the form

𝑢1 = 𝑢1(𝑥, 𝑦, 𝑡), 𝑢2 = 𝑣(𝑦, 𝑡), 𝑝 = 𝑝(𝑥, 𝑦, 𝑡), 𝜃 = 𝜃(𝑥, 𝑦, 𝑡).

Inserting the exact form of the solution into the equations (2.1)–(2.3) yields

𝑢1 = 𝑤(𝑦, 𝑡)𝑥+ 𝑔(𝑦, 𝑡), 𝑤 + 𝑣𝑦 = 0,

𝑤𝑡 + 𝑣𝑤𝑦 + 𝑤2 = 𝑓(𝑡) + 𝜈𝑤𝑦𝑦,
1

𝜌
𝑝 = 𝑑(𝑦, 𝑡) − 𝑓(𝑡)𝑥2

2
, (2.5)

𝑑𝑦 = 𝜈𝑣𝑦𝑦 − 𝑣𝑡 − 𝑣𝑣𝑦, 𝑔𝑡 + 𝑣𝑔𝑦 + 𝑤𝑔 = 0

with some function 𝑓(𝑡) that is arbitrary so far.
Regarding the temperature field, we assume that equation (2.4) has the so-

lution of the form
𝜃 = 𝑎(𝑦, 𝑡)𝑥2 +𝑚(𝑦, 𝑡)𝑥+ 𝑏(𝑦, 𝑡). (2.6)
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As we see below, (2.6) is in good accord with conditions on the interface.
The stationary solution of the Navier-Stokes equations in the form (2.5) for

𝑔 = 0 for pure viscous fluid was found for the first time by [15]. It describes the
liquid impingement from infinity on the plane 𝑦 = 0 under the no slip condition
on it. In the paper [16], this solution for the flow between two plates or for the
flow in a cylindrical tube (axisymmetric analogue of solution (2.5)) was applied.

It is known that the temperature dependence of the surface tension coefficient
is the one of the most important factors leading to the dynamic variety of the
interfacial surface. In the papers [17, 18] the stationary solutions in form (2.5),
(2.6) was found at 𝑎(𝑦, 𝑡) ≡ 0, 𝑏 = const for a flat layer with a free boundary
𝑦 = 𝑙 = const and a solid wall 𝑦 = 0. The non-uniqueness of solution depending
on the physical parameters of the problem was revealed. A similar problem in
the case of half space was investigated in [19].

We assume for simplicity that 𝑔(𝑦, 𝑡) ≡ 0, 𝑚(𝑦, 𝑡) ≡ 0. The latter condition
means that the temperature field has an extremum at 𝑥 = 0, more exactly, a
maximum for 𝑎(𝑦, 𝑡) < 0 and a minimum for 𝑎(𝑦, 𝑡) > 0.

Let us apply the solution of the form (2.5), (2.6) to described joint motion
of two immiscible liquids in the flat layer 0 < 𝑦 < ℎ considering that the wall
𝑦 = 0 and 𝑦 = ℎ are solid and the line 𝛤 : 𝑦 = 𝑙(𝑥, 𝑡) is their common interface,
see Fig. 1.

Fig. 1. Geometry of the Marangoni convection problem

Introduction the index 𝑗 = 1, 2 for the liquids and using (2.5) and (2.6), we
come to the conclusion that the unknowns satisfy the equations

𝑤𝑗𝑡 + 𝑣𝑗𝑤𝑗𝑦 + 𝑤2
𝑗 = 𝜈𝑗𝑤𝑗𝑦𝑦 + 𝑓𝑗(𝑡), 𝑤𝑗 + 𝑣𝑗𝑦 = 0, (2.7)

1

𝜌𝑗
𝑝𝑗 = 𝑑𝑗(𝑦, 𝑡) −

𝑓𝑗(𝑡)𝑥
2

2
, 𝑑𝑗𝑦 = 𝜈𝑗𝑣𝑗𝑦𝑦 − 𝑣𝑗𝑡 − 𝑣𝑗𝑣𝑗𝑦, (2.8)

𝑎𝑗𝑡 + 2𝑤𝑗𝑎𝑗 + 𝑣𝑗𝑎𝑗𝑦 = 𝜒𝑗𝑎𝑗𝑦𝑦, 𝑏𝑗𝑡 + 𝑣𝑗𝑏𝑗𝑦 = 𝜒𝑗𝑏𝑗𝑦𝑦 + 2𝜒𝑗𝑎𝑗 (2.9)

in domain 0 < 𝑦 < 𝑙(𝑥, 𝑡) for 𝑗 = 1 and in domain 𝑙(𝑥, 𝑡) < 𝑦 < ℎ for 𝑗 = 2.
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At the interface 𝑦 = 𝑙(𝑥, 𝑡) the conditions hold [1]

𝑤1(𝑙(𝑥, 𝑡), 𝑡) = 𝑤2(𝑙(𝑥, 𝑡), 𝑡), 𝑣1(𝑙(𝑥, 𝑡), 𝑡) = 𝑣2(𝑙(𝑥, 𝑡), 𝑡), (2.10)

𝑙𝑡 + 𝑥𝑤1(𝑙(𝑥, 𝑡), 𝑡)𝑙𝑥 = 𝑣1(𝑙(𝑥, 𝑡), 𝑡), (2.11)

𝑎1(𝑙(𝑥, 𝑡), 𝑡) = 𝑎2(𝑙(𝑥, 𝑡), 𝑡), 𝑘1
𝜕𝑎1
𝜕𝑛

= 𝑘2
𝜕𝑎2
𝜕𝑛

,

𝑏1(𝑙(𝑥, 𝑡), 𝑡) = 𝑏2(𝑙(𝑥, 𝑡), 𝑡), 𝑘1
𝜕𝑏1
𝜕𝑛

= 𝑘2
𝜕𝑏2
𝜕𝑛

,

𝑘1 > 0, 𝑘2 > 0 are the heat conductivity coefficients and n = (1+ 𝑙2𝑥)−1/2(−𝑙𝑥, 1)
is the normal to the line 𝑦 = 𝑙(𝑥, 𝑡).

The dynamic condition for 𝛤 has a vector form [1]

(𝑝1 − 𝑝2)n + 2[𝜇2𝐷(u2) − 𝜇1𝐷(u1)]n = 2𝜎𝐾n + ∇𝛤𝜎, 𝜇𝑗 = 𝜌𝑗𝜈𝑗 . (2.12)

In (2.12) 𝐷(u) is the strain-rate tensor, 𝜎(𝜃1) is the surface tension coefficient,
𝐾 is the mean curvature of the interface, whereas ∇𝛤 = ∇ − n(n · ∇) on the
right-hand side designates the surface gradient. For most of real liquid media
the dependence 𝜎(𝜃1) is approximated well by the linear function

𝜎(𝜃1) = 𝜎0 − 𝜅𝜃1, (2.13)

where 𝜎0 > 0 and 𝜅 > 0. They are assumed constant and determent by
experimental methods. Projecting condition (2.12) to the tangent direction
𝜏 = (1 + 𝑙2𝑥)−1/2(1, 𝑙𝑥), and using (2.13), (2.6) we obtain

𝑙𝑥[𝜇2(𝑣2𝑦 − 𝑤2) − 𝜇1(𝑣1𝑦 − 𝑤1)] +
𝑥

2
(1 − 𝑙2𝑥)(𝜇2𝑤2𝑦 − 𝜇1𝑤1𝑦)

= −𝜅(𝜃1𝑥 + 𝑙𝑥𝜃1𝑦) = −𝜅[2𝑎1𝑥+ 𝑙𝑥(𝑎1𝑦𝑥
2 + 𝑏1𝑦)]. (2.14)

The projection (2.12) to the normal n yields

𝜌1𝑑1 − 𝜌2𝑑2 +
[𝜌2𝑓2(𝑡) − 𝜌1𝑓1(𝑡)]𝑥2

2
+ 2[𝜇2𝐷(u2) − 𝜇1𝐷(u1)]n · n

= [𝜎0 − 𝜅(𝑎1𝑥
2 + 𝑏1)]

𝑙𝑥𝑥
(1 + 𝑙2𝑥)3/2

. (2.15)

The boundary conditions on the solid walls have the form

𝑤1(0, 𝑡) = 0, 𝑣1(0, 𝑡) = 0, 𝑤2(ℎ, 𝑡) = 0, 𝑣2(ℎ, 𝑡) = 0, (2.16)

𝑎1(0, 𝑡) = 𝑎10(𝑡), 𝑎2(ℎ, 𝑡) = 𝑎20(𝑡), (2.17)

𝑏1(0, 𝑡) = 𝑏10(𝑡), 𝑏2(ℎ, 𝑡) = 𝑏20(𝑡), (2.18)

with some given functions 𝑎𝑗0(𝑡) and 𝑏𝑗0(𝑡).
The initial conditions for the velocities are zero because of we study the

properties of the solution of the problem simulating the motion only under the
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action of thermocapillary forces 𝑤𝑗(𝑦, 0) = 0, 𝑣𝑗(𝑦, 0) = 0. Besides, 𝑙(𝑥, 0) =
𝑙0(𝑥), 𝑎𝑗(𝑦, 0) = 𝑎0𝑗 (𝑦), 𝑏𝑗(𝑦, 0) = 𝑏0𝑗 (𝑦).

Note several specific features of the formulated problem. This is a nonlinear
and inverse one since the functions 𝑓𝑗(𝑡) are unknowns also. It is easy to under-
stand if we exclude the functions 𝑣𝑗(𝑦, 𝑡) from the equations of mass conservation.
Then the problem reduces to the conjugate problem for the functions 𝑤𝑗(𝑦, 𝑡),
𝑎𝑗(𝑦, 𝑡) and 𝑙(𝑥, 𝑡). The problem for 𝑏𝑗(𝑦, 𝑡) given 𝑣𝑗(𝑦, 𝑡) and 𝑎𝑗(𝑦, 𝑡) can be sep-
arated. The functions 𝑑𝑗(𝑦, 𝑡) can be recovered by quadrature from the second
equation (2.8) up to a function of time. The last condition in (2.10) and the
fourth from (2.16) are the additional conditions on 𝑓𝑗(𝑡), 𝑗 = 1, 2.

Let us introduce the characteristic scales of length and time as well as func-
tions 𝑤𝑗 , 𝑣𝑗 , 𝑎𝑗 , 𝑑𝑗 and 𝑓𝑗 , namely, the quantities 𝑙0, 𝑙02/𝜈1, 𝜅𝑎0𝑙0/𝜇1, 𝜅𝑎0𝑙02/𝜇1,
𝑎0, 𝜅𝑎0𝑙0/𝜌1, 𝜅𝑎0/(𝜌1𝑙

0), where 𝑙0 = const > 0 is the average value of thickness
of the first layer of the liquid at 𝑡 = 0, 𝑎0 = max

𝑡>0
|𝑎20(𝑡) − 𝑎10(𝑡)| > 0, or

𝑎0 = max
𝑗

max
𝑦

|𝑎𝑗0(𝑦)| > 0, if 𝑎20(𝑡) = 𝑎10(𝑡). In the dimensionless variables,

some factor appears at the nonlinear terms in (2.7), the Marangoni number

M = 𝜅𝑎0𝑙03/(𝜇1𝜈1). (2.19)

The same applies to the kinematic condition (2.11)

�̄�𝑡 + �̄�M�̄�(�̄�(�̄�, 𝑡), 𝑡)�̄��̄� = M𝑣1(�̄�(�̄�, 𝑡), 𝑡). (2.20)

Assume that the M ≪ 1. The latter holds either in the thin layers or large
viscosities. Then the nonlinear terms in the equations can be neglected and the
latter become linear. In particular, the kinematic condition (2.20) has the form
�̄�𝑡 = 0, i.e. �̄� = �̄�(𝑥). Let us turn to (2.15). After transition to the dimensionless
variables on the right-hand side the Weber number We = 𝜎0/(𝜅𝑎0𝑙02) appears
instead of 𝜎0. In the real conditions We ≫ 1 for the most of liquid media; for
example, for the water–air system We ∼ 106.

Therefore, for these Weber numbers, (2.14) assume the form �̄��̄��̄� = 0, i.e.
�̄� = 𝛼𝑥+ 𝑙0. We assume later that 𝛼 = 0 and the interface is the plane 𝑦 = 𝑙0 < ℎ
parallel to the solid walls 𝑦 = 0 and 𝑦 = ℎ; in what follows, the index 0 for 𝑙0

will be omitted.

3 A priori Estimates

Let us present the so-obtained linear problem in its entirely in dimensional form

𝑤𝑗𝑡 = 𝜈𝑗𝑤𝑗𝑦𝑦 + 𝑓𝑗(𝑡), (3.1)

𝑤𝑗(𝑦, 0) = 0, (3.2)

𝑤1(0, 𝑡) = 0, 𝑤2(ℎ, 𝑡) = 0, (3.3)

𝑤1(𝑙, 𝑡) = 𝑤2(𝑙, 𝑡), (3.4)
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𝜇2𝑤2𝑦(𝑙, 𝑡) − 𝜇1𝑤1𝑦(𝑙, 𝑡) = −2𝜅𝑎1(𝑙, 𝑡), (3.5)

𝑙∫︁

0

𝑤1(𝑧, 𝑡) 𝑑𝑧 = 0,

ℎ∫︁

𝑙

𝑤2(𝑧, 𝑡) 𝑑𝑧 = 0, (3.6)

where 0 < 𝑦 < 𝑙 for 𝑗 = 1 and 𝑙 < 𝑦 < ℎ for 𝑗 = 2. The first equality in (3.6)
follows from (2.10) whereas the last in the no-slip condition 𝑣2(ℎ, 𝑡) = 0.

Let us write the problem for the functions 𝑎𝑗(𝑦, 𝑡)

𝑎𝑗𝑡 = 𝜒𝑗𝑎𝑗𝑦𝑦, (3.7)

𝑎𝑗(𝑦, 0) = 𝑎0𝑗 (𝑦), (3.8)

𝑎1(0, 𝑡) = 𝑎10(𝑡), 𝑎2(ℎ, 𝑡) = 𝑎20(𝑡), (3.9)

𝑎1(𝑙, 𝑡) = 𝑎2(𝑙, 𝑡), 𝑘1𝑎1𝑦(𝑙, 𝑡) = 𝑘2𝑎2𝑦(𝑙, 𝑡). (3.10)

In order to obtain a priori estimates for 𝑤𝑗(𝑦, 𝑡), 𝑓𝑗(𝑡) of the solution of
(3.1)–(3.5), it is necessary firstly to infer the estimates for the solutions of initial-
boundary value problem (3.7)–(3.10). We perform the change of variables

𝑎1(𝑦, 𝑡) = �̄�1(𝑦, 𝑡) +
𝑎10(𝑡)(𝑦 − 𝑙)2

𝑙2
, 0 6 𝑦 6 𝑙0 ≡ 𝑙,

𝑎2(𝑦, 𝑡) = �̄�2(𝑦, 𝑡) +
𝑎20(𝑡)(𝑦 − 𝑙)2

(ℎ− 𝑙)2
, 𝑙 6 𝑦 6 ℎ.

(3.11)

The functions �̄�𝑗(𝑦, 𝑡) in their domains satisfy the equations

�̄�1𝑡 = 𝜒1�̄�1𝑦𝑦 +
2𝜒1𝑎10(𝑡)

𝑙2
− 𝑎′10(𝑡)(𝑦 − 𝑙)2

𝑙2
≡ 𝜒1�̄�1𝑦𝑦 + 𝑔1(𝑦, 𝑡), (3.12)

�̄�2𝑡 = 𝜒2�̄�2𝑦𝑦 +
2𝜒2𝑎20(𝑡)

(ℎ− 𝑙)2
− 𝑎′20(𝑡)(𝑦 − 𝑙)2

(ℎ− 𝑙)2
≡ 𝜒2�̄�2𝑦𝑦 + 𝑔2(𝑦, 𝑡), (3.13)

where the prime denotes differentiation with respect to time. Boundary condi-
tions (3.9) for �̄�1 and �̄�2 become homogeneous, whereas (3.10) preserve it form.
Initial conditions (3.8) for �̄�1 and �̄�2 change

�̄�1(𝑦, 0) = 𝑎01(𝑦) − 𝑎10(0)(𝑦 − 𝑙)2

𝑙2
≡ �̄�01(𝑦),

�̄�2(𝑦, 0) = 𝑎02(𝑦) − 𝑎20(0)(𝑦 − 𝑙)2

𝑙2
≡ �̄�02(𝑦).

(3.14)

Let us multiply (3.1), (3.2) by 𝜌1𝑐1�̄�1 and 𝜌2𝑐2�̄�2 𝑐1, 𝑐2 and integrate over
the segments [0, 𝑙], [𝑙, ℎ] taking into account (3.8) and (3.9). Then add up the
result. We infer that

𝑑𝐴(𝑡)

𝑑𝑡
+ 𝑘1

𝑙∫︁

0

�̄�21𝑦 𝑑𝑦 + 𝑘2

ℎ∫︁

𝑙

�̄�22𝑦 𝑑𝑦 = 𝜌1𝑐1

𝑙∫︁

0

𝑔1�̄�1 𝑑𝑦 + 𝜌2𝑐2

ℎ∫︁

𝑙

𝑔2�̄�2 𝑑𝑦, (3.15)
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𝐴(𝑡) =
𝜌1𝑐1

2

𝑙∫︁

0

�̄�21 𝑑𝑦 +
𝜌2𝑐2

2

ℎ∫︁

𝑙

�̄�22 𝑑𝑦, (3.16)

where 𝑐𝑗 are the coefficients of the specific heat capacity. Along with (3.15) there
is another identity

𝜌1𝑐1

𝑙∫︁

0

�̄�21𝑡 𝑑𝑦 + 𝜌2𝑐2

ℎ∫︁

𝑙

�̄�22𝑡 𝑑𝑦 +
1

2

𝜕

𝜕𝑡

[︂
𝑘1

𝑙∫︁

0

�̄�21𝑦 𝑑𝑦 + 𝑘2

ℎ∫︁

𝑙

�̄�22𝑦 𝑑𝑦

]︂

= 𝜌1𝑐1

𝑙∫︁

0

𝑔1�̄�1𝑡 𝑑𝑦 + 𝜌2𝑐2

ℎ∫︁

𝑙

𝑔2�̄�2𝑡 𝑑𝑦. (3.17)

From (3.15) and (3.17) we obtain the inform estimates in 𝑦

|𝑎𝑗(𝑦, 𝑡)| 6
(︂

8𝜒𝑗
𝑘2𝑗

𝐹 (𝑡)𝐴(𝑡)

)︂1/4

+ |𝑎𝑗0(𝑡)|, (3.18)

where

𝐹 (𝑡) = 𝑘1

𝑙∫︁

0

�̄�210(𝑦) 𝑑𝑦+𝑘2

ℎ∫︁

𝑙

�̄�220(𝑦) 𝑑𝑦+
2𝑘1
𝜒1

[︂
4𝜒1

𝑙3

𝑡∫︁

0

𝑎210(𝜏) 𝑑𝜏+
𝑙

5

𝑡∫︁

0

(𝑎′10(𝜏))2 𝑑𝜏

]︂

+
2𝑘2
𝜒2

[︂
4𝜒2

(ℎ− 𝑙)3

𝑡∫︁

0

𝑎220(𝜏) 𝑑𝜏 +
ℎ− 𝑙

5

𝑡∫︁

0

(𝑎′20(𝜏))2 𝑑𝜏

]︂
≡ 𝐹 (𝑡), (3.19)

𝐴(𝑡)6𝑒−2𝛿𝑡

[︂√︀
𝐴(0) +

√︃
𝑘1
𝜒1

(︂
2𝜒1√
𝑙3

𝑡∫︁

0

𝑒𝛿𝜏 |𝑎10(𝜏)| 𝑑𝜏 +

√︂
𝑙

5

𝑡∫︁

0

𝑒𝛿𝜏 |𝑎′10(𝜏)| 𝑑𝜏
)︂

+

√︃
𝑘2
𝜒2

(︂
2𝜒2√︀

(ℎ− 𝑙)3

𝑡∫︁

0

𝑒𝛿𝜏 |𝑎20(𝜏)| 𝑑𝜏 +

√︂
ℎ− 𝑙

5

𝑡∫︁

0

𝑒𝛿𝜏 |𝑎′20(𝜏)| 𝑑𝜏
)︂]︂2

. (3.20)

As to functions 𝑤𝑗(𝑦, 𝑡), 𝑓𝑗(𝑡) the following estimates hold

|𝑤1(𝑦, 𝑡)| 6 2

[︂
𝐸(𝑡)

𝜈1

(︂
𝐹 (𝑡) +

4𝜅2𝑙𝑎21(𝑙, 𝑡)

5𝜇1

)︂]︂1/4
, (3.21)

|𝑤2(𝑦, 𝑡)| 6
(︂

8

𝜈2
𝐸(𝑡)𝐹2(𝑡)

)︂1/4

, (3.22)

|𝑓1(𝑡)| 6 2

[︂
𝐸1(𝑡)

𝜈1

(︂
𝐹3(𝑡) +

4𝜅2𝑙(𝑎′1(𝑙, 𝑡))2

5𝜇1

)︂]︂1/4
+

12𝜈1
𝑙2

(︂
8𝐸(𝑡)

𝜈1
𝐹2(𝑡)

)︂1/4

,
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|𝑓2(𝑡)| 6
(︂

8𝐸1(𝑡)

𝜈2
𝐹3(𝑡)

)︂1/4

+
12𝜈2

(ℎ− 𝑙)2

(︂
8𝐸(𝑡)

𝜈2
𝐹2(𝑡)

)︂1/4

, (3.23)

where

𝐸(𝑡) 6 𝑒−4𝛿1𝑡

𝑡∫︁

0

𝐻(𝜏)𝑒4𝛿1𝜏 𝑑𝜏, (3.24)

𝐻(𝑡) =
2𝜅

𝜀

[︂(︂
8𝜒1

𝑘21
𝐹 (𝑡)𝐴(𝑡)

)︂1/2

+ 𝑎210(𝑡)

]︂
. (3.25)

The functions 𝐸1(𝑡), 𝐹1(𝑡), 𝐹2(𝑡) and 𝐹3(𝑡) have the same structures as 𝐸(𝑡),
𝐹 (𝑡).

4 Stationary Flow

The problem (3.1)–(3.10) has the stationary solution 𝑤𝑠𝑗 (𝑦), 𝑎𝑠𝑗(𝑦), 𝑓𝑠𝑗

𝑤𝑠1(𝑦) =
𝜅(1 − 𝛾)𝐴ℎ(3𝑦2/ℎ2 − 2𝛾𝑦/ℎ)

2𝛾𝜇2[𝛾 + 𝜇(1 − 𝛾)]
,

𝑤𝑠2(𝑦) =
𝜅𝛾𝐴ℎ(3𝑦2/ℎ2 − 2(2 + 𝛾)𝑦/ℎ+ 1 + 2𝛾)

2(1 − 𝛾)𝜇2[𝛾 + 𝜇(1 − 𝛾)]
,

𝑎𝑠1 =
(𝑎𝑠20 − 𝑎𝑠10)

[𝛾 + 𝑘(1 − 𝛾)]

𝑦

ℎ
+ 𝑎10, (4.1)

𝑎𝑠2 =
1

𝛾 + 𝑘(1 − 𝛾)

[︁
𝑘(𝑎𝑠20 − 𝑎𝑠10)

𝑦

ℎ
+ 𝑘𝑎𝑠10 + 𝛾(1 − 𝑘)𝑎𝑠20

]︁
,

𝑓𝑠1 = − 3𝜅𝜈(1 − 𝛾)𝐴

𝛾ℎ𝜌2[𝛾 + 𝜇(1 − 𝛾)]
, 𝑓𝑠2 = − 3𝜅𝛾𝐴

(1 − 𝛾)ℎ𝜌2[𝛾 + 𝜇(1 − 𝛾)]
,

𝑎𝑠1(0) = 𝑎𝑠10, 𝑎𝑠2(ℎ) = 𝑎𝑠20, 𝑘 = 𝑘1/𝑘2, 𝜈 = 𝜈1/𝜈2, 𝛾 = 𝑙/ℎ < 1, 𝜇 = 𝜇1/𝜇2,

𝐴 =
(𝑎𝑠20 − 𝑎𝑠10)𝛾

𝛾 + 𝑘(1 − 𝛾)
; (4.2)

𝑣𝑠1(𝑦) = − 𝜅(1 − 𝛾)𝐴ℎ

2𝛾𝜇2[𝛾 + 𝜇(1 − 𝛾)]

(︂
𝑦3

ℎ3
− 𝛾𝑦2

ℎ2

)︂
,

𝑣𝑠2(𝑦) = − 𝜅𝛾𝐴ℎ2

2(1 − 𝛾)𝜇2[𝛾 + 𝜇(1 − 𝛾)]

[︂(︂
𝑦3

ℎ3
− 𝛾3

)︂

−(2 + 𝛾)

(︂
𝑦2

ℎ2
− 𝛾2

)︂
+ (1 + 2𝛾)

(︂
𝑦

ℎ
− 𝛾

)︂]︂
.

(4.3)

Introducing the differences

𝑁𝑗(𝑦, 𝑡) = 𝑎𝑠𝑗(𝑦) − 𝑎𝑗(𝑦, 𝑡), 𝑀𝑗(𝑦, 𝑡) = 𝑤𝑠𝑗 (𝑦) − 𝑤𝑗(𝑦, 𝑡) (4.4)
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and carrying out the calculations analogous to those in Section 2, we can prove
that the solution of the nonstationary problem reaches the steady regime 𝑤𝑠𝑗 (𝑦),
𝑎𝑠𝑗(𝑦) and 𝑓𝑠𝑗 under the conditions of convergence of the integrals

∞∫︁

0

𝑒𝛿𝜏 |𝑎𝑠𝑗0 − 𝑎𝑗0(𝜏)| 𝑑𝜏,
∞∫︁

0

𝑒𝛿𝜏 |𝑎′𝑗0(𝜏)| 𝑑𝜏,
∞∫︁

0

𝑒𝛿𝜏 |𝑎′′𝑗0(𝜏)| 𝑑𝜏. (4.5)

More exactly, ‖𝑤𝑗(𝑦, 𝑡) − 𝑤𝑠𝑗 (𝑦)‖ 6 𝑑𝑗𝑒
−𝛿1𝑡, ‖𝑎𝑗(𝑦, 𝑡) − 𝑎𝑠𝑗(𝑦)‖ 6 𝑙𝑗𝑒

−𝛿2𝑡,
‖𝑓𝑗(𝑡) − 𝑓𝑠𝑗 ‖ 6 𝑁𝑒−𝛿3𝑡 with the positive constant 𝑑𝑗 , 𝑙𝑗 , 𝑁 , 𝛿1, 𝛿2, 𝛿3 depending
on physical parameters of liquid and layers thicknesses.

5 Nonstationary Motion and Numerical Results

To describe the nonstationary motion of two viscous thermally conducting liquids
the Laplace transform will be applied to problem (3.1)–(3.10). As a result we
come to boundary value problem for images �̂�𝑗(𝑦, 𝑝) of functions 𝑎𝑗(𝑦, 𝑡)

�̂�𝑦𝑦 −
𝑝�̂�

𝜒𝑗
= −

𝑎0𝑗 (𝑦)

𝜒𝑗
, (5.1)

�̂�1(0, 𝑝) = �̂�10(𝑝), �̂�2(ℎ, 𝑝) = �̂�20(𝑝), (5.2)

�̂�1(𝑙, 𝑝) = �̂�2(𝑙, 𝑝), 𝑘1�̂�1𝑦(𝑙, 𝑝) = 𝑘2�̂�2𝑦(𝑙, 𝑝), (5.3)

and images �̂�𝑗(𝑦, 𝑝) and 𝑓𝑗(𝑝) of functions 𝑤𝑗(𝑦, 𝑡), 𝑓𝑗(𝑡)

�̂�𝑗𝑦𝑦 −
𝑝

𝜈𝑗
�̂�𝑗 = −𝑓𝑗(𝑝)

𝜈𝑗
, (5.4)

�̂�1(0, 𝑝) = 0, �̂�2(ℎ, 𝑡) = 0, (5.5)

�̂�1(𝑙, 𝑝) = �̂�2(𝑙, 𝑝), (5.6)

𝜇2�̂�2𝑦(𝑙, 𝑝) − 𝜇1�̂�1𝑦(𝑙, 𝑝) = −2𝜅�̂�1(𝑙, 𝑝), (5.7)

𝑙∫︁

0

�̂�1(𝑦, 𝑝) 𝑑𝑦 = 0,

ℎ∫︁

𝑙

�̂�2(𝑦, 𝑝) 𝑑𝑦 = 0. (5.8)

In condition (5.2) and equation (5.4) �̂�𝑗0(𝑝), 𝑓𝑗(𝑝) are images of functions
𝑎𝑗0(𝑡), 𝑓𝑗(𝑡) respectively. The solutions of problem (5.1)–(5.8) can be written as

�̂�𝑗(𝑦, 𝑝) = 𝐶1
𝑗 sh

√︂
𝑝

𝜒𝑗
𝑦+𝐶2

𝑗 ch

√︂
𝑝

𝜒𝑗
𝑦− 1

√
𝑝𝜒𝑗

𝑦∫︁

𝑦𝑗

𝑎0𝑗 (𝑧) sh

√︂
𝑝

𝜒𝑗
(𝑦−𝑧) 𝑑𝑧, (5.9)

�̂�𝑗(𝑦, 𝑝) = −2𝜅�̂�1(𝑙, 𝑝)

[︂
𝐷1
𝑗 sh

√︂
𝑝

𝜈𝑗
𝑦 +𝐷2

𝑗 ch

√︂
𝑝

𝜈𝑗
𝑦 +

𝐿𝑗(𝑝)

𝑝

]︂
, (5.10)
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where 𝑓𝑗(𝑝) = −2𝜅�̂�1(𝑙, 𝑝)𝐿𝑗(𝑝).

The values 𝐶1
𝑗 , 𝐶2

𝑗 , 𝐷1
𝑗 , 𝐷

2
𝑗 and 𝑓𝑗(𝑝) determined from the boundary condi-

tions (5.2), (5.3), (5.5)–(5.8). Due to the cumbersome the type of these values is
not given here.

Let us assume that lim
𝑡→∞

𝑎𝑗0(𝑡) = 𝑎𝑠𝑗0, 𝑗 = 1, 2, using the formulas (5.9), (5.10)

and presenting for the values 𝐶1
𝑗 , 𝐶2

𝑗 , 𝐷1
𝑗 , 𝐷

2
𝑗 and 𝑓𝑗(𝑝) we can prove the limit

equalities
lim
𝑡→∞

𝑎𝑗(𝑦, 𝑡) = 𝑎𝑠𝑗(𝑦), lim
𝑡→∞

𝑤𝑗(𝑦, 𝑡) = 𝑤𝑠𝑗 (𝑦),

lim
𝑡→∞

𝑓𝑗(𝑡) = 𝑓𝑠𝑗 ,

where 𝑎𝑠𝑗(𝑦), 𝑤𝑠𝑗 (𝑦), 𝑓𝑠𝑗 are determined by formulas (4.1), (4.2).
Let us apply the numerical method of inversion of Laplace transformation

to obtained formulas (5.9), (5.10). The graphs only for the velocities are given
because the have a real physical meanings. All numerical calculations were made
for the system of liquid silicon–water. Thickness of the layers is the same and
equal to 1 mm. The corresponding values of the defining parameters are given
in Table 1.

Table 1. Physical properties of liquids

Item liquid silicon water

𝜌, kg/m3 956 998

𝜈 × 10−6, m2/s 10.2 1.004

𝑘, kg ·m/s3 ·K 0.133 0.597

𝜒× 10−6, m2/s 0.0675 0.143

æ× 10−5, kg/s2 ·K 6.4 15.14

Figure 2–5 show the profiles of the dimensionless functions
�̄�𝑗(𝜉, 𝜏) = 𝑤𝑗(𝑦, 𝑡)𝜇2/(𝜅𝐴) (𝜉 = 𝑦/𝑙, 𝜏 = 𝜈1𝑡/𝑙

2 are the dimensional variables)
and transverse velocity 𝑣𝑗(𝜉, 𝜏) = 𝑣𝑗(𝑦, 𝑡)𝜇2/(𝜅𝐴ℎ) with 𝑎20(𝑡) = 0. In particu-
lar, the functions �̄�𝑗 are negative, so reverse flows arise here. Figure 2, 3 show
the results of calculations when 𝑎10(𝜏) = sin 𝜏 , 𝑎20(𝜏) = 0. That is the limit of
𝑎10(𝜏) at 𝜏 → ∞ does not exist and the velocity field does not converge to a
stationary one.

Figure 4, 5 show an evolution of the convergence of functions �̄�𝑗 and trans-
verse velocities 𝑣𝑗 to stationary regime for the case 𝑎10(𝜏) = 1 + 𝑒−𝜏 cos(10𝜏),
𝑎20(𝜏) = 0. These results are good agreement with the a priori estimates were
obtained in Section 4.
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0.08

ξ

w̄

Fig. 2. Evolution of functions �̄�𝑗 for 𝑎10(𝜏) = sin 𝜏 . Total line is the stationary profiles,
−− – 𝜏 = 4, − · − – 𝜏 = 5, · · · – 𝜏 = 7
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−0.02

−0.01
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v̄

Fig. 3. Evolution of functions 𝑣𝑗 for 𝑎10(𝜏) = sin 𝜏 . Total line is the stationary profiles,
−− – 𝜏 = 3, − · − – 𝜏 = 6, · · · – 𝜏 = 8

0 0.5 1 1.5 2
−0.04

0

0.04

0.08

ξ

w̄

Fig. 4. Evolution of functions �̄�𝑗 for 𝑎10(𝜏) = 1 + 𝑒−𝜏 cos(10𝜏). Total line is the
stationary profiles, −− – 𝜏 = 1, · · · – 𝜏 = 4
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Fig. 5. Evolution of functions 𝑣𝑗 for 𝑎10(𝜏) = 1 + 𝑒−𝜏 cos(10𝜏). Total line is the sta-
tionary profiles, −− – 𝜏 = 1, − · − – 𝜏 = 4, · · · – 𝜏 = 2

6 Conclusion

The two-dimensional horizontal layer is a matter of great importance in connec-
tion with the theory of convective stability applications in the design of cooling
systems, in studying the growth of crystals and films, or in the aerospace in-
dustry. We have presented a theoretical and numerical study of a creeping flow
of two immiscible viscous heat conducting liquids in thin layers. The flow arises
due to heat exchange with the localized parabolic heating of the borders and
through the thermocapillary forces on the interface. The following results are
obtained: (1) the exact solution describing the stationary thermocapillary con-
vective flow is found; (2) a priori estimates of the initial boundary value problem
are established and sufficient conditions on input data when solution tends to
stationary one are obtained; (3) the solution of the non-stationary problem in
the form of final analytical formulas in the Laplace representation is found and
some numerical results of velocities behaviour in layers are presented.

Acknowledgments. This research was supported by the Russian Foundation
for Basic Research (14-01-00067).

References

1. Andreev V. K., Zahvataev V. E., Ryabitskii E. A.: Thermocapillary Instability.
Nauka. Sibirskoe otdelenie. Novosibirsk (2000)

2. Nepomnyashii A., Simanovskii I., Legros J.-C.: Interfacial Convection in Multilayer
System. Springer. New-York (2006)

3. Narayanan R., Schwabe D.: Interfacial Fluid Gynamics and Transport Processes.
Springer-Verlag. Berlin. Heidelberg. New-York (2003)

4. Zeytovnian R. Kh.: Convection in Fluids. Springer. Dordrecht. Heidelberg. London.
New-York (2009)

Mathematical and Information Technologies, MIT-2016 — Mathematical modeling

269



5. Andreev V. K.: The Birikh Solution of Convection Equations and it Some General-
ization. Preprint 1–10. Institute of Computational Modelling SB RAS. Krasnoyarsk
(2010)

6. Andreev V. K., Kaptsov O. V., Pukhnachov V. V., Radionov A. A.: Applications
of Group-Theoretical Methods in Hydrodynamics. Kluwer Academic Publisher.
Dordnrcht-Boston-London (1998)

7. Andreev V. K., Gaponenko Y. A., Goncharova O. N., Pukhnachov V. V.: Math-
ematical Models of Convection. Walter de Gruyter GmbH and Co. KG. Berlin-
Boston (2012)

8. Napolitano L. G.: Plane Marangoni-Poiseuille flow two immiscible fluids. Acta
Astronautica. Vol. 7. No. 4-5. 461-478 (1980)

9. Andreev V. K., Bekezhanova V. B.: Stability of Non-isothermal Fluids. Siberian
Federal University (2010)

10. Andreev V. K. On a conjugate initial boundary value problem. Diff. eq. No. 5. 17
(2008)

11. Andreev V. K., Bekezhanova V.B.: Stability of Non-isothermal Fluids (Review).
Jour. Appl. Mech. and Tech. Phys. Vol. 54. No. 2. 171-184 (2013)

12. Andreev V. K., Lemeshkova E.N.: Evolution of the thermocapillary motion of three
liquids in a plane layer. Appl. Math. and Mech. Vol. 78. No. 4. 485-492 (2014)

13. Denisova I. V.: On the problem of thermocapillary convection for two incompress-
ible fluids separated by a closed interface. Prog. Nonlinear Differ. Equ. Appl. Vol.
61. 45-64 (2005)

14. Denisova I. V.: Thermocapillary convection problem for two compressible immis-
cible fluids. Microgravity Sci. Technol. Vol. 20 No. 3-4 287-291 (2008)

15. Hiemenz K.: Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom
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